Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Appl Crystallogr ; 57(Pt 4): 1127-1136, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39108810

RESUMEN

Small-angle X-ray and neutron scattering (SAXS and SANS) patterns from certain semicrystalline polymers and liquid crystals contain discrete reflections from ordered assemblies and central diffuse scattering (CDS) from uncorrelated structures. Systems with imperfectly ordered lamellar structures aligned by stretching or by a magnetic field produce four distinct SAXS patterns: two-point 'banana', four-point pattern, four-point 'eyebrow' and four-point 'butterfly'. The peak intensities of the reflections lie not on a layer line, or the arc of a circle, but on an elliptical trajectory. Modeling shows that randomly placed lamellar stacks modified by chain slip and stack rotation or interlamellar shear can create these forms. On deformation, the isotropic CDS becomes an equatorial streak with an oval, diamond or two-bladed propeller shape, which can be analyzed by separation into isotropic and oriented components. The streak has elliptical intensity contours, a natural consequence of the imperfect alignment of the elongated scattering objects. Both equatorial streaks and two- and four-point reflections can be fitted in elliptical coordinates with relatively few parameters. Equatorial streaks can be analyzed to obtain the size and orientation of voids, fibrils or surfaces. Analyses of the lamellar reflection yield lamellar spacing, stack orientation (interlamellar shear) angle α and chain slip angle ϕ, as well as the size distribution of the lamellar stacks. Currently available computational tools allow these microstructural parameters to be rapidly refined.

2.
Materials (Basel) ; 17(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38998244

RESUMEN

Additively manufactured implants, surgical guides, and medical devices that would have direct contact with the human body require predictable behaviour when stress is applied during their standard operation. Products built with Fused Filament Fabrication (FFF) possess orthotropic characteristics, thus, it is necessary to determine the properties that can be achieved in the XY- and Z-directions of printing. A concentration of 10 wt% of hydroxyapatite (HA) in polyetherketoneketone (PEKK) matrix was selected as the most promising biomaterial supporting cell attachment for medical applications and was characterized with an Ultimate Tensile Strength (UTS) of 78.3 MPa and 43.9 MPa in the XY- and Z-directions of 3D printing, respectively. The effect of the filler on the crystallization kinetics, which is a key parameter for the selection of semicrystalline materials suitable for 3D printing, was explained. This work clearly shows that only in situ crystallization provides the ability to build parts with a more thermodynamically stable primary form of crystallites.

3.
Polymers (Basel) ; 16(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38675074

RESUMEN

Semicrystalline polymers under nanoconfinement show distinct structural and thermomechanical properties compared to their bulk counterparts. Despite extensive research on semicrystalline polymers under nanoconfinement, the nanoconfinement effect on the local crystallization process and the unique structural evolution of such polymers have not been fully understood. In this study, we unveil such effects by using coarse-grained molecular dynamics simulations to study the crystallization process of a model semicrystalline polymer-polyvinyl alcohol (PVA)-under different levels of nanoconfinement induced by nanoparticles that are represented implicitly. We quantify in detail the evolution of the degree of crystallinity (XC) of PVA and examine distinct crystalline regions from simulation results. The results show that nanoconfinement can promote the crystallization process, especially at the early stage, and the interfaces between nanoparticles and polymer can function as crystallite nucleation sites. In general, the final XC of PVA increases with the levels of nanoconfinement. Further, nanoconfined cases show region-dependent XC with higher and earlier increase of XC in regions closer to the interfaces. By tracking region-dependent XC evolution, our results indicate that nanoconfinement can lead to a heterogenous crystallization process with a second-stage crystallite nucleation in regions further away from the interfaces. In addition, our results show that even under very high cooling rates, the nanoconfinement still promotes the crystallization of PVA. This study provides important insights into the underlying mechanisms for the intricate interplay between nanoconfinement and the crystallization behaviors of semicrystalline polymer, with the potential to guide the design and characterization of semicrystalline polymer-based nanocomposites.

