Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.817
Filtrar
1.
Front Immunol ; 15: 1392898, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39351240

RESUMEN

In the recent history of the SARS-CoV-2 outbreak, vaccines have been a crucial public health tool, playing a significant role in effectively preventing infections. However, improving the efficacy while minimizing side effects remains a major challenge. In recent years, there has been growing interest in nanoparticle-based delivery systems aimed at improving antigen delivery efficiency and immunogenicity. Among these, self-assembled nanoparticles with varying sizes, shapes, and surface properties have garnered considerable attention. This paper reviews the latest advancements in the design and development of SARS-CoV-2 vaccines utilizing self-assembled materials, highlighting their advantages in delivering viral immunogens. In addition, we briefly discuss strategies for designing a broad-spectrum universal vaccine, which provides insights and ideas for dealing with possible future infectious sarbecoviruses.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Nanopartículas , SARS-CoV-2 , Humanos , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , COVID-19/inmunología , SARS-CoV-2/inmunología , Desarrollo de Vacunas , Animales , Nanovacunas
2.
Carbohydr Polym ; 344: 122476, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39218535

RESUMEN

Addressing environmental concerns and producing sustainable and environmentally friendly electronic devices with low power consumption poses a significant challenge. This study introduces phototransistor devices employing morphologically controlled block copolymers based on maltotriose, maltoheptaose, and ß-cyclodextrin as polymer electrets. Ordered self-assembled morphologies can be achieved by utilizing microwave radiation for rapid annealing (within 5 s) with optimized annealing conditions. Herein, face-centered cubic (FCC), vertical, and mixed cylindrical nanostructures are reported. The resulting well-defined morphologies play a pivotal role in enhancing the electron-trapping capability of the block copolymers and facilitating charge carrier transport between the electret and semiconducting layers. Consequently, the phototransistor memory manifests exceptional performance, featuring stability and endurance. Intriguingly, the cavity of ß-cyclodextrin provides a stable environment for the trapped charges, leading to a larger memory window than other block copolymers. On the other hand, a device consisting of MT-b-PS exhibited superior current contrast exceeding 106 even under a low drain voltage of -1 V, attributed to sub-10 nm FCC nanostructures. Furthermore, this phototransistor device successfully emulated the synaptic functions of sensing, learning, and short- and long-term memory in the human brain, along with a low energy consumption of 0.312 fJ. Hence, this report opens the pathways for developing promising bio-based electronic devices.

3.
Adv Sci (Weinh) ; : e2405200, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225461

RESUMEN

Quetiapine myristate (QM), an ester-bonded lipophilic prodrug of quetiapine (QTP), is synthesized and converted into an amphiphilic structure in acidic pH to trigger a novel self-assembled QM nanosuspension (QMN). Following injection, this QMN rearranges within physiological pH to form nanoaggregates in structure, resulting in enhanced physicochemical properties and in vivo therapeutic performance without an initial burst release. The 200-nm-sized QMN exhibits less invasive injection, higher drug content, and better storage stability profile than conventional poly(lactide-co-glycolide) (PLGA) nanosuspensions containing QTP or QM. Following a single intramuscular injection to beagle dogs (35 mg kg-1 QTP), QMN undergoes pH-responsive nanoaggregation to form the lipophilic prodrug, providing esterase-oriented sustained release for five weeks compared with the two-week period of PLGA nanosuspensions. Notably, QMN exhibits improved in vivo pharmacokinetic performance with long-acting delivery while minimizing issues associated with polymeric PLGA formulations, including the initial massive burst release, cellular toxicity, and adverse side effects. These results support the further development of QMN as a novel long-acting injectable to improve patient compliance and dosing frequency.

