Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
AAPS PharmSciTech ; 25(7): 190, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164432

RESUMEN

In this research, 3D-printed antifungal buccal films (BFs) were manufactured as a potential alternative to commercially available antifungal oral gels addressing key considerations such as ease of manufacturing, convenience of administration, enhanced drug efficacy and suitability of paediatric patients. The fabrication process involved the use of a semi-solid extrusion method to create BFs from zein-Poly-Vinyl-Pyrrolidone (zein-PVP) polymer blend, which served as a carrier for drug (miconazole) and taste enhancers. After manufacturing, it was determined that the disintegration time for all films was less than 10 min. However, these films are designed to adhere to buccal tissue, ensuring sustained drug release. Approximately 80% of the miconazole was released gradually over 2 h from the zein/PVP matrix of the 3D printed films. Moreover, a detailed physicochemical characterization including spectroscopic and thermal methods was conducted to assess solid state and thermal stability of film constituents. Mucoadhesive properties and mechanical evaluation were also studied, while permeability studies revealed the extent to which film-loaded miconazole permeates through buccal tissue compared to commercially available oral gel formulation. Histological evaluation of the treated tissues was followed. Furthermore, in vitro antifungal activity was assessed for the developed films and the commercial oral gel. Finally, films underwent a two-month drug stability test to ascertain the suitability of the BFs for clinical application. The results demonstrate that 3D-printed films are a promising alternative for local administration of miconazole in the oral cavity.


Asunto(s)
Antifúngicos , Candidiasis Bucal , Liberación de Fármacos , Miconazol , Impresión Tridimensional , Miconazol/administración & dosificación , Miconazol/química , Miconazol/farmacocinética , Antifúngicos/administración & dosificación , Antifúngicos/química , Antifúngicos/farmacocinética , Administración Bucal , Candidiasis Bucal/tratamiento farmacológico , Humanos , Zeína/química , Mucosa Bucal/metabolismo , Mucosa Bucal/microbiología , Povidona/química , Permeabilidad , Sistemas de Liberación de Medicamentos/métodos , Animales , Química Farmacéutica/métodos , Niño
2.
Int J Pharm ; 662: 124471, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39019295

RESUMEN

Semi-solid extrusion (SSE), an additive manufacturing technique, is gaining significant attention for the printing of thermosensitive drugs. Hydrogels, one of the materials used in SSE, have emerged as a focus in pharmaceutical applications due to their ability to control the release of therapeutic agents spatially and temporally. Understanding the non-Newtonian flow and evaluating the mechanical properties of hydrogel-based materials during extrusion is, however, essential for successful 3D printing. Thus, users often find themselves conducting both rheological and texture profile analyses to characterize the hydrogel. While texturometers are primarily used to evaluate mechanical or sensory properties, viscosity measurements are typically performed using rotational rheometers or viscometers. In this study, we demonstrated how comparable rheological information can be obtained using a texturometer as a capillary rheometer. By preparing similar formulations to a previous study, we compared the rheological data obtained from a rotational rheometer to the data obtained from the texturometer. The means of the parameters obtained by fitting the data from both techniques to the power law model showed insignificant differences. In addition, three clusters were formed based on the flow behaviour and printability of the samples using principal component analysis. Furthermore, the printability was predicted using the samples' consistency and flow indexes, and the regression coefficient was 96.62 and 60.03% for capillary and rotational flow parameters, respectively. This approach thus holds the potential to streamline the time, expertise and equipment required for the rheological characterization of hydrogels for applications in semi-solid extrusion.


Asunto(s)
Hidrogeles , Impresión Tridimensional , Reología , Hidrogeles/química , Viscosidad , Composición de Medicamentos/métodos , Tecnología Farmacéutica/métodos , Química Farmacéutica/métodos
3.
Int J Pharm ; 657: 124140, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38643809