4.
Polymers (Basel) ; 16(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38337309

RESUMEN

Plastic deformation of low/high density polyethylene (LDPE/HDPE) was analyzed in this work using positron annihilation lifetime spectroscopy (PALS). It was shown that in undeformed LDPE, both the mean ortho-positronium lifetime (τ3) and its dispersion (σ3), corresponding to the average size and size distribution of the free-volume pores of the amorphous component, respectively, were clearly higher than in HDPE. This effect was induced by a lower and less uniform molecular packing of the amorphous regions in LDPE. During the deformation of LDPE, an increase in the τ3 value was observed within the local strains of 0-0.25. This effect was mainly stimulated by a positive relative increase in interlamellar distances due to the deformation of lamellar crystals oriented perpendicular (increased by 31.8%) and parallel (decreased by 10.1%) to the deformation directions. At the same time, the dimension of free-volume pores became more uniform, which was manifested by a decrease in the σ3 value. No significant effect of temperature or strain rate on the τ3 and σ3 values was observed during LDPE deformation. In turn, in the case of HDPE, with an increase in the strain rate/or a decrease in temperature, an intensification of the cavitation phenomenon could be observed with a simultaneous decrease in the τ3 value. This effect was caused by the lack of annihilation of ortho-positonium (o-Ps) along the longer axis of the highly anisotropic/ellipsoidal cavities. Therefore, this dimension was not detectable by the PALS technique. At the same time, the increase in the dimension of the shorter axis of the cavities was effectively limited by the thickness of amorphous layers. As the strain rate increased or the temperature decreased, the σ3 value during HDPE deformation increased. This change was correlated with the initiation and intensification of the cavitation phenomenon. Based on the mechanical response of samples with a similar yield stress, it was also proven that the susceptibility of the amorphous regions of LDPE to the formation of cavities is lower than in the case of amorphous component of HDPE.

5.
Proc Natl Acad Sci U S A ; 120(27): e2217363120, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37379326

RESUMEN

Crystallization of polymers from entangled melts generally leads to the formation of semicrystalline materials with a nanoscopic morphology consisting of stacks of alternating crystalline and amorphous layers. The factors controlling the thickness of the crystalline layers are well studied; however, there is no quantitative understanding of the thickness of the amorphous layers. We elucidate the effect of entanglements on the semicrystalline morphology by the use of a series of model blends of high-molecular-weight polymers with unentangled oligomers leading to a reduced entanglement density in the melt as characterized by rheological measurements. Small-angle X-ray scattering experiments after isothermal crystallization reveal a reduced thickness of the amorphous layers, while the crystal thickness remains largely unaffected. We introduce a simple, yet quantitative model without adjustable parameters, according to which the measured thickness of the amorphous layers adjusts itself in such a way that the entanglement concentration reaches a specific maximum value. Furthermore, our model suggests an explanation for the large supercooling that is typically required for crystallization of polymers if entanglements cannot be dissolved during crystallization.

6.
Small Methods ; 7(2): e2201145, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36440652

RESUMEN

Thermoelectric (TE) performance of a specific semicrystalline polymer is studied experimentally only in a limited range of doping levels with molecular doping methods. The doping level is finely controlled via in situ electrochemical doping in a wide range of carrier concentrations with an electrolyte ([PMIM]+ [TFSI]- )-gated organic electrochemical transistor system. Then, the charge generation/transport and TE properties of four p-type semicrystalline polymers are analyzed and their dynamic changes of crystalline morphologies and local density of states (DOS) during electrochemical doping are compared. These polymers are synthesized based on poly[(2,5-bis(2-alkyloxy)phenylene)-alt-(5,6-difluoro-4,7-di(thiophene-2-yl)benzo[c][1,2,5]thiadiazole)] by varying side chains: With oligoethylene glycol (OEG) substituents, facile p-doping is achieved because of easy penetration of TFSI- ions into the polymer matrix. However, the charge transport is hindered with longer OEG chains length because of the enhanced insulation. Therefore, with the shortest OEG substituents the electrical conductivity (30.1 S cm-1 ) and power factor (2.88 µW m-1 K-2 ) are optimized. It is observed that all polymers exhibit p- to n-type transition in Seebeck coefficients in heavily doped states, which can be achieved by electrochemical doping. These TE behaviors are interpreted based on the relation between the localized DOS band structure and molecular packing structure during electrochemical doping.