4.
Curr Drug Deliv ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39229998

RESUMEN

BACKGROUND: Traditional Chinese medicine formulations often contain hydrophobic components with limited solubility and stability, leading to low oral bioavailability. Self-assembled nanoparticles (SANs) have shown promise in enhancing oral bioavailability of these components. However, whether un-decocted Chinese herbal pellets can generate SANs and the impact of SANs formed by multiple components on pharmacokinetic parameters remains unexplored. METHODS: In this study, single-factor approach was employed to determine the optimal separation method of nano-emulsion phase of XiaoYao pill (N-XY). Morphological and particle size analyses confirmed the nanoscale nature of N-XY. High-performance liquid chromatography (HPLC) fingerprint analysis was conducted to compare the distribution of active ingredients among three different phases of XiaoYao pill (XY pill). In vitro release studies were performed to evaluate the release mechanism of four ingredients from N-XY. Additionally, in vivo pharmacokinetics and tissue distribution behaviors were investigated in rats. RESULTS: N-XY exhibited uniform and stable characteristics as a water-in-oil (O/W) nano-emulsion. Fingerprint analysis identified 25 characteristic peaks and 8 key ingredients in N-XY, with the highest peak areas. In vitro release studies showed a sustained release behavior of N-XY. The pharmacokinetics study showed that the ferulic acid of N-XY had a 1.37-fold higher AUC, 1.44-fold lower Vd/F, 1.39-fold lower CL/F, and a prolonged t1/2 than A-XY, indicating enhanced bioavailability due to reduced elimination. Furthermore, the tissue distribution revealed that the levels of paeoniflorin and ferulic acid from N-XY significantly increased in liver, spleen, lungs, uterus and ovaries, exhibiting targeting characteristics. CONCLUSION: This study comprehensively explored the formation, characterization, and pharmacokinetics of nano-emulsion in XY pill, introducing novel perspectives and initiating preliminary research on potential SANs in un-decocted traditional Chinese medicine formulations. It also emphasized the importance of enhancing pharmacokinetics of hydrophobic components in Chinese herbal formulations and laid the foundation for future nano-formulation research for XY pill.

5.
Adv Healthc Mater ; : e2402320, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39252648

RESUMEN

Cardiovascular disease (CVD) is a leading cause of death globally, and vascular calcification (VC) is an important independent risk factor for predicting CVD. Currently, there are no established therapeutic strategies for the treatment of VC. Although recognized combination therapies of nanomedicines can provide effective strategies for disease treatment, the clinical application of nanomedicines is limited because of their complex preparation processes, low drug loading rates, and unpredictable safety risks. Thus, developing a simple, efficient, and safe nanodrug to simultaneously regulate inflammation and autophagy may be a promising strategy for treating VC. Herein, an anti-inflammatory peptide (lysine-proline-valine peptides, KPV) and the autophagy activator rapamycin (RAPA) are self-assembled to form new carrier-free spherical nanoparticles (NPs), which shows good stability and biosafety. In vivo and in vitro, KPV-RAPA NPs significantly inhibit VC in mice compared to the other treatment groups. Mechanistically, KPV-RAPA NPs inhibit inflammatory responses and activated autophagy. Therefore, this study indicates that the new carrier-free KPV-RAPA NPs have great potential as therapeutic agents for VC combination therapy, which can promote the development of nanodrugs for VC.

6.
Adv Sci (Weinh) ; : e2403970, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248337

RESUMEN

Interface engineering is pivotal for enhancing the performance and stability of devices with layered structures, including solar cells, electronic devices, and electrochemical systems. Incorporating the interfacial dipole between the bulk layers effectively modulates the energy level difference at the interface and does not significantly influence adjacent layers overall. However, interfaces can drastically affect adjoining layers in ultrathin devices, which are essential for next-generation electronics with high integrity, excellent performance, and low power consumption. In particular, the interfacial effect is pronounced in ultrathin semiconductors, which have a weak electric field screening effect. Herein, the substantial interfacial impact on the ultrathin silicon is shown, the p- to n-type inversion of the semiconductor solely through the deposition of a self-assembled monolayer (SAM) without external bias. The effects of SAMs with different interfacial dipoles are investigated by using Hall measurement and surface analytic techniques, such as UPS, XPS, and KPFM. Furthermore, the lateral electronic junction of the ultrathin silicon is engineered by the regioselective deposition of SAMs with opposite dipoles, and the device exhibits rectification behavior. When the interfacial dipole of SAM is manipulated, the rectification ratio changes sensitively, and thus the fabricated diode shows potential to be developed as a sensing platform.

