Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 407: 131075, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38996847

RESUMEN

Phosphorus (P) plays a crucial role in plant growth, which can provide nutrients for plants. Nonetheless, excessive phosphate can cause eutrophication of water, deterioration of aquatic environment, and even harm for human health. Therefore, adopting feasible adsorption technology to remove phosphate from water is necessary. Biochar (BC) has received wide attention for its low cost and environment-friendly properties. However, undeveloped pore structure and limited surface groups of primary BC result in poor uptake performance. Consequently, this work introduced the synthesis of pristine BC, parameters influencing phosphate removal, and corresponding mechanisms. Moreover, multifarious metal-doped BCs were summarized with related design principles. Meanwhile, mechanisms of selective phosphate adsorption by metal-doped BC were investigated deeply, and the recovery of phosphate from water, and the utilization of phosphate-loaded adsorbents in soil were critically presented. Finally, challenges and prospects for widespread applications of selective phosphate adsorption were proposed in the future.


Asunto(s)
Carbón Orgánico , Fosfatos , Contaminantes Químicos del Agua , Purificación del Agua , Carbón Orgánico/química , Fosfatos/química , Adsorción , Purificación del Agua/métodos , Metales/química , Agua/química , Reciclaje
2.
Sci Bull (Beijing) ; 69(15): 2379-2386, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38729803

RESUMEN

The mitigation of environmental and energy crises could be advanced by reclaiming platinum group precious metals (PGMs) from decommissioned air purification catalysts. However, the complexity of catalyst composition and the high chemical inertness of PGMs significantly impede this process. Consequently, recovering PGMs from used industrial catalysts is crucial and challenging. This study delves into an environmentally friendly approach to selectively recover PGMs from commercial air purifiers using photocatalytic redox technology. Our investigation focuses on devising a comprehensive strategy for treating three-way catalysts employed in automotive exhaust treatment. By meticulously pretreating and modifying reaction conditions, we achieved noteworthy results, completely dissolving and separating rhodium (Rh), palladium (Pd), and platinum (Pt) within a 12-h time frame. Importantly, the solubility selectivity persists despite the remarkably similar physicochemical properties of Rh, Pd, and Pt. To bolster the environmental sustainability of our method, we harness sunlight as the energy source to activate the photocatalysts, facilitating the complete dissolution of precious metals under natural light irradiation. This eco-friendly recovery approach demonstrated on commercial air purifiers, exhibits promise for broader application to a diverse range of deactivated air purification catalysts, potentially enabling implementation on a large scale.

3.
Adv Mater ; 36(24): e2312551, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38433298

RESUMEN

Owing to continuing global use of lithium-ion batteries (LIBs), in particular in electric vehicles (EVs), there is a need for sustainable recycling of spent LIBs. Deep eutectic solvents (DESs) are reported as "green solvents" for low-cost and sustainable recycling. However, the lack of understanding of the coordination mechanisms between DESs and transition metals (Ni, Mn and Co) and Li makes selective separation of transition metals with similar physicochemical properties practically difficult. Here, it is found that the transition metals and Li have a different stable coordination structure with the different anions in DES during leaching. Further, based on the different solubility of these coordination structures in anti-solvent (acetone), a leaching and separation process system is designed, which enables high selective recovery of transition metals and Li from spent cathode LiNi1/3Co1/3Mn1/3O2 (NCM111), with recovery of acetone. Recovery of spent LiCoO2 (LCO) cathode is also evidenced and a significant selective recovery for Co and Li is established, together with recovery and reuse of acetone and DES. It is concluded that the tuning of cation-anion coordination structure and anti-solvent crystallization are practical for selective recovery of critical metal resources in the spent LIBs recycling.