RESUMEN

Rare diseases are infrequent, but together they affect up to 6-10 % of the world's population, mainly children. Patients require precise doses and strict adherence to avoid metabolic or cardiac failure in some cases, which cannot be addressed in a reliable way using pharmaceutical compounding. 3D printing (3DP) is a disruptive technology that allows the real-time personalization of the dose and the modulation of the dosage form to adapt the medicine to the therapeutic needs of each patient. 3D printed chewable medicines containing amino acids (citrulline, isoleucine, valine, and isoleucine and valine combinations) were prepared in a hospital setting, and the efficacy and acceptability were evaluated in comparison to conventional compounded medicines in six children. The inclusion of new flavours (lemon, vanilla and peach) to obtain more information on patient preferences and the implementation of a mobile app to obtain patient feedback in real-time was also used. The 3D printed medicines controlled amino acid levels within target levels as well as the conventional medicines. The deviation of citrulline levels was narrower and closer within the target concentration with the chewable formulations. According to participants' responses, the chewable formulations were well accepted and can improve adherence and quality of life. For the first time, 3DP enabled two actives to be combined in the same formulation, reducing the number of administrations. This study demonstrated the benefits of preparing 3D printed personalized treatments for children diagnosed with rare metabolic disorders using a novel technology in real clinical practice.


Asunto(s)
Enfermedades Metabólicas , Medicina de Precisión , Impresión Tridimensional , Enfermedades Raras , Humanos , Niño , Medicina de Precisión/métodos , Masculino , Enfermedades Metabólicas/tratamiento farmacológico , Enfermedades Raras/tratamiento farmacológico , Femenino , Composición de Medicamentos/métodos , Aplicaciones Móviles , Aminoácidos/química , Preescolar , Adolescente , Calidad de Vida
4.
Plants (Basel) ; 13(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38592748

RESUMEN

The pharmaceutical industry usually utilizes either hydrophobic or hydrophilic substances extracted from raw plant materials to prepare a final product. However, the waste products from the plant material still contain biologically active components with the opposite solubility. The aim of this study was to enhance the comprehensive usability of plant materials by developing a new no-waste extraction method for eucalypt leaves and by investigating the phytochemical and pharmacological properties of eucalypt extracts and their 3D-printed dosage forms. The present extraction method enabled us to prepare both hydrophobic soft extracts and hydrophilic (aqueous) dry extracts. We identified a total of 28 terpenes in the hydrophobic soft extract. In the hydrophilic dry extract, a total of 57 substances were identified, and 26 of them were successfully isolated. The eucalypt extracts studied showed significant antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus subtilis, Candida albicans, Corynebacterium diphtheriae gravis, and Corynebacterium diphtheriae mitis. The anti-inflammatory activity of the dry extract was studied using a formalin-induced-edema model in mice. The maximum anti-exudative effect of the dry extract was 61.5% at a dose of 20 mg/kg. Composite gels of polyethylene oxide (PEO) and eucalypt extract were developed, and the key process parameters for semi-solid extrusion (SSE) 3D printing of such gels were verified. The SSE 3D-printed preparations of novel synergistically acting eucalypt extracts could have uses in antimicrobial and anti-inflammatory medicinal applications.

5.
Eur J Pharm Biopharm ; 198: 114270, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38537908

RESUMEN

Poorly soluble drugs represent a substantial portion of emerging drug candidates, posing significant challenges for pharmaceutical formulators. One promising method to enhance the drug's dissolution rate and, consequently, bioavailability involves transforming them into an amorphous state within mesoporous materials. These materials can then be seamlessly integrated into personalized drug formulations using Additive Manufacturing (AM) techniques, most commonly via Fused Deposition Modeling. Another innovative approach within the realm of AM for mesoporous material-based formulations is semi-solid extrusion (SSE). This study showcases the feasibility of a straightforward yet groundbreaking hybrid 3D printing system employing SSE to incorporate drug-loaded mesoporous magnesium carbonate (MMC) into two different drug formulations, each designed for distinct administration routes. MMC was loaded with the poorly water-soluble drug ibuprofen via a solvent evaporation method and mixed with PEG 400 as a binder and lubricant, facilitating subsequent SSE. The formulation is non-aqueous, unlike most pastes which are used for SSE, and thus is beneficial for the incorporation of poorly water-soluble drugs. The 3D printing process yielded tablets for oral administration and suppositories for rectal administration, which were then analyzed for their dissolution behavior in biorelevant media. These investigations revealed enhancements in the dissolution kinetics of the amorphous drug-loaded MMC formulations. Furthermore, an impressive drug loading of 15.3 % w/w of the total formulation was achieved, marking the highest reported loading for SSE formulations incorporating mesoporous materials to stabilize drugs in their amorphous state by a wide margin. This simple formulation containing PEG 400 also showed advantages over other aqueous formulations for SSE in that the formulations did not exhibit weight loss or changes in size or form during the curing process post-printing. These results underscore the substantial potential of this innovative hybrid 3D printing system for the development of drug dosage forms, particularly for improving the release profile of poorly water-soluble drugs.