7.
J Biomed Mater Res A ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237470

RESUMEN

The avascular structure and low cell migration to the damaged area due to the low number of cells do not allow spontaneous repair of the articular cartilage tissue. Therefore, functional scaffolds obtained from biomaterials are used for the regeneration of cartilage tissue. Here, we functionalized one of the self-assembling peptide (SAP) scaffolds KLD (KLDLKLDLKLDL) with short bioactive motifs, which are the α1 chain of type II collagen binding peptide WYRGRL (C1) and the triple helical collagen mimetic peptide GFOGER (C2) by direct coupling. Our goal was to develop injectable functional SAP hydrogels with proper mechanical characteristics that would improve chondrogenesis. Scanning electron microscopy (SEM) was used to observe the integration of peptide scaffold structure at the molecular level. To assure the stability of SAPs, the rheological characteristics and degradation profile of SAP hydrogels were assessed. The biochemical study of the DNA, glycosaminoglycan (GAG), and collagen content revealed that the developed bioactive SAP hydrogels greatly increased hMSCs proliferation compared with KLD scaffolds. Moreover, the addition of bioactive peptides to KLD dramatically increased the expression levels of important chondrogenic markers such as aggrecan, SOX-9, and collagen Type II as evaluated by real-time polymerase chain reaction (PCR). We showed that hMSC proliferation and chondrogenic differentiation were encouraged by the developed SAP scaffolds. Although the chondrogenic potentials of WYRGRL and GFOGER were previously investigated, no study compares the effect of the two peptides integrated into 3-D SAP hydrogels in chondrogenic differentiation. Our findings imply that these specifically created bioactive peptide scaffolds might help enhance cartilage tissue regeneration.

8.
Molecules ; 29(17)2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39275069

RESUMEN

Ferritin, an iron storage protein, is ubiquitously distributed across diverse life forms, fulfilling crucial roles encompassing iron retention, conversion, orchestration of cellular iron metabolism, and safeguarding cells against oxidative harm. Noteworthy attributes of ferritin include its innate amenability to facile modification, scalable mass production, as well as exceptional stability and safety. In addition, ferritin boasts unique physicochemical properties, including pH responsiveness, resilience to elevated temperatures, and resistance to a myriad of denaturing agents. Therefore, ferritin serves as the substrate for creating nanomaterials typified by uniform particle dimensions and exceptional biocompatibility. Comprising 24 subunits, each ferritin nanocage demonstrates self-assembly capabilities, culminating in the formation of nanostructures akin to intricate cages. Recent years have witnessed the ascendance of ferritin-based self-assembled nanoparticles, owing to their distinctive physicochemical traits, which confer substantial advantages and wide-ranging applications within the biomedical domain. Ferritin is highly appealing as a carrier for delivering drug molecules and antigen proteins due to its distinctive structural and biochemical properties. This review aims to highlight recent advances in the use of self-assembled ferritin as a novel carrier for antigen delivery and vaccine development, discussing the molecular mechanisms underlying its action, and presenting it as a promising and effective strategy for the future of vaccine development.


Asunto(s)
Ferritinas , Nanopartículas , Vacunas , Ferritinas/química , Nanopartículas/química , Humanos , Vacunas/química , Antígenos/química , Antígenos/inmunología , Animales , Desarrollo de Vacunas , Sistemas de Liberación de Medicamentos , Portadores de Fármacos/química
9.
Pharm Dev Technol ; : 1-27, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39330701

RESUMEN

The electrospinning method involves the production of different drug delivery applications using various polymers. The production of proliposomes with electrospinning provides the hybridization of two novel drug delivery systems. Retinoic acid, also known as all-trans retinoic acid (ATRA), is a common and effective drug for acne therapy. This study aimed to prepare ATRA-loaded proliposomal nanofibers and evaluate their effectiveness on biofilm inhibition. Blank and ATRA-loaded proliposomal nanofiber formulations were fabricated in various polyvinylpyrrolidone, phosphatidylcholine and cholesterol ratios. TEM images verified the rapid formation of the liposomes after the hydration of nanofibers. The vesicle size, polydispersity index and zeta potential values of self-assembled liposomes were measured. The vesicle size values were found to be 321.9-363.8nm with PDI values varying between 0.332-0.511 and zeta potential values of (-16.8)-(-20.5)mV. ATRA-loaded proliposomal nanofibers provided higher bioadhesion (0.25mJ/cm2) than the commercial cream (0.07mJ/cm2). The short-term stability results showed that the initial characteristics remained for three months at 4 °C. The proposed ATRA-loaded self-assembled proliposomal system provided antibacterial, fungistatic or fungicidal effects superior to retinoic acid itself and inhibited biofilm formation in lower concentrations. This approach can combine the stability advantage of nanofibers in the dry state with the high effectiveness of liposomes in acne treatment presenting antibacterial and anti-biofilm-forming activity against Candida albicans and Cutibacterium acnes.