4.
Heliyon ; 10(3): e24639, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38314278

RESUMEN

A tannin-based adsorbent was synthesized by pomegranate peel tannin powder modified with ethylenediamine (PT-ED) for the rapid and selective recovery of palladium and gold. To characterize PT-ED, field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS-Mapping), and Fourier transform infrared spectroscopy (FT-IR) were used. Central composite design (CCD) was used for optimization. The kinetic, isotherm, interference of coexisting metal ions, and thermodynamics were studied. The optimal conditions, including Au (III) concentration = 30 mgL-1, Pd (II) concentration = 30 mgL-1, adsorbent mass = 26 mg, pH = 2, and time = 26 min with the sorption percent more than 99 %, were anticipated for both metals using CCD. Freundlich model and pseudo-second-order expressed the isotherm and kinetic adsorption of the both metals. The inhomogeneity of the adsorbent surface and the multi-layer adsorption of gold and palladium ions on the PT-ED surface are depicted by the Freundlich model. The thermodynamic investigation showed that Pd2+ and Au3+ ions adsorption via PT-ED was an endothermic, spontaneous, and feasible process. The maximum adsorption capacity of Pd2+ and Au3+ ions on PT-ED was 261.189 mgg-1 and 220.277 mgg-1, respectively. The probable adsorption mechanism of Pd2+ and Au3+ ions can be ion exchange and chelation. PT-ED (26 mg) recovered gold and palladium rapidly from the co-existing metals in the printed circuit board (PCB) scrap, including Ca, Zn, Si, Cr, Pb, Ni, Cu, Ba, W, Co, Mn, and Mg with supreme selectivity toward gold and palladium. The results of this work suggest the use of PT-ED with high selectivity and efficiency to recover palladium and gold from secondary sources such as PCB scrap.

5.
Small ; 19(48): e2305247, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37518852

RESUMEN

The development of efficient adsorbents for the practical recovery of precious metals from electronic waste is vital to advanced energy/environment industries. Ti3 C2 Tx MXene-based materials are promising adsorbents for aqueous environments; however, the highly defective and super hydrophilic nature of the MXene surface hinders its practical applications. Here, we report that nitrogen-doped MXene (N-MXene) nanosheet stacks, prepared via high-energy planetary ball milling under N2 purging, exhibited a long-term stable and excellent recovery capability for Au and Ag ions via the nitrogenation of defective vacancies. Notably, these microscale nanosheets could facilitate the sustainable production of Au and Ag from secondary sources, exhibiting a high recovery rate and capability (1198 mg g-1 for Au and 1528 mg g-1 for Ag), long-term stable storability (21 d), and high selectivity (Kd of 1.67 × 106 for Au and 2.07 × 107 for Ag). Furthermore, the reversible redox chemistry of N-MXene facilitated its repeated use in adsorption/desorption cycles.

6.
Environ Sci Technol ; 57(9): 3940-3950, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36800282

RESUMEN

Selective and highly efficient extraction technologies for the recovery of critical metals including lithium, nickel, cobalt, and manganese from spent lithium-ion battery (LIB) cathode materials are essential in driving circularity. The tailored deep eutectic solvent (DES) choline chloride-formic acid (ChCl-FA) demonstrated a high selectivity and efficiency in extracting critical metals from mixed cathode materials (LiFePO4:Li(NiCoMn)1/3O2 mass ratio of 1:1) under mild conditions (80 °C, 120 min) with a solid-liquid mass ratio of 1:200. The leaching performance of critical metals could be further enhanced by mechanochemical processing because of particle size reduction, grain refinement, and internal energy storage. Furthermore, mechanochemical reactions effectively inhibited undesirable leaching of nontarget elements (iron and phosphorus), thus promoting the selectivity and leaching efficiency of critical metals. This was achieved through the preoxidation of Fe and the enhanced stability of iron phosphate framework, which significantly increased the separation factor of critical metals to nontarget elements from 56.9 to 1475. The proposed combination of ChCl-FA extraction and the mechanochemical reaction can achieve a highly selective extraction of critical metals from multisource spent LIBs under mild conditions.


