Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
Bioorg Med Chem Lett ; 112: 129941, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39222890

RESUMEN

Emerging clinical evidence indicates that selective CDK9 inhibition may provide clinical benefits in the management of certain cancers. Many CDK9 selective inhibitors have entered clinical developments, and are being investigated. No clear winner has emerged because of unforeseen toxicity often observed in clinic with these agents. Therefore, a novel agent with differentiated profiles is still desirable. Herein, we report our design, syntheses of a novel azaindole series of selective CDK9 inhibitors. SAR studies led to a preclinical candidate YK-2168. YK2168 exhibited improved CDK9 selectivity over AZD4573 and BAY1251152; also showed differentiated intravenous PK profile and remarkable solid tumor efficacy in a mouse gastric cancer SNU16 CDX model in preclinical studies. YK-2168 is currently in clinical development in China (CTR20212900).


Asunto(s)
Quinasa 9 Dependiente de la Ciclina , Inhibidores de Proteínas Quinasas , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 9 Dependiente de la Ciclina/metabolismo , Animales , Humanos , Relación Estructura-Actividad , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Estructura Molecular , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Descubrimiento de Drogas , Relación Dosis-Respuesta a Droga , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular/efectos de los fármacos
3.
FEBS Lett ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997225

RESUMEN

SSR128129E (SSR) is a unique small-molecule inhibitor of fibroblast growth factor receptors (FGFRs). SSR is a high-affinity allosteric binder that selectively blocks one of the two major FGFR-mediated pathways. The mechanisms of SSR activity were studied previously in much detail, allowing the identification of its binding site, located in the hydrophobic groove of the receptor D3 domain. The binding site overlaps with the position of an N-terminal helix, an element exclusive for the FGF8b growth factor, which could potentially convert SSR from an allosteric inhibitor into an orthosteric blocker for the particular FGFR/FGF8b system. In this regard, we report here on the structural and functional investigation of FGF8b/FGFR3c system and the effects imposed on it by SSR. We show that SSR is equally or more potent in inhibiting FGF8b-induced FGFR signaling compared to FGF2-induced activation. On the other hand, when studied in the context of separate extracellular domains of FGFR3c in solution with NMR spectroscopy, SSR is unable to displace the N-terminal helix of FGF8b from its binding site on FGFR3c and behaves as a weak orthosteric inhibitor. The substantial inconsistency between the results obtained with cell culture and for the individual water-soluble subdomains of the FGFR proteins points to the important role played by the cell membrane.

4.
Dermatol Ther (Heidelb) ; 14(8): 2285-2296, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38954384

RESUMEN

Abrocitinib, an oral, once-daily, Janus kinase (JAK) 1-selective inhibitor, is approved for the treatment of adults and adolescents with moderate-to-severe atopic dermatitis (AD). Abrocitinib has shown rapid and sustained efficacy in phase 3 trials and a consistent, manageable safety profile in long-term studies. Rapid itch relief and skin clearance are more likely to be achieved with a 200-mg daily dose of abrocitinib than with dupilumab. All oral JAK inhibitors are associated with adverse events of special interest and laboratory changes, and initial risk assessment and follow-up monitoring are important. Appropriate selection of patients and adequate monitoring are key for the safe use of JAK inhibitors. Here, we review the practical use of abrocitinib and discuss characteristics of patients who are candidates for abrocitinib therapy. In general, abrocitinib may be used in all appropriate patients with moderate-to-severe AD in need of systemic therapy, provided there are no contraindications, e.g., in patients with active serious systemic infections and those with severe hepatic impairment, as well as pregnant or breastfeeding women. For patients aged ≥ 65 years, current long-time or past long-time smokers, and those with risk factors for venous thromboembolism, major adverse cardiovascular events, or malignancies, a meticulous benefit-risk assessment is recommended, and it is advised to start with the 100-mg dose, when abrocitinib is the selected treatment option.