10.
Artículo en Inglés | MEDLINE | ID: mdl-39314016

RESUMEN

Deoxyribonucleic acid (DNA), a macromolecule that stores genetic information in organisms, has recently been gradually developed into a building block for new materials due to its stable chemical structure and excellent biocompatibility. The efficient preparation and functional integration of various molecular complexes and composite materials based on nucleic acid skeletons have been successfully achieved. These versatile materials possess excellent physical and chemical properties inherent to certain inorganic or organic molecules but are endowed with specific physiological functions by nucleic acids, demonstrating unique advantages and potential applications in materials science, nanotechnology, and biomedical engineering in recent years. However, issues such as the production cost, biological stability, and potential immunogenicity of DNA have presented some unprecedented challenges to the application of these materials in the field. This review summarizes the cutting-edge manufacturing techniques and unique properties of DNA-based complexes and composites and discusses the trends, challenges, and opportunities for the future development of nucleic acid-based materials.

11.
Pharmaceutics ; 16(9)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39339168

RESUMEN

In the present work, we pioneered a coordinated self-assembly approach aimed at fabricating carrier-free hybrid nanoparticles to address the inherent challenges of the anaerobic microenvironment and the oxidative resistance induced by reductive glutathione (GSH) in photodynamic therapy (PDT). In these nanoparticles, protoporphyrin IX (PP), HIF-1α inhibitor of N, N'-(2,5-Dichlorosulfonyl) cystamine KC7F2 (KC), and the cofactor Fe3+ present hydrogen bond and coordination interaction. The nanoparticles exhibited efficient cellular uptake by CAL-27 cells, facilitating their accumulation in tumors by enhanced permeability and retention (EPR) effect. Under irradiation at 650 nm, the formation of cytotoxic singlet oxygen (1O2) would be enhanced by the synergy effect on the Fenton reaction of Fe3+ ion and the downregulation of the HIF-1α, leading to the improved PDT efficacy both in vitro and in vivo biological studies. Our work opens a new supramolecular approach to prepare hybrid nanoparticles for effective synergy therapy with PDT against cancer cells.

12.
Pharmaceutics ; 16(9)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39339203

RESUMEN

The combination of photodynamic therapy (PDT) and pneumatotherapy is emerging as one of the most effective strategies for increasing cancer treatment efficacy while minimizing side effects. Photodynamic forces affect nitric oxide (NO) levels as activated photosensitizers produce NO, and NO levels in the tumor and microenvironment directly impact tumor cell responsiveness to PDT. In this paper, 3-benzenesulfonyl-4-(1-hydroxy ether)-1,2,5-oxadiazole-2-oxide NO donor-silicon phthalocyanine coupling (SiPc-NO) was designed and prepared into self-assembled nanoparticles (SiPc-NO@NPs) by precipitation method. By further introducing arginyl-glycyl-aspartic acid (RGD) on the surface of nanoparticles, NO-photosensitizer delivery systems (SiPc-NO@RGD NPs) with photo-responsive and tumor-targeting properties were finally prepared and preliminarily evaluated in terms of their formulation properties, NO release, and photosensitizing effects. Furthermore, high reactive oxygen species (ROS) generation efficiency and high PDT efficiency in two breast cancer cell lines (human MCF-7 and mouse 4T1) under irradiation were also demonstrated. The novel SiPc-NO@RGD NPs show great potential for application in NO delivery and two-photon bioimaging-guided photodynamic tumor therapy.