Asunto(s)
Litio , Reciclaje , Metales , Cobalto , Suministros de Energía Eléctrica , Hierro
7.
Waste Manag ; 158: 146-152, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36709680

RESUMEN

Multi metal recycling from waste printed circuit boards (WPCBs) is attractive for resource conservation and sustainability. While smelting is commonly adopted to produce polymetallic concentrates from WPCBs, current processes cost oxidation smelting and fire refining followed by electrorefining to deport co-existing base metals and recover copper, which can cause substantial metal losses, long steps, and lack of effective methods for subsequent base metal recycling. Here, direct electrorefining of polymetallic concentrates (Cu-Ni-Fe-Pb-sn-Au-Ag) combined with electrodeposition was investigated to realize multi metal separation and purification. It was found that direct electrorefining of concentrates in H2SO4/CuSO4 electrolyte at 0.4 V realized >98% base metal dissolution and copper production (∼99% purity), serving as a combined metal leaching and copper electrowinning procedure. PbSO4-SnO2-Cu5FeS4 precipitate was formed in anode slime, with Ag-Au enriched by 8.5-61 times. Analysis on subsequent selective metal electrodeposition revealed the blocking effect of Zn2+ and overlapped potential region of Fe2+-Ni2+, emphasizing the importance of Zn and Fe pre-separation during smelting and chemical precipitation. Electrodeposition experiments demonstrated high selectivity for Cu and Ni at 0.05 and -0.7 V, where Ni2+ shows complex electroreduction behaviors. The proposed process can serve as an alternative feasible route for multi metal recycling from WPCBs.


Asunto(s)
Cobre , Residuos Electrónicos , Galvanoplastia , Residuos Electrónicos/análisis , Metales , Reciclaje/métodos
8.
J Hazard Mater ; 443(Pt B): 130253, 2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36327843

RESUMEN

The increasing demand for Rare Earth Elements (REEs) and the depletion of mineral resources motivate sustainable strategies for REE recovery from alternative unconventional sources, such as REE hyperaccumulator. The greatest impediment to REE agromining is the difficulty in the separation of REEs and other elements from the harvested biomass (bio-ore). Here, we develop a sulfuric acid assisted ethanol fractionation method for processing D. linearis bio-ore to produce the pure REE compounds and value-added chemicals. The results show that 94.5% of REEs and 87.4% of Ca remained in the solid phase, and most of the impurities (Al, Fe, Mg, and Mn) transferred to the liquid phase. Density functional theory calculations show that the water-cation bonds of REEs and Ca cations were broken more easily than the bonds of the cations of key impurities, causing lower solubility of REEs and Ca compounds. Subsequent separation and purification led to a REE-oxide (REO) product with a purity of 97.1% and a final recovery of 88.9%. In addition, lignin and phenols were obtained during organosolv fractionation coupled with a fast pyrolysis process. This new approach opens up the possibility for simultaneous selective recovery of REEs and to produce value-added chemicals from REE bio-ore refining.


Asunto(s)
Metales de Tierras Raras , Tracheophyta , Metales de Tierras Raras/química , Agua
9.
Waste Manag ; 155: 53-64, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36343600

RESUMEN

The recovery of valuable elements in spent lithium-ion batteries (LIBs) has attracted more and more attention. Efficient recovery of valuable elements from spent LIBs with lower consumption and shorter process is the target that people have been pursuing. In this study, the valuable metals (Ni, Co, Mn and Li) and FePO4 products are simultaneously recovered from mixed spent LiNixCoyMnzO2 and LiFePO4 in one step under the optimized condition of 0.88 M H3PO4, a mass ratio of LFP/NCM of 2:1, a L/S ratio of 33:1 and 80 ℃ for 120 min without additional auxiliary reagents. Over 60 % of acid consumption is reduced and the process of adjusting pH is avoidable. The leaching efficiencies of the valuable elements reach up to 99.1 % for Ni, 98.9 % for Co, 99.6 % for Li and 97.3 % for Mn. Almost all of Fe is precipitated as FePO4·2H2O. By means of the empirical model, the research on leaching kinetics demonstrates that the leaching reaction is internal diffusion-controlled with the apparent activation energy of valuable metals less than 30 kJ/mol. Furthermore, the redox reaction mechanism between spent LiBs has been explored. And the intrinsic driving force in the phosphoric acid system is found out. This finding may provide an innovative and selective recycling method for valuable elements from mixed spent LIBs with high economic benefit and fewer environmental footprints.