Asunto(s)
Polietilenglicoles , Impresión Tridimensional , Tecnología Farmacéutica , Preparaciones Farmacéuticas , Solubilidad , Liberación de Fármacos , Composición de Medicamentos , Tecnología Farmacéutica/métodos , Comprimidos
6.
Pharmaceutics ; 16(3)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38543302

RESUMEN

Three-dimensional printing in the field of additive manufacturing shows potential for customized medicines and solving gaps in paediatric formulations. Despite successful clinical trials, 3D printing use in pharmaceutical point-of-care is limited by regulatory loopholes and a lack of Pharmacopoeia guidelines to ensure quality. Semi-solid extrusion is a 3D printing technology that stands out for its versatility, but understanding the fluid dynamics of the semi-solid mass is critical. The aim of this research is to look into the advantages of instrumenting a 3D printer with a semi-solid extrusion motor-driven printhead, which is able to record the printing pressure over time, for in situ characterization of the semi-solid mass and quality evaluation of dosage forms. Four formulations using hydrochlorothiazide as the active pharmaceutical ingredient and several excipients were used. Their flow properties were studied at different printing speeds and temperatures using traditional techniques (rheometer and Texture Analyzer) and the proposed semi-solid extrusion motor-driven printhead incorporated into a printing platform. In addition, the influence of printing speed in the printing process was also evaluated by the study of printing pressure and printlet quality. The results demonstrated the similarities between the use of a Texture Analyzer and the semi-solid extrusion motor-driven. However, the latter enables temperature selection and printing speed in accordance with the printing process which are critical printing parameters. In addition, due to the incorporation of a sensor, it was possible to conclude, for the first time, that there is a link between changes in essential printing parameters like printing speed or formulations and variations in printing pressure and printlet quality attributes such as the energy require to obtain a single dosage unit, weight or diameter. This breakthrough holds a lot of potential for assuring the quality of 3D printing dosage forms and paving the way for their future incorporation into point-of-care settings.

7.
Int J Pharm ; 651: 123777, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38181992

RESUMEN

Chewable gummies are an attractive dosage form for all age groups because of their appearance and texture. Although, this dosage form has been highly preferred administering nutraceuticals, its application in the pharmaceutical sector is worth exploring. In this study, simethicone (SMT), an OTC drug prescribed for anti-flatulence was incorporated in pectin- based, low-calorie, 3D printed gummies. Semi-solid extrusion (SSE)-based 3D printing was used to dispense personalized dose of SMT i.e 40 mg for children and 125 mg for adults. Formulation optimization was carried out based on the texture profile of the gummies, using a texture analyzer. The inks were thoroughly characterized for their rheological behavior since it is a critical attribute for SSE-based 3D printing. Printing parameters like the printing speed, layer height and the type of the nozzle were optimized based on the printing accuracy achieved. The printed gummies were further evaluated for their disintegration time, drug content, weight variation, water activity and total microbial count. SSE-based 3D printing was found to be an effective tool to print pectin-based shear thinning gels for accurate drug dispensing. The texture profile of the printed gummies was comparable to the gummies prepared by conventional method as well as the marketed samples.


Asunto(s)
Simeticona , Veganos , Niño , Humanos , Estudios de Factibilidad , Pectinas , Impresión Tridimensional , Liberación de Fármacos , Tecnología Farmacéutica/métodos
8.
Artículo en Inglés | MEDLINE | ID: mdl-38185776