5.
Eur J Med Chem ; 276: 116663, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39047608

RESUMEN

Histone deacetylases (HDACs) are highly attractive targets in the drug development process, and the development of subtype-selective HDAC inhibitors is the research direction for HDAC inhibitors. As an important member of the HDAC family, HDAC3 has been found to be closely related to the pathological progression of many diseases due to its abnormal expression. In previous studies, we discovered compound 13a, which has potent inhibitory activity against HDAC1, 2, and 3. In this work, we improved the HDAC3 isotype selectivity of 13a, and obtained compound 9c through rational drug design. 9c shows a selectivity of 71 fold for HDAC3 over HDAC1 and can significantly inhibit the proliferation activity of MV4-11 cells in vitro. Furthermore, when combined with Venetoclax, 9c can effectively induce apoptosis in MV4-11 cells in vitro and reduce the expression of anti-apoptotic proteins, the development of HDAC3 selective inhibitors may serve as a potential lead compound to reverse Venetoclax resistance.


Asunto(s)
Antineoplásicos , Apoptosis , Compuestos Bicíclicos Heterocíclicos con Puentes , Proliferación Celular , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores de Histona Desacetilasas , Histona Desacetilasas , Leucemia Mieloide Aguda , Sulfonamidas , Humanos , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Histona Desacetilasas/metabolismo , Sulfonamidas/farmacología , Sulfonamidas/química , Sulfonamidas/síntesis química , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Compuestos Bicíclicos Heterocíclicos con Puentes/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Relación Estructura-Actividad , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Apoptosis/efectos de los fármacos , Estructura Molecular , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga
6.
J Agric Food Chem ; 72(31): 17343-17355, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39024058

RESUMEN

ERAP1 is an emerging target for a large subclass of severe autoimmune diseases known as "MHC-I-opathy", together with tumor immunity. Nevertheless, effective inhibitors targeting ERAP1 remain a challenge. In this study, a novel food-derived natural product ERAP1-targeting inhibitor, carnosic acid, was identified, and to our knowledge, it is one of the best active compounds among the highly selective inhibitors targeting the orthosteric site of ERAP1. The results reveal that carnosic acid could bind strongly, like a key to the ERAP1 active site in the biased S1' pocket, which is different from the binding mode of the existing orthosteric site inhibitors. HLA-B27-mediated cell modeling validated that carnosic acid has the activity to reverse the AS-associated cellular phenotype brought on by ERAP1 through inhibition. Our findings provide insights into the design of potent inhibitors against the ERAP1 orthosteric site and the discovery of a key direct target of carnosic acid.


Asunto(s)
Abietanos , Aminopeptidasas , Presentación de Antígeno , Antígenos de Histocompatibilidad Menor , Abietanos/farmacología , Abietanos/química , Humanos , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/química , Antígenos de Histocompatibilidad Menor/metabolismo , Antígenos de Histocompatibilidad Menor/inmunología , Presentación de Antígeno/efectos de los fármacos , Aminopeptidasas/antagonistas & inhibidores , Aminopeptidasas/inmunología , Aminopeptidasas/metabolismo , Aminopeptidasas/química , Unión Proteica , Sitios de Unión , Extractos Vegetales/química , Extractos Vegetales/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Simulación del Acoplamiento Molecular
7.
Sci Rep ; 14(1): 13508, 2024 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866895