Asunto(s)
Suministros de Energía Eléctrica , Litio , Humanos , Metales , Ácidos Fosfóricos , Reciclaje
10.
J Colloid Interface Sci ; 630(Pt B): 738-750, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36347100

RESUMEN

A novel reusable ion imprinted nanocomposite magnetic bentonite(IIPNMB) was prepared for selective recovery of aqueous scandium. Based on the fact that oxyphosphorus functional groups in sodium tripolyphosphate have good affinity to Sc(III) and chitosan is rich in hydroxy and amino active sites, they were chosen to build ion imprinted layers. Mesoporous IIPNMB showed good adsorption performance. The pseudo second-order kinetic model and Langmuir model fit the experimental data. According to XPS features, the amino, hydroxyl, PO and PO bonds of the adsorbents had electrostatic interaction and complexation with Sc(III), leading to the good selectivity of IIPNMB for Sc(III). In addition, the material atomic structure was proposed based on the chemical structure of IIPNMB for DFT calculation of ion imprinting adsorption, which clearly proved that the adsorption process of Sc(III) was stable, and it gave another proof for the mechanism of the selective extraction.


Asunto(s)
Nanocompuestos , Contaminantes Químicos del Agua , Bentonita/química , Concentración de Iones de Hidrógeno , Termodinámica , Nanocompuestos/química , Adsorción , Cinética , Agua , Contaminantes Químicos del Agua/química , Fenómenos Magnéticos
11.
Waste Manag ; 153: 52-60, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36049272

RESUMEN

Recycling critical metals from spent Li-ion batteries (LIBs) is important for the overall sustainability of future batteries. This study reports an improved sulfation roasting technology to efficiently recycle Li and Co from spent LiCoO2 LIBs using potassium pyrosulfate as sulfurizing reagent. By sulfation roasting, LiCoO2 was converted into water-soluble lithium potassium sulfate and water-insoluble cobalt oxide. Under optimal conditions, 98.51% Li was leached in water, with a selectivity of 99.86%. More importantly, sulfur can be recirculated thoroughly, and the sulfur atomic efficiency can be significantly enhanced by controlling the amount of potassium pyrosulfate. Li ions from the water leaching process were recovered by chemical precipitation. Furthermore, application of this technology to other spent LIBs, such as LiMn2O4 and LiNi0.5Co0.2Mn0.3O2, verified its effectiveness for selective recovery Li. These findings can provide some inspiration for high efficiency and environmentally friendly recovery metal from spent LIBs.

12.
Membranes (Basel) ; 12(7)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35877888

RESUMEN

Prior to applying supported liquid membranes (SLM) with strip dispersion for separation of chromium (VI), copper and zinc, suitable chemical settings were determined through solvent extraction and stripping studies. More than 90% of copper and zinc could be simultaneously extracted with at least 3% (v/v) di-(2-ethylhexyl)phosphoric acid (D2EHPA) at a feed equilibrium pH in the range of 3.5-5.0. For stripping, theoretical model equations derived and experimental results revealed that suitable concentrations of lower acid strength reagents can strip metals that have weaker metal-extractant bond without significantly stripping metals that have a stronger metal-extractant bond. Therefore, in a setup comprising three compartments separated by two SLM, we propose to fill the three compartments in the following order: feed-strip dispersion containing low acid strength reagent-strong acid. An organic phase with 4% (v/v) D2EHPA was used. From stripping experiments, 0.2 mol/L pH 3 citrate buffer, which resulted in the highest copper recovery (88.8%) and solution purity (99.0%), was employed as the low acid strength reagent while the strong acid consisted of 1 mol/L sulfuric acid. In 26 h, 99.1% copper was recovered by citrate buffer with 99.8% purity and 95.1% zinc was recovered by sulfuric acid with 98.4% purity. Chromium (VI), copper and zinc could be separated effectively using this separation strategy.