RESUMEN

Traditional approaches to solid rectal therapies have halted progress, leading to a continual decline in the use of conventional suppositories. Additive manufacturing techniques have been recently explored as a suitable innovative tool for suppository fabrication. However, little advancement has been made in composition materials for 3D-printed suppository (3DPS) manufacturing and still, conventional vehicles are often used for construct fabrication, hindering the growth in the field. As a novelty, this study unveils a ground-breaking Laponite-alginate hydrogel-based 3DPS. Interestingly, this study proposes a novel approach for loading drugs into the 3DPS employing for the first time the post-printing loading. Thus, a passive loading strategy of molecular models is developed, demonstrating the versatility and capacity to load molecules of different charges and molecular sizes within the matrix systems. This novel strategy allows adapting the load of a wide range of drugs into a single ink, which simplifies and speeds up the 3DPS technological development process for drugs with different physico-chemical properties. Additionally, in this research, a displacement strategy of the three-dimensional Laponite matrices is developed in order to enhance the drug release capacity through the 3DPS and their disintegration capacity, resulting in a significant improvement of the drug diffusion through the hydrogel matrix and a rapid disintegration of the 3DPS. Finally, our study demonstrates that the obtained 3DPS have a suitable in vivo behavior, being non-obstructive and allowing the normal motility of the rats intestine.

9.
Int J Pharm ; 646: 123413, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37726040

RESUMEN

3D-printing technology offers a flexible manufacturing platform with the potential to address the need of personalized dosage forms. However, quality aspects of such small-scale, on-demand production of pharmaceutical products intended for personalization is still limited. The aim of this study was therefore to study critical quality control attributes of lipid tablets produced by semi-solid extrusion (SSE) 3D printing from emulsion gels incorporating a poorly water-soluble drug. Quality attributes for both the printable emulsion gel and the printed dosage forms were assessed. The emulsion gel was shown to be printable with accurate dosing for at least one month of storage at 4 °C. Tablets were 3D printed in different sizes and a correlation, R2 value of 0.99, was found between the weight and the drug content. The 3D-printed tablets complied with the mass and drug content uniformity requirements described in the European Pharmacopoeia.. Solid-state characterization of the tablets during short-term storage revealed no signs of crystallinity of the drug. Lastly, the lipid digestion and drug release were unchanged after short-term storage of the tablets. This study demonstrates the potential of SSE 3D printing for personalized dosing of a lipid-based formulation strategy and discusses central quality attributes for the printable formulation and the 3D-printed dosage form.

10.
J Colloid Interface Sci ; 650(Pt B): 1253-1264, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37478742

RESUMEN

Pharmaceutical formulation of oral dosage forms is continuously challenged by the low solubility of new drug candidates. Pickering emulsions, emulsions stabilized with solid particles, are a promising alternative to surfactants for developing long-term stable emulsions that can be tailored for controlled release of lipophilic drugs. In this work, a non-emulsifying lipid-based formulation (LBF) loaded with fenofibrate was formulated into an oil-in-water (O/W) emulsion synergistically stabilized by stearic acid and silica (SiO2) nanoparticles. The emulsion had a droplet size of 341 nm with SiO2 particles partially covering the oil-water interface. In vitro lipid digestion was faster for the emulsion compared to the corresponding LBF due to the larger total surface area available for digestion. Cellulose biopolymers were added to the emulsion to produce a gel for semi-solid extrusion (SSE) 3D printing into tablets. The emulsion gel showed suitable rheological attributes for SSE, with a trend of higher viscosity, yield stress, and storage modulus (G'), compared to a conventional self-emulsifying lipid-based emulsion gel. The developed emulsion gel allows for a non-emulsifying LBF to be transformed into solid dosage forms for rapid lipid digestion and drug release of a poorly water-soluble drug in the small intestine.


Asunto(s)
Nanopartículas , Tensoactivos , Emulsiones , Dióxido de Silicio , Lípidos , Agua
11.
Eur J Pharm Sci ; 188: 106497, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37329925

RESUMEN

Semi-solid extrusion (SSE) 3D printing enables flexible designs and dose sizes to be printed on demand and is a suitable tool for fabricating personalized dosage forms. Controlled Expansion of Supercritical Solution (CESS®) is a particle size reduction technology, and it produces particles of a pure active pharmaceutical ingredient (API) in a dry state, suspendable in the printing ink. In the current study, as a model API of poorly water-soluble drug, nanoformed piroxicam (nanoPRX) prepared by CESS® was accommodated in hydroxypropyl methylcellulose- or hydroxypropyl cellulose-based ink formulations to warrant the printability in SSE 3D printing. Importantly, care must be taken when developing nanoPRX formulations to avoid changes in their polymorphic form or particle size. Printing inks suitable for SSE 3D printing that successfully stabilized the nanoPRX were developed. The inks were printed into films with escalating doses with exceptional accuracy. The original polymorphic form of nanoPRX in the prepared dosage forms was not affected by the manufacturing process. In addition, the conducted stability study showed that the nanoPRX in the prepared dosage form remained stable for at least three months from printing. Overall, the study rationalizes that with nanoparticle-based printing inks, superior dose control for the production of personalized dosage forms of poorly water-soluble drugs at the point-of-care can be achieved.