RESUMEN

DNA methylation is an epigenetic mechanism that introduces a methyl group at the C5 position of cytosine. This reaction is catalyzed by DNA methyltransferases (DNMTs) and is essential for the regulation of gene transcription. The DNMT1 and DNMT3A or -3B family proteins are known targets for the inhibition of DNA hypermethylation in cancer cells. A selective non-nucleoside DNMT3A inhibitor was developed that mimics S-adenosyl-l-methionine and deoxycytidine; however, the mechanism of selectivity is unclear because the inhibitor-protein complex structure determination is absent. Therefore, we performed docking and molecular dynamics simulations to predict the structure of the complex formed by the association between DNMT3A and the selective inhibitor. Our simulations, binding free energy decomposition analysis, structural isoform comparison, and residue scanning showed that Arg688 of DNMT3A is involved in the interaction with this inhibitor, as evidenced by its significant contribution to the binding free energy. The presence of Asn1192 at the corresponding residues in DNMT1 results in a loss of affinity for the inhibitor, suggesting that the interactions mediated by Arg688 in DNMT3A are essential for selectivity. Our findings can be applied in the design of DNMT-selective inhibitors and methylation-specific drug optimization procedures.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas , ADN Metiltransferasa 3A , Inhibidores Enzimáticos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Metilación de ADN , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/antagonistas & inhibidores , ADN (Citosina-5-)-Metiltransferasa 1/química , Sitios de Unión
8.
Chem Pharm Bull (Tokyo) ; 72(7): 630-637, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38945939

RESUMEN

Alzheimer's disease (AD) is the leading cause of senile dementia, and the rapid increase in the frequency of AD cases has been attributed to population aging. However, current drugs have difficulty adequately suppressing symptoms and there is still a medical need for symptomatic agents. On the other hand, it has recently become clear that epigenetic dysfunctions are deeply involved in the development of cognitive impairments. Therefore, epigenetics-related proteins have attracted much attention as drug targets for AD. Early-developed epigenetic inhibitors were inappropriate for AD treatment because of their limited potential for oral administration, blood-brain barrier penetration, high target selectivity, and sufficient dose-limiting toxicity which are essential properties for small molecule drugs targeting chronic neurodegenerative diseases such as AD. In recent years, drug discovery studies have been actively performed to overcome such problems and several novel inhibitors targeting the epigenetics-related proteins are of interest as promising AD therapeutic agents. Here, we review the small molecule inhibitors of histone deacetylase (HDAC), lysine-specific demethylase 1 (LSD1) or bromodomains and extra-terminal domain (BET) protein, that enable memory function improvement in AD model mice.


Asunto(s)
Enfermedad de Alzheimer , Epigénesis Genética , Inhibidores de Histona Desacetilasas , Histona Demetilasas , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Humanos , Animales , Epigénesis Genética/efectos de los fármacos , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Histona Demetilasas/antagonistas & inhibidores , Histona Demetilasas/metabolismo , Histona Desacetilasas/metabolismo
10.
Comput Biol Chem ; 110: 108072, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636391

RESUMEN

The methylation and demethylation of lysine and arginine side chains are fundamental processes in gene regulation and disease development. Histone lysine methylation, controlled by histone lysine methyltransferases (KMTs) and histone lysine demethylases (KDMs), plays a vital role in maintaining cellular homeostasis and has been implicated in diseases such as cancer and aging. This study focuses on two members of the lysine demethylase (KDM) family, KDM4E and KDM6B, which are significant in gene regulation and disease pathogenesis. KDM4E demonstrates selectivity for gene regulation, particularly concerning cancer, while KDM6B is implicated in inflammation and cancer. The study utilizes specific inhibitors, DA-24905 and GSK-J1, showcasing their exceptional selectivity for KDM4E and KDM6B, respectively. Employing an array of computational simulations, including sequence alignment, molecular docking, dynamics simulations, and free energy calculations, we conclude that although the binding cavities of KDM4E and KDM6B has high similarity, there are still some different crucial amino acid residues, indicating diverse binding forms between protein and ligands. Various interaction predominates when proteins are bound to different ligands, which also has significant effect on selective inhibition. These findings provide insights into potential therapeutic strategies for diseases by selectively targeting these KDM members.


Asunto(s)
Inhibidores Enzimáticos , Histona Demetilasas con Dominio de Jumonji , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Histona Demetilasas con Dominio de Jumonji/metabolismo , Histona Demetilasas con Dominio de Jumonji/química , Humanos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Simulación de Dinámica Molecular , Descubrimiento de Drogas , Simulación del Acoplamiento Molecular , Estructura Molecular , Histona Demetilasas/antagonistas & inhibidores , Histona Demetilasas/metabolismo , Histona Demetilasas/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...