7.
Macromol Rapid Commun ; 44(1): e2200293, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35696350

RESUMEN

The processing-structure-property relationship using poly(lactic acid) (PLA) and poly(ethylene terephthalate) (PET) is explored. Specifically, both pre-extension and preshear of amorphous PLA and PET above their glass transition temperatures Tg , carried out in the affine deformation limit, can induce a specific type of cold crystallization during annealing, i.e., nanoconfined crystallization (NCC) where crystal sizes are limited to a nanoscopic scale in all dimensions so as to render the processed PLA and PET optically transparent. The new polymer structure after premelt deformation can show considerably enhanced mechanical properties. For example, premelt stretching produces geometric condensation of the chain network. This structural alternation can profoundly change the mechanical characteristics, e.g., turning brittle PLA ductile. In contrast, after preshear of amorphous PLA above Tg , the NCC containing PLA remains brittle, showing the importance to have geometric condensation from processing. Both AFM imaging and SAXS measurements are performed to verify that premelt deformation of PLA and PET indeed results in NCC from annealing that permits the strain-induced cold crystallization to take place on the length scale of the mesh size of the deformed chain network.


Asunto(s)
Poliésteres , Tereftalatos Polietilenos , Cristalización , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Poliésteres/química , Etilenos
8.
Polymers (Basel) ; 14(21)2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36365474

RESUMEN

A chemical foaming process of polylactic acid (PLA) was developed via the solid-state processing methods of solid-state shear pulverization (SSSP) and cryogenic milling. Based on the ability of solid-state processing to enhance the crystallization kinetics of PLA, chemical foaming agents (CFA) are first compounded before foaming via compression molding. Specifically, the effects of the pre-foaming solid-state processing method and CFA concentration were investigated. Density reduction, mechanical properties, thermal behavior, and cell density of PLA foams are characterized. Solid-state processing of PLA before foaming greatly increases the extent of PLA foaming by achieving void fractions approximately twice that of the control foams. PLA's improved ability to crystallize is displayed through both dynamic mechanical analysis and differential scanning calorimetry. The solid-state-processed foams display superior mechanical robustness and undergo low stress relaxation. The cell density of the PLA foams also increases with solid-state processing, especially through SSSP. Additionally, crosslinking of PLA during the pre-foaming processing step is found to result in the greatest enhancement of crystallization but decreased void fraction and foam effectiveness. Overall, SSSP and cryogenic milling show significant promise in improving chemical foaming in alternative biopolymers.

9.
Macromol Rapid Commun ; 43(5): e2100740, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34890084

RESUMEN

A photocatalytic thiol-ene aqueous emulsion polymerization under visible-light is described to prepare linear semicrystalline latexes using 2,2'-dimercaptodiethyl sulfide as dithiol and various dienes. The procedure involves low irradiance (3 mW cm-2 ), LED irradiation source, eosin-Y disodium as organocatalyst, low catalyst loading (<0.05% mol), and short reaction time scales (<1 h). The resulting latexes have molecular weights of about 10 kg mol-1 , average diameters of 100 nm, and a linear structure consisting only of thioether repeating units. Electron-transfer reaction from a thiol to the triplet excited state of the photocatalyst is suggested as the primary step of the mechanism (type I), whereas oxidation by singlet oxygen generated by energy transfer has a negligible effect (type II). Only polymers prepared with aliphatic dienes such as diallyl adipate or di(ethylene glycol) divinyl ether exhibit a high crystallization tendency as revealed by differential scanning calorimetry, polarized optical microscopy, and X-ray diffraction. Ordering and crystallization are driven by molecular packing of poly(thioether) chains combining structural regularity, compactness, and flexibility.