13.
Chemosphere ; 286(Pt 3): 131897, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34399252

RESUMEN

The recovery of valuable metals from the LiNi0·5Mn0·3Co0·2O2 in spent batteries deserves more attention. We report a series of feasible procedures to selectively recover the four metals (Li, Ni, Mn, and Co) using a combination of hydrometallurgical and pyrometallurgyical processes. Firstly, oxalic acid is used to dissolve Li and precipitate the other three metals in oxalate forms. It is found that under the optimal condition, about 98% of the Li is dissolved, and on average 93% of the other three metals are transformed to precipitated oxalates. The oxalates are then transformed to NiO·Mn2O3·Co3O4 by being calcinated at 723 K under atmospheric environment. The selective recovery of NiO·Mn2O3·Co3O4 can be achieved by using H2SO4 under three different conditions. The first step is to use H2SO4 to selectively dissolve CoO from the Co3O4. Then the combination of H2SO4 and ultrasound is adopted to dissolve NiO, during which the ultrasound destroys the surficial oxide film on the NiO. Afterwards, the Mn2O3 is transformed to MnO2 and Mn2+ in heated H2SO4. The Co, Ni and Mn ions are dissolved in a sequence, which facilitates their separation and recovery. As the main components of the final residual solids, Co2O3 and MnO2 present in distinctly different sizes and shapes, which are beneficial for their separation and direct usage.


Asunto(s)
Litio , Níquel , Suministros de Energía Eléctrica , Compuestos de Manganeso , Óxidos , Reciclaje
14.
Food Chem ; 376: 131926, 2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-34968918

RESUMEN

Food processing industries generate 25-30% of fruit and vegetable peel (F&VP) waste of the total produce, which are rich in polyphenolic antioxidants (PA). Sustainable solution for the above waste can be its valorization for the recovery of PA, often used as natural preservative. Present work reports rationally designed graphene oxide-based molecularly imprinted composites (GOMIPs) using ionic liquid 1-allyl-3-octylimidazolium chloride (A) as a green functional monomer for selective recovery of PA 4-Hydroxy benzoic acid (4HA) from F&VP/pomegranate peel (PGP) waste. GOMIP-A and GOMIP-V were characterized using various techniques for its successful synthesis. GOMIP-A attained equilibrium within 10 min with adsorption capacity of 190.56 µmol g-1 for 4HA. Developed HPLC method depicted selective recovery of 77.23% and 62.83% 4HA from F&VP and PGP waste respectively by GOMIP-A. Subsequently, desorbed 4HA from GOMIP-A matrices exhibited the antioxidant potential of 33.53% (F&VP extract) and 47.97% (PGP extract) for DPPH radical.