13.
Molecules ; 29(18)2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39339421

RESUMEN

(1) Objective: To optimize the preparation process of hyaluronic acid-modified ginsenoside Rb1 self-assembled nanoparticles (HA@GRb1@CS NPs), characterize and evaluate them in vitro, and investigate the mechanism of action of HA@GRb1@CS NPs in treating cardiovascular diseases (CVDs) associated with inflammation and oxidative stress. (2) Methods: The optimal preparation process was screened through Plackett-Burman and Box-Behnken designs. Physical characterization of HA@GRb1@CS NPs was conducted using transmission electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, and differential scanning calorimetry. Stability experiments, in vitro drug release studies, and lyophilisate selection were performed to evaluate the in vitro performance of HA@GRb1@CS NPs. The anti-inflammatory and antioxidant capabilities of HA@GRb1@CS NPs were assessed using H9c2 and RAW264.7 cells. Additionally, bioinformatics tools were employed to explore the mechanism of action of HA@GRb1@CS NPs in the treatment of CVDs associated with inflammation and oxidative stress. (3) Results: The optimal preparation process for HA@GRb1@CS NPs was achieved with a CS concentration of 2 mg/mL, a TPP concentration of 2.3 mg/mL, and a CS to TPP mass concentration ratio of 1.5:1, resulting in a particle size of 126.4 nm, a zeta potential of 36.8 mV, and a PDI of 0.243. Characterization studies confirmed successful encapsulation of the drug within the carrier, indicating successful preparation of HA@GRb1@CS NPs. In vitro evaluations demonstrated that HA@GRb1@CS NPs exhibited sustained-release effects, leading to reduced MDA (Malondialdehyde) content and increased SOD (Superoxide Dismutase) content in oxidatively damaged H9c2 cells. Furthermore, it showed enhanced DPPH (2,2-Diphenyl-1-picrylhydrazyl) and ABTS+ [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)] free radical scavenging rates and inhibited the release of inflammatory factors NO (Nitric Oxide) and IL-6 (Interleukin-6) from RAW264.7 cells. (4) Conclusions: The HA@GRb1@CS NPs prepared in this study exhibit favorable properties with stable quality and significant anti-inflammatory and antioxidant capabilities. The mechanisms underlying their therapeutic effects on CVDs may involve targeting STAT3, JUN, EGFR, CASP3, and other pathways regulating cell apoptosis, autophagy, anti-lipid, and arterial sclerosis signaling pathways.


Asunto(s)
Antioxidantes , Enfermedades Cardiovasculares , Ginsenósidos , Ácido Hialurónico , Nanopartículas , Ácido Hialurónico/química , Ginsenósidos/química , Ginsenósidos/farmacología , Animales , Nanopartículas/química , Ratones , Enfermedades Cardiovasculares/tratamiento farmacológico , Células RAW 264.7 , Antioxidantes/farmacología , Antioxidantes/química , Biología Computacional/métodos , Antiinflamatorios/química , Antiinflamatorios/farmacología , Estrés Oxidativo/efectos de los fármacos , Liberación de Fármacos , Línea Celular , Ratas , Supervivencia Celular/efectos de los fármacos , Portadores de Fármacos/química
14.
Nano Lett ; 24(38): 11768-11778, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39259830

RESUMEN

DNA encodes genetic information and forms various structural conformations with distinct physical, chemical, and biological properties. Over the past 30 years, advancements in force manipulation technology have enabled the precise manipulation of DNA at nanometer and piconewton resolutions. This mini-review discusses these force manipulation techniques for exploring the mechanical properties of DNA at the single-molecule level. We summarize the distinct mechanical features of different DNA forms while considering the impact of the force geometry. We highlight the role of DNA mechanics in origami structures that serve as self-assembled building blocks or mechanically responsive/active nanomachines. Accordingly, we emphasize how DNA mechanics are integral to the functionality of origami structures for achieving mechanical capabilities. Finally, we provide an outlook on the intrinsic mechanical properties of DNA, from single stranded to self-assembled higher-dimensional structures. This understanding is expected to inspire new design strategies in DNA mechanics, paving the way for innovative applications and technologies.