Asunto(s)
Compuestos de Sulfhidrilo , Sulfuros , Emulsiones , Polimerizacion , Polímeros/química , Compuestos de Sulfhidrilo/química
10.
Prog Addit Manuf ; 7(5): 1009-1021, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-38624908

RESUMEN

Print conditions for thermoplastics by filament-based material extrusion (MatEx) are commonly optimized to maximize the elastic modulus. However, these optimizations tend to ignore the impact of thermal history that depends on the specimen size and print path selection. Here, we investigate the effect of size print path (raster angle and build orientation) and print sequence on the mechanical properties of polycarbonate (PC) and polypropylene (PP). Examination of parallel and series printing of flat (XY) and stand-on (YZ) orientation of Type V specimens demonstrated that to observe statistical differences in the mechanical response that the interlayer time between printed roads should be approximately 5 s or less. The print time for a single layer in XY orientation is much longer than that for a single layer in YZ orientation, so print sequence only impacts the mechanical response in the YZ orientation. However, the specimen size and raster angle did influence the mechanical properties in XY orientation due to the differences in thermal history associated with intralayer time between adjacent roads. Moreover, all of these effects are significantly larger when printing PC than PP. These differences between PP and PC are mostly attributed to the mechanism of interface consolidation (crystallization vs. glass formation), which changes the requirements for a strong interface between roads (crystals vs. entanglements). These results illustrate how the print times dictated by the print path layout impact observed mechanical properties. This work also demonstrated that the options available in some standards developed for traditional manufacturing will change the quantitative results when applied to 3D printed parts. Supplementary Information: The online version contains supplementary material available at 10.1007/s40964-022-00275-w.

11.
Polymers (Basel) ; 11(10)2019 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-31597231

RESUMEN

In this work, we design and produce micron-sized fiber mats by blending poly(ε-caprolactone) (PCL) with small amounts of block copolymers poly(ethylene oxide)m-block-poly(ε-caprolactone)n (PEOm-b-PCLn) using electrospinning. Three different PEOm-b-PCLn block copolymers, with different molecular weights of PEO and PCL, were synthesized by ring opening polymerization of ε-caprolactone using PEO as initiator and stannous octoate as catalyst. The polymer blends were prepared by homogenous solvent mixing using dichloromethane for further electrospinning procedures. After electrospinning, it was found that the addition to PCL of the different block copolymers produced micron-fibers with smaller width, equal or higher hydrophilicity, lower Young modulus, and rougher surfaces, as compared with micron-fibers obtained only with PCL. Neural stem progenitor cells (NSPC), isolated from rat brains and grown as neurospheres, were cultured on the fibrous materials. Immunofluorescence assays showed that the NSPC are able to survive and even differentiate into astrocytes and neurons on the synthetic fibrous materials without any growth factor and using the fibers as guidance. Disassembling of the cells from the NSPC and acquisition of cell specific molecular markers and morphology progressed faster in the presence of the block copolymers, which suggests the role of the hydrophilic character and porous topology of the fiber mats.

12.
Macromol Rapid Commun ; 39(7): e1700716, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29314371

RESUMEN

A semicrystalline polymer actuator, which is responsive to solvent vapor with fast and large scale locomotion, is described. The thermoset semicrystalline polymer can be easily synthesized from crystallizable polyester segment poly (ε-caprolactone) and isophorone diisocyanate trimer. Organic solvent vapor is used to induce the reversible swelling-crystallization conversion of the crystallizable polyester segment, resulting in its expansion/shrinkage. The contraction of the polymer actuator (1 mm thick) needs only ≈4 s in room temperature. When exposed to air the polymer actuator can exhibit a fast self-oscillation. Then, a soft crawler based on this polymer is demonstrated. Driven by organic solvent it walks rapidly and steadily. The microscope images show the fast swelling-crystallization conversion that gives rise to reversible shape changes of the polymer.


Asunto(s)
Polímeros/química , Solventes/química , Cristalización
13.
ACS Appl Mater Interfaces ; 9(29): 24527-24537, 2017 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-28682586

RESUMEN

A novel semicrystalline poly(ether ketone) (PEK)-based proton exchange membrane (semi-SPEK-x) has been developed. Through a one-step sulfonation and hydrolysis, a poly(ether ketimine) precursor transforms into PEK and ion-conducting groups are introduced. With an ion-exchange capacity ranging from 1.49 to 2.00 mequiv g-1, the semi-SPEK-x polymers exhibit a semicrystalline feature in both dry and hydrated states. Owing to the semicrystalline domains inside the polymer, the obtained membrane exhibits low water uptake and low volume swelling ratio. More importantly, the semicrystalline structure lowers methanol permeability and, consequently, improves the overall performances of direct methanol fuel cells.