Asunto(s)
Piroxicam , Impresión Tridimensional , Tecnología , Excipientes , Agua
12.
AAPS PharmSciTech ; 24(5): 122, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37225888

RESUMEN

Apnea of prematurity can be treated with a body-weight-adjusted dosage of caffeine. Semi-solid extrusion (SSE) 3D printing represents an interesting approach to finely tailor personalized doses of active ingredients. To improve compliance and ensure the right dose in infants, drug delivery systems such as oral solid forms (orodispersible film, dispersive form, and mucoadhesive form) can be considered. The aim of this work was to obtain a flexible-dose system of caffeine by SSE 3D printing by testing different excipients and printing parameters. Gelling agents (sodium alginate (SA) and hydroxypropylmethyl cellulose (HPMC)) were used to obtain a drug-loaded hydrogel matrix. Disintegrants (sodium croscarmellose (SC) and crospovidone (CP)) were tested for get rapid release of caffeine. The 3D models were patterned by computer-aided design with variable thickness, diameter, infill densities, and infill patterns. The oral forms produced from the formulation containing 35% caffeine, 8.2% SA, 4.8% HPMC, and 52% SC (w/w) were found to have good printability, achieving doses approaching to those used in neonatology (between 3 and 10 mg of caffeine for infants weighing approximately between 1 and 4 kg). However, disintegrants, especially SC, acted more as binder/filler, showing interesting properties to maintain the shape after extrusion and enhance printability without a significant effect on caffeine release.


Asunto(s)
Cafeína , Excipientes , Lactante , Recién Nacido , Humanos , Alginatos , Diseño Asistido por Computadora , Derivados de la Hipromelosa , Impresión Tridimensional
13.
Bioengineering (Basel) ; 10(4)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37106589

RESUMEN

The low bioavailability of orally administered drugs as a result of the instability in the gastrointestinal tract environment creates significant challenges to developing site-targeted drug delivery systems. This study proposes a novel hydrogel drug carrier using pH-responsive materials assisted with semi-solid extrusion 3D printing technology, enabling site-targeted drug release and customisation of temporal release profiles. The effects of material parameters on the pH-responsive behaviours of printed tablets were analysed thoroughly by investigating the swelling properties under both artificial gastric and intestinal fluids. It has been shown that high swelling rates at either acidic or alkaline conditions can be achieved by adjusting the mass ratio between sodium alginate and carboxymethyl chitosan, enabling site-targeted release. The drug release experiments reveal that gastric drug release can be achieved with a mass ratio of 1:3, whilst a ratio of 3:1 allows for intestinal release. Furthermore, controlled release is realised by tuning the infill density of the printing process. The method proposed in this study can not only significantly improve the bioavailability of oral drugs, but also offer the potential that each component of a compound drug tablet can be released in a controlled manner at a target location.

14.
Int J Pharm ; 632: 122569, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36592893

RESUMEN

Semi-solid extrusion (SSE) 3D printing technology was utilized for the encapsulation of octreotide acetate (OCT) into 3D-printed oral dosage forms in ambient conditions. The inks and the OCT-loaded 3D-printed oral dosage forms were characterized by means of rheology, Fourier-transform infrared (FTIR) spectroscopy and Nuclear Magnetic Resonance (NMR). In vitro studies demonstrated that the formulations released OCT in a controlled manner. The application of these formulations to Caco-2 cell monolayers revealed their capability to induce the transient opening of tight junctions in a reversible manner as evidenced by Transepithelial Resistance (TEER) measurements. Cellular assays (CCK-8 assay) demonstrated the viability of intestinal cells in the presence of these formulations. The in vitro transport studies across Caco-2 monolayers demonstrated the ability of these formulations to enhance the OCT uptake across the cell monolayer over time due to opening of the tight junctions.