Asunto(s)
ADN , Nanotecnología , Conformación de Ácido Nucleico , ADN/química , Nanotecnología/métodos , Nanoestructuras/química , ADN de Cadena Simple/química , Fenómenos Biomecánicos
15.
Adv Mater ; : e2406456, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39295460

RESUMEN

Here, a unique crossbar architecture is designed and fabricated, incorporating vertically integrated self-assembled monolayers in electronic devices. This architecture is used to showcase 100 individual vertical molecular junctions on a single chip with a high yield of working junctions and high device uniformity. The study introduces a transfer approach for patterned liquid-metal eutectic alloy of gallium and indium top electrodes, enabling the creation of fully flexible molecular devices with electrical functionalities. The devices exhibit excellent charge transport performance, sustain a high rectification ratio (>103), and stable endurance and retention properties, even when the devices are significantly bent. Furthermore, Boolean logic gates, including OR and AND gates, as well as half-wave and full-wave rectifying circuits, are successfully implemented. The unique design of the flexible molecular device represents a significant step in harnessing the potential of molecular devices for high-density integration and possible molecule-based computing.

16.
Biomater Adv ; 166: 214040, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39293253

RESUMEN

Hydrogels are pivotal in tissue engineering, regenerative medicine, and drug delivery applications. Existing hydrogel platforms are not easily customizable and often lack precise programmability, making them less suited for 3D tissue culture and programming of cells. DNA molecules stand out among other promising biomaterials due to their unparalleled precision, programmability, and customization. In this study, we introduced a palette of novel cellular scaffolding platforms made of pure DNA-based hydrogel systems while improving the shortcomings of the existing platforms. We showed a quick and easy one step synthesis of DNA hydrogels using thermal annealing based on sequence specific hybridization strategy. We also demonstrated the formation of multi-armed branched supramolecular scaffolds with custom mechanical stiffness, porosity, and network density by increasing or decreasing the number of branching arms. These mechanically tuneable DNA hydrogels proved to be a suitable suitable platform for modulating the physiological processes of retinal pigment epithelial cells (RPE1). In-vitro studies showed dynamic changes at multiple levels, ranging from a change in morphology to protein expression patterns, enhanced membrane traffic, and proliferation. The soft DNA hydrogels explored here are mechanically compliant and pliable, thus excellently suited for applications in cellular programming and reprogramming. This research lays the groundwork for developing a DNA hydrogel system with a higher dynamic range of stiffness, which will open exciting avenues for tissue engineering and beyond.

17.
Small Methods ; : e2400844, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300852

RESUMEN

Enzyme-modified electrodes are core components of electrochemical biosensors for diagnostic and environmental analytics and have promising applications in bioelectrocatalysis. Despite huge research efforts spanning decades, design of enzyme electrodes for superior performance remains challenging. Nanoporous gold (npAu) represents advanced electrode material due to high surface-to-volume ratio, tunable porosity, and intrinsic redox activity, yet its coupling with enzyme catalysis is complex. Here, the study reports a flexible-modular approach to modify npAu with functional enzymes by combined material and protein engineering and use a tailored assortment of surface and in-solution methodologies for characterization. Self-assembled monolayer (SAM) of mercaptoethanesulfonic acid primes the npAu surface for electrostatic adsorption of the target enzyme (flavocytochrome P450 BM3; CYT102A1) that is specially equipped with a cationic protein module for directed binding to anionic surfaces. Modulation of the SAM surface charge is achieved by electrochemistry. The electrode-adsorbed enzyme retains well the activity (33%) and selectivity (complete) from in-solution. Electrochemically triggered nanoscale stirring in the internal porous network of npAu-SAM enhances speed (2.5-fold) and yield (3.0-fold) of the enzyme immobilization. Biocatalytic reaction is fueled from the electrode via regeneration of its reduced coenzyme (NADPH). Collectively, the study presents a modular design of npAu-based enzyme electrode that can support flexible bioelectrochemistry applications.