14.
Angew Chem Int Ed Engl ; 56(22): 6126-6130, 2017 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-28370828

RESUMEN

Photoresponsive actuators based on semicrystalline poly(ethylene-co-vinyl acetate) (EVA) loaded with small amounts of gold nanoparticles (AuNPs) are described. Upon absorption of light (532 nm), the heat released by the AuNPs raises the temperature in the irradiated region to Tlight to melt crystallites with lower melting temperatures (Tm Tlight . Once the light is turned off, the recrystallization of oriented chains in the actuation domains upon cooling gives rise to an expansion force. We show that the photoinduced contraction force, Tlight , and the speed for reaching Tlight can readily be adjusted, which makes EVA/AuNP a robust, fast optical actuation system tunable in both speed and magnitude. The material design can easily be extended to other temperature-memory semicrystalline polymers in combination with various light-absorbing and heat-generating additives.

15.
Macromol Rapid Commun ; 38(5)2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28105768

RESUMEN

A novel application of supramolecular interactions within semicrystalline polymers, capable of self-assembling into supramolecular polymer networks via self-complementary multiple hydrogen-bonded complexes, is demonstrated for efficient construction of highly controlled self-organizing hierarchical structures to offer a direct, efficient nucleation pathway resulting in superior crystallization performance. Herein, a novel functionalized poly(ε-caprolactone) containing self-complementary sextuple hydrogen-bonded uracil-diamidopyridine (U-DPy) moieties is successfully developed and demonstrated excellent thermal and viscoelastic properties as well as high dynamic structural stability in the bulk state due to physical cross-linking created by reversible sextuple hydrogen bonding between U-DPy units. Due to the ability to vary the extent of the reversible network by tuning the U-DPy content, this newly developed material can be readily adjusted to obtain the desired crystalline products with specific characteristics. Importantly, incorporating only 0.1% U-DPy resulted in a polymer with a high crystallization rate constant, short crystallization half-time, and much more rapid crystallization kinetics than pristine PCL, indicating a low content of U-DPy moieties provides highly efficient nucleation sites that manipulate the nucleation and growth processes of polymer crystals to promote crystallization and chain alignment in bulk. This new system is suggested as a potential new route to substantially improve the performance of polymer crystallization.


Asunto(s)
Poliésteres/síntesis química , Amidas/química , Cristalización , Estructura Molecular , Poliésteres/química , Piridinas/química , Temperatura , Uracilo/química
16.
Solid State Nucl Magn Reson ; 72: 50-63, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26404771

RESUMEN

We review basic principles of low-resolution proton NMR spin diffusion experiments, relying on mobility differences in nm-sized phases of inhomogeneous organic materials such as block-co- or semicrystalline polymers. They are of use for estimates of domain sizes and insights into nanometric dynamic inhomogeneities. Experimental procedures and limitations of mobility-based signal decomposition/filtering prior to spin diffusion are addressed on the example of as yet unpublished data on semicrystalline poly(ϵ-caprolactone), PCL. Specifically, we discuss technical aspects of the quantitative, dead-time free detection of rigid-domain signals by aid of the magic-sandwich echo (MSE), and magic-and-polarization-echo (MAPE) and double-quantum (DQ) magnetization filters to select rigid and mobile components, respectively. Such filters are of general use in reliable fitting approaches for phase composition determinations. Spin diffusion studies at low field using benchtop instruments are challenged by rather short (1)H T1 relaxation times, which calls for simulation-based analyses. Applying these, in combination with domain sizes as determined by small-angle X-ray scattering, we have determined spin diffusion coefficients D for PCL (0.34, 0.19 and 0.032nm(2)/ms for crystalline, interphase and amorphous parts, respectively). We further address thermal-history effects related to secondary crystallization. Finally, the state of knowledge concerning the connection between D values determined locally at the atomic level, using (13)C detection and CP- or REDOR-based "(1)H hole burning" procedures, and those obtained by calibration experiments, is summarized. Specifically, the non-trivial dependence of D on the magic-angle spinning (MAS) frequency, with a minimum under static and a local maximum under moderate-MAS conditions, is highlighted.