Asunto(s)
Octreótido , Impresión Tridimensional , Humanos , Células CACO-2 , Composición de Medicamentos/métodos , Formas de Dosificación , Liberación de Fármacos , Tecnología Farmacéutica/métodos
15.
Curr Drug Deliv ; 20(6): 818-829, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36221886

RESUMEN

BACKGROUND: The orally disintegrating tablets (ODTs) are especially suitable for elders and children with dysphagia, who need to be given customized dosages. OBJECTIVES: This study aimed to prepare orally disintegrating tablets (ODTs) which can be customized as drug content by using semi-solid 3D printing pressure extrusion technology, with water insoluble and thermally unstable drug loratadine. METHODS: The influence of binder concentration, disintegrating agent dosage and ratio mannitol: cellulose on formability and disintegration time was investigated. The properties of orally disintegrating tablets were investigated by ATR-FTIR, XRPD, DSC and SEM. The correlation formula between tablet bottom area and drug content was established. RESULTS: The formulation was optimized, and contained loratadine 3 g, cellulose 4 g, mannitol 2 g, carboxy methyl starch sodium 1g, 6% PVP K30 16 ml. The disintegration time was less than 60 s with infilling percentage of 60%, and the disintegration time was less than 30 s with infilling percentage of 40%. There was no detectable interaction between loratadine and the selected excipients by the analysis of ATR-FTIR, DSC and XRPD. The structure of the tablets was porous, and the drug was dissolved completely within 10 min. The drug content (x) of the tablet and the bottom area (y) of the tablet showed a linear fitting relationship, y = 3.8603x - 0.7176, r2 = 0.9993. CONCLUSION: Semi-solid extrusion of 3D printing technology was applied to prepare loratadine orally disintegrating tablets with customized drug content, which provides an alternative method for the research of customized preparation.


Asunto(s)
Excipientes , Loratadina , Niño , Humanos , Anciano , Solubilidad , Administración Oral , Excipientes/química , Impresión Tridimensional , Manitol/química , Comprimidos/química , Celulosa , Composición de Medicamentos/métodos
16.
Micromachines (Basel) ; 13(8)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36014241

RESUMEN

The current study describes the design of a cost-effective drug delivery apparatus that can be manufactured, assembled, and utilized as easily and quickly as possible, minimizing the time and expense of the supply chain. This apparatus could become a realistic alternative method of providing a vaccine or drug in harsh circumstances, including humanitarian disasters or a lack of medical and nursing staff, conditions that are frequently observed in developing countries. Simultaneously, with the use of microneedles (MNs), the apparatus can benefit from the numerous advantages offered by them during administration. The hollow microneedles in particular are internally perforated and are capable of delivering the active substance to the skin. The apparatus was designed with appropriate details in computer aided design software, and various 3D printing technologies were utilized in order to fabricate the prototype. The parts that required minimum accuracy, such as the main body of the apparatus, were fabricated with fused filament fabrication. The internal parts and the hollow microneedles were fabricated with liquid crystal display, and the substance for the drug loading carrier, which was an alginate gel cylinder, was fabricated with semi-solid extrusion 3D printing.

17.
Pharmaceutics ; 14(8)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-36015201

RESUMEN

Oral leukoplakia, which presents as white lesions in the oral cavity, including on the tongue, is precancerous in nature. Conservative treatment is preferable, since surgical removal can markedly reduce the patient's quality of life. In the present study, we focused on the flavonoid apigenin as a potential compound for preventing carcinogenesis, and an apigenin-loaded mucoadhesive oral film was prepared using a three-dimensional (3D) bioprinter (semi-solid extrusion-type 3D printer). Apigenin-loaded printer inks are composed of pharmaceutical excipients (HPMC, CARBOPOL, and Poloxamer), water, and ethanol to dissolve apigenin, and the appropriate viscosity of printer ink after adjusting the ratios allowed for the successful 3D printing of the film. After drying the 3D-printed object, the resulting film was characterized. The chemopreventive effect of the apigenin-loaded film was evaluated using an experimental rat model that had been exposed to 4-nitroquinoline 1-oxide (4NQO) to induce oral carcinogenesis. Treatment with the apigenin-loaded film showed a remarkable chemopreventive effect based on an analysis of the specimen by immunohistostaining. These results suggest that the apigenin-loaded mucoadhesive film may help prevent carcinogenesis. This successful preparation of apigenin-loaded films by a 3D printer provides useful information for automatically fabricating other tailored films (with individual doses and shapes) for patients with oral leukoplakia in a future clinical setting.