15.
J Hazard Mater ; 416: 126114, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34492910

RESUMEN

The explosively growing demand for electrical energy is generating a great deal of spent lithium-ion batteries (LIBs). Therefore, a simple and effective strategy for the sustainable recycling of used batteries is urgently needed to minimize chemical consumption and to reduce the associated environmental pollution. In this work, 2-naphthalenesulfonic acid is innovatively proposed for the highly-selective recovery of valuable metals. Impressively, lithium and cobalt are simultaneously separated through a single-step process, in which 99.3% of lithium is leached out as Li+ enriched solutions while 99% of cobalt is precipitated as cobalt-naphthalenesulfonate. The obtained lithium enriched solutions are recovered as Li2CO3. The cobalt-naphthalenesulfonate with high purity (99%) is ready to be transformed into Co3O4, and then generated into LiCoO2 by reacting with the above-obtained Li2CO3. The cathode material LiCoO2 with micro/nanostructures exhibits excellent electrochemical properties. Characterization results confirm the coordination structure of the extracted cobalt complex (Co(NS)2•6H2O). Finally, compared to other selective metal extraction techniques, this strategy avoids additional separation and purification processes, thus improving the recycling efficiency. Overall, this route can be extended to selectively extract valuable metals from other types of cathode materials in spent LIBs as a sustainable approach.

16.
Water Res ; 202: 117423, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34284122

RESUMEN

Phosphorus (P) extraction from human urine is a potential strategy to address global resource shortage, but few approaches are able to obtain high-quality liquid P products. In this study, we introduced an innovative flow-electrode capacitive deionization (FCDI) system, also called ion-capture electrochemical system (ICES), for selectively extracting P and N (i.e., urea) from fresh human urine simply by integrating a liquid membrane chamber (LMC) using a pair of anion exchange membrane (AEM). In the charging process, negatively charged P ions (i.e., HPO42- and H2PO4-) can be captured by acidic extraction solutions (e.g., solutions of HCl, HNO3 and H2SO4) on their way to the anode chamber, leading to the conversion of P ions to uncharged H3PO4, while other undesired ions such as Cl- and SO42- are expelled. Simultaneously, uncharged urea molecules remain in the urine effluent with the removal of salt. Thus, high-purity phosphoric acid and urea solutions can be obtained in the LMC and spacer chambers, respectively. The purification of P in an acidic environment is ascribed largely to the competitive migration and protonation of ions. The latter contributes ~27% for the selective capture of P. Under the optimal operating conditions (i.e., ratio of the urine volume to the HCl volume = 7:3, initial pH of the extraction solution = 1.43, current density = 20 A/m2 and threshold pH ~ 2.0), satisfactory recovery performance (811 mg/L P with 73.85% purity and 8.3 g/L urea-N with 81.4% extraction efficiency) and desalination efficiency (91.1%) were obtained after 37.5 h of continuous operation. Our results reveal a promising strategy for improving in selective separation and continuous operation via adjustments to the cell configuration, initiating a new research dimension toward selective ion separation and high-quality P recovery.


Asunto(s)
Fósforo , Purificación del Agua , Adsorción , Electrodos , Humanos , Urea
17.
J Hazard Mater ; 418: 126308, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34329039

RESUMEN

Economic and ecological issues motivate the recovery of precious metals (PMs: Ag, Au, Pd, and Pt) from secondary sources. From the viewpoint of eco-friendliness and cost-effectiveness, biomass-based resins are superior to synthetic polymer-based resins for PM recovery. Herein, a detailed comparative study of bio-sorbent dithiocarbamate-modified cellulose (DMC) and synthetic polymer-based commercial resins (Q-10R, Lewatit MonoPlus TP 214, Diaion WA30, and Dowex 1X8) for PM recovery from waste resources was conducted. The performances and applicability of the selected resins were investigated in terms of sorption selectivity, effect of competing anions, sorption isotherms, impact of temperature, and PM extractability from industrial wastes. Although the sorption selectivity toward PMs in acidic solutions by DMC and other resins was comparable, the sorption efficiency of commercial resins was adversely affected by competing anions. The sorption of PMs fitted the Langmuir model for all the studied resins, except Q-10R, which followed the Freundlich model. The maximum sorption capacity of DMC was 2.2-42 times higher than those of the resins. Furthermore, the PM extraction performance of DMC from industrial wastes exceeded that of the commercial resins, with a sorption efficiency ≥99% and a DMC dosage of 5-40 times lower.