18.
Artículo en Inglés | MEDLINE | ID: mdl-39318177

RESUMEN

Inorganic NiOx has attracted tremendous attention in organic-inorganic hybrid perovskite solar cells (PSCs) in recent years but is relatively less used in all-inorganic PSCs. In this study, we have discovered and confirmed the detrimental interfacial reaction between NiOx and DMAI-containing CsPbI3 inorganic perovskites. Thus, a self-assembled monolayer, Br-2PACz, is employed to modify the NiOx surface to obstruct the adverse interfacial reaction and further improve the device performance. The results demonstrate that Br-2PACz modification on NiOx can also improve interface contact, perovskite film morphology, and energy level alignments. Consequently, a champion power conversion efficiency (PCE) of 19.34% with a high open-circuit voltage (VOC) of 1.15 V is obtained for inverted NiOx/Br-2PACz-based CsPbI3 PSCs compared to the reference NiOx-based PSC with a moderate PCE of 15.16% (VOC 1.05 V). Moreover, the stabilities of both CsPbI3 films and devices exhibited significant enhancement after Br-2PACz modification. The unpacked PSCs could maintain 80, 73, and 89% of the initial efficiency after aging in 30-35% RH for 960 h, heating at 60 °C for 48 h, and continuous illumination for 284 h, respectively, highly superior to the reference devices. Our work offers a facile and effective approach for developing high-performance inverted NiOx-based CsPbI3 PSCs.

19.
ACS Appl Mater Interfaces ; 16(38): 50229-50237, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39264898

RESUMEN

Targeted delivery systems combined with the stimuli-responsive release of drug molecules hold noteworthy promise for precision medicine, enabling treatments with enhanced effectiveness and reduced adverse effects. An ideal drug delivery platform with versatile targeting moieties, the capability of combinational payloads, and simple preparation is highly desirable. Herein, we developed pH-sensitive fluorescent self-assembled complexes (SACs) of a galactose-functionalized G-quadruplex (G4) and a coumarin carboxamidine derivative as a targeted delivery platform through the nanoprecipitation method. These SACs selectively targeted hepatocellular carcinoma (HepG2) cells in fluorescence imaging after a short incubation and exerted specific anticancer effects in an appropriate dose range. Co-delivery of 1 µM prodrug floxuridine oligomers and 16 µg/mL SACs (minimal hemolytic effect) significantly reduced the cytotoxicity of the nucleoside anticancer drug on normal cells (NIH/3T3), kept up to 70% alive after 72-h incubation, and improved anticancer efficacy compared to SACs alone. This strategy can be extended to ratiometric multidrug delivery through self-assembly for targeted combinational therapy.


Asunto(s)
G-Cuádruplex , Humanos , G-Cuádruplex/efectos de los fármacos , Células Hep G2 , Ratones , Animales , Células 3T3 NIH , Colorantes Fluorescentes/química , Antineoplásicos/química , Antineoplásicos/farmacología , Sistemas de Liberación de Medicamentos , Floxuridina/química , Floxuridina/farmacología , Galactosa/química , Cumarinas/química , Cumarinas/farmacología
20.
Molecules ; 29(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39274836

RESUMEN

Field-effect transistors (FETs) based on two-dimensional molybdenum disulfide (2D-MoS2) have great potential in electronic and optoelectronic applications, but the performances of these devices still face challenges such as scattering at the contact interface, which results in reduced mobility. In this work, we fabricated high-performance MoS2-FETs by inserting self-assembling monolayers (SAMs) between MoS2 and a SiO2 dielectric layer. The interface properties of MoS2/SiO2 were studied after the inductions of three different SAM structures including (perfluorophenyl)methyl phosphonic acid (PFPA), (4-aminobutyl) phosphonic acid (ABPA), and octadecylphosphonic acid (ODPA). The SiO2/ABPA/MoS2-FET exhibited significantly improved performances with the highest mobility of 528.7 cm2 V-1 s-1, which is 7.5 times that of SiO2/MoS2-FET, and an on/off ratio of ~106. Additionally, we investigated the effects of SAM molecular dipole vectors on device performances using density functional theory (DFT). Moreover, the first-principle calculations showed that ABPA SAMs reduced the frequencies of acoustic and optical phonons in the SiO2 dielectric layer, thereby suppressing the phonon scattering to the MoS2 channel and further improving the device's performance. This work provided a strategy for high-performance MoS2-FET fabrication by improving interface properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...