17.
Proc Natl Acad Sci U S A ; 111(49): 17368-72, 2014 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-25422447

RESUMEN

Crystallization is almost always initiated at an interface to a solid. This observation is classically explained by the assumption of a reduced barrier for crystal nucleation at the interface. However, an interface can also induce crystallization by prefreezing (i.e., the formation of a crystalline layer that is already stable above the bulk melting temperature). We present an atomic force microscopy (AFM)-based in situ observation of a prefreezing process at the interface of a polymeric model system and a crystalline solid. Explicitly, we show an interfacial ordered layer that forms well above the bulk melting temperature with thickness that increases on approaching melt-solid coexistence. Below the melting temperature, the ordered layer initiates crystal growth into the bulk, leading to an oriented, homogeneous semicrystalline structure.

18.
ACS Appl Mater Interfaces ; 6(21): 19385-96, 2014 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-25312221

RESUMEN

The present work demonstrates one of the first examples of π-conjugated photonic switches (or photonic wave plates) based on the tailor-made π-conjugated polymer anisotropic organogel. New semicrystalline segmented π-conjugated polymers are designed with rigid aromatic oligophenylenevinylene π-core and flexible alkyl chain along the polymer backbone. These polymers are found to be self-assembled as semicrystalline or amorphous with respect to the number of carbon atoms in the alkyl units. These semicrystalline polymers produce organogels having nanofibrous morphology of 20 nm thickness with length up to 5 µm. The polymer organogel is aligned in a narrow glass capillary, and this anisotropic gel device is further demonstrated as photonic switches. The glass capillary device behaves as typical λ/4 photonic wave plates upon the illumination of the plane polarized light. The λ/4 photonic switching ability is found to be maximum at θ = 45° angle under the cross polarizers. The orthogonal arrangements of the gel capillaries produce dark and bright spots as on-and-off optical switches. Thermoreversibility of the polymer organogel (also its xerogel) was exploited to construct thermoresponsive photonic switches for the temperature window starting from 25 to 160 °C. The organic photonic switch concept can be adapted to large number of other π-conjugated materials for optical communication and storage.

19.
ACS Appl Mater Interfaces ; 6(17): 14886-93, 2014 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-25134606

RESUMEN

Interfacial properties are known to have a critical effect on the mechanical properties of a nanocomposite material system. Here, the interfacial load transfer in a carbon nanotube (CNT)/nylon-11 composite was studied with a CNT/nylon-11 nanohybrid shish kebab (NHSK) structure modification using Raman spectroscopy. Characterization of the polymer crystal in the NHSK using differential scanning calorimetry (DSC) for the first time indicates that the NHSK structure formed a more perfect crystal structure than the bulk polymer. On the basis of transmission electron microscopy and DSC results, a new growth model for the NHSK crystal is hypothesized, indicating the formation of an initial uniform crystal layer on the CNT prior to the crystallization of the kebabs. Characterization of the nanocomposites using Raman spectroscopy, with the samples heated to introduce interfacial shear stress caused by thermal expansion mismatch, found that the D* band of the CNT in the NHSK/nylon-11 composite displayed a more pronounced shift with an increase in temperature, which is attributed to the NHSK structure being more effective at transferring load from the nylon matrix to the nanotube inclusions. The NHSK structure was also used to fabricate composites with two amorphous polymers, polycarbonate and poly(methyl methacrylate), to investigate the load transfer mechanism. It was found that when the compatibility between the polymer in the NHSK structure and the bulk polymer matrix at the molecular level is sufficiently high, the ensuing mechanical interlocking effect further enhances the interfacial load transfer for polymer nanocomposites. Additional mechanical characterization of polymer nanocomposites with 0.1 wt % NHSK reinforcement demonstrates how the moduli and ultimate tensile strength of the nanocomposites can be improved via this NHSK structure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...