Asunto(s)
Metales , Agua , Adsorción , Celulosa , Concentración de Iones de Hidrógeno , Cinética
18.
J Hazard Mater ; 415: 125556, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-33752086

RESUMEN

This research aimed to address the issue of residual manganese in electrolytic manganese residue (EMR), which is difficult to recycle and can easily become an environmental hazard and resource waste. This research developed a method for the efficient and selective recovery of manganese from EMR and the removal of ammonia nitrogen (ammonium sulfate) under the combined action of ball milling and oxalic acid. The optimum process parameters of this method were obtained through single-factor experiment and response-surface model. Results showed that the recovery rate of manganese can exceed 98%, the leaching rate of iron was much lower than 2%, and the leaching rates of manganese and ammonia nitrogen after EMR ball grinding were 1.01 and 13.65 mg/L, respectively. Kinetics and mechanism studies revealed that ammonium salts were primarily removed in the form of ammonia, and that insoluble manganese (MnO2) was recovered by the reduction of FeS and FeS2 in EMR under the action of oxalic acid. Iron was solidified in the form of Fe2O3 and Fe2(SiO3)3. The technology proposed in this research has great industrial application value for the recycling and harmless treatment of EMR.

19.
J Hazard Mater ; 402: 123491, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-32736178

RESUMEN

In this study, a promising process has been developed for selective recovery of valuable metals from spent lithium ion batteries (LIBs). First, reduction roasting which used spent anode powder as reduction agent and water immersion are applied to preferentially recover lithium. Subsequently, an ammonia leaching method is adopted to eff ;ectively separate nickel and cobalt from water immersion residue. Results indicate that Li2CO3, (NiO)m·(MnO)n, Ni, Co are the ultimate reduction products at 650 °C for 1 h with 5% anode powder. 82.2 % Li is preferentially leached via water immersion after reduction roasting and Li2CO3 products are obtained by evaporation crystallization. Thermodynamics shows that reducing ammonia leaching is feasible for water immersion residue. Amounts of 97.7 % Ni and 99.1 % Co can be selectively leached by NH3·H2O and (NH4)2SO3 while Mn remain in the residue as (NH4)2Mn(SO3)2·H2O, (NH4)2Mn(SO4)2·6H2O and (NH4)2Mn2(SO3)3 under the optimized conditions. Ammonia leaching kinetic show the activation energy of Ni and Co is 84.44 kJ/mol and 91.73 kJ/mol, which indicate the controlling steps are the chemical reaction. Summarily, the whole process achieves the maximum degree of selective recovery and reduces the environmental pollution caused by the multistep purification.

20.
Chemosphere ; 252: 126560, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32222519

RESUMEN

The novel ion-imprinted montmorillonite nanosheets/chitosan (IIMNC) gel beads were prepared for selective adsorption of Cu2+. The IIMNC gel beads were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The results showed that IIMNC was successfully assembled and rich in honeycombed pores, which performed well in the removal of Cu2+ through the synergistic effect of montmorillonite nanosheets and chitosan. The elimination of copper was followed by pseudo-second-order model and was enhanced by introduced montmorillonite nanosheets (MMTNS) because MMTNS attracted Cu(Ⅱ) by its negative charge and provided active adsorption sites through its high performance of cation exchange. This composite gel also showed excellent reusability, performing well in the removal of Cu2+ after undergoing adsorption-desorption in five cycles, because the adsorption sites of MMTNS can be continually reactivated by NaOH solution. More importantly, its high selectivity for Cu2+ provides a feasible way to recover Cu2+ from wastewater containing various cations.


Asunto(s)
Bentonita/química , Quitosano/química , Eliminación de Residuos Líquidos/métodos , Adsorción , Cationes , Cobre/química , Concentración de Iones de Hidrógeno , Cinética , Nanoestructuras , Espectroscopía de Fotoelectrones , Espectroscopía Infrarroja por Transformada de Fourier , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...