18.
Pharmaceutics ; 14(7)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35890235

RESUMEN

Certain patient populations receive insufficient medicinal treatment due to a lack of commercially available products. The number of approved veterinary products is limited, making animals a patient population with suboptimal medicinal treatments available. To answer to this unmet need, compounding and off-label use of human-marketed products are practiced. Both of which have a significant risk of preparation errors. Hence, there is a dire demand to find and implement a more automated approach to the accurate, precise, and rapid production of veterinary dosage forms close to the point-of-care. This study aimed to assess the use of semi-solid extrusion-based 3D printing for the preparation of tailored doses of theophylline in the form of a chewable dosage form suitable for veterinary use. This study proved that semi-solid extrusion-based 3D printing could successfully be utilized to manufacture pet-friendly, chewable theophylline-loaded tablets. The prepared dosage forms showed a high correlation (R2 = 0.9973) between the designed size and obtained drug amount and met the USP and Ph. Eur. content uniformity criteria. Furthermore, the stability study showed the dosage form being stable and able to be used for up to three months after printing.

19.
AAPS PharmSciTech ; 23(6): 193, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35821540

RESUMEN

This study aimed to prepare effervescent tablets of traditional Chinese medicine Xianganfang with fresh juice using a semi-solid 3D printer with three cartridge holders to seperate acid and alkali source by drug paste through model design to avoid sticking impact and premature effervescence during the tableting in the conventional preparation process. The powder of Xianganfang including fresh juice of Phyllanthus emblica and licorice extract was obtained by vacuum freeze-drying with 50% mannitol as cryoprotectant. Then, the formulation of 3D-printed effervescent tablets was investigated. Further 5% HPMC hydroalcoholic gel was mixed with sodium bicarbonate and freeze-dried Xianganfang powder to prepare alkali source and drug paste respectively while 30% PVP ethanol solution was mixed with tartaric acid to prepare acid source paste; these three pastes had good printability. The pastes of drug, acid, and alkali were loaded into three syringe cartridges separately and numbered as "3," "5," and "7," according to cartridge holders of the 3D printer, and printed in the order of "537,353,735" for separating acid and alkali by drug to avoid premature effervescence. And the basic printing parameters were optimized. The tablets were evaluated by the appearance, tablet weight variation, hardness, disintegration time, friability, pH, and stability. The physicochemical properties all conformed to the Chinese Pharmacopoeia 2020 edition. The content of the active ingredient gallic acid was 0.769 ± 0.019 mg/g. This study provided a new method to prepare effervescent tablets of traditional Chinese medicine with fresh juice using 3D printing technology.


Asunto(s)
Excipientes , Tecnología Farmacéutica , Álcalis , Liberación de Fármacos , Excipientes/química , Polvos , Comprimidos/química , Tecnología Farmacéutica/métodos
20.
Pharm Res ; 39(6): 1267-1279, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35661083

RESUMEN

PURPOSE: Semi-solid extrusion (SSE) 3D printing has potential pharmaceutical applications for producing personalised medicine. However, the effects of ink properties and drug incorporation on the quality of printed medication have not been thoroughly studied, particularly for porous geometries. This study aimed to investigate the effects of the presence of solid drug particles in SSE inks on the printing quality of porous structures. METHOD: The rheological behaviour of model inks of paracetamol (PCM)-hypromellose (HPMC) with different drug loadings were investigated and correlated to their printing qualities. RESULTS: For the inks with PCM loading above the drug solubility in which suspended solid drug particulates were present, the results confirmed that PCM loading and particle size significantly affected the ink viscosities at a low shear rate. At a low shear rate, the highest viscosity was identified when the highest drug loading and the smallest PCM particles were incorporated into the inks. However, the results indicated that the SSE printing parameters and printing quality of porous structures (with less porous structural deformation) have no clear correlation with the shear viscosity data, but a strong correlation with the dynamic oscillatory rheology of the inks. CONCLUSION: The key rheological parameters including storage modulus, loss modulus and complex viscosity of the ink increased with increasing drug loading for the inks containing solid drug particles. However, decreasing the particle size did not have a clear effect on the oscillatory rheology of the inks which can be potentially used for optimising the SSE 3D printing quality of porous geometries.


Asunto(s)
Tinta , Impresión Tridimensional , Preparaciones Farmacéuticas , Porosidad , Reología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...