Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Exp Med Biol ; 1460: 821-850, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39287873

RESUMEN

There are few convincing studies establishing the relationship between endogenous factors that cause obesity, cellular aging, and telomere shortening. Without a functional telomerase, a cell undergoing cell division has progressive telomere shortening. While obesity influences health and longevity as well as telomere dynamics, cellular senescence is one of the major drivers of the aging process and of age-related disorders. Oxidative stress induces telomere shortening, while decreasing telomerase activity. When progressive shortening of telomere length reaches a critical point, it triggers cell cycle arrest leading to senescence or apoptotic cell death. Telomerase activity cannot be detected in normal breast tissue. By contrast, maintenance of telomere length as a function of human telomerase is crucial for the survival of breast cancer cells and invasion. Approximately three-quarters of breast cancers in the general population are hormone-dependent and overexpression of estrogen receptors is crucial for their continued growth. In obesity, increasing leptin levels enhance aromatase messenger ribonucleic acid (mRNA) expression, aromatase content, and its enzymatic activity on breast cancer cells, simultaneously activating telomerase in a dose-dependent manner. Meanwhile, applied anti-estrogen therapy increases serum leptin levels and thus enhances leptin resistance in obese postmenopausal breast cancer patients. Many studies revealed that shorter telomeres of postmenopausal breast cancer have higher local recurrence rates and higher tumor grade. In this review, interlinked molecular mechanisms are looked over between the telomere length, lipotoxicity/glycolipotoxicity, and cellular senescence in the context of estrogen receptor alpha-positive (ERα+) postmenopausal breast cancers in obese women. Furthermore, the effect of the potential drugs, which are used for direct inhibition of telomerase and the inhibition of human telomerase reverse transcriptase (hTERT) or human telomerase RNA promoters as well as approved adjuvant endocrine therapies, the selective estrogen receptor modulator and selective estrogen receptor down-regulators are discussed.


Asunto(s)
Neoplasias de la Mama , Senescencia Celular , Obesidad , Telomerasa , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Femenino , Obesidad/genética , Obesidad/metabolismo , Telomerasa/metabolismo , Telomerasa/genética , Acortamiento del Telómero , Telómero/metabolismo , Telómero/genética , Leptina/metabolismo , Leptina/genética , Animales
2.
Mech Ageing Dev ; 221: 111975, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39089499

RESUMEN

Lymphatic aging represented by cellular and functional changes, is involved in increased geriatric disorders, but the intersection between aging and lymphatic modulation is less clear. Lymphatic vessels play an essential role in maintaining tissue fluid homeostasis, regulating immune function, and promoting macromolecular transport. Lymphangiogenesis and lymphatic remodeling following cellular senescence and organ deterioration are crosslinked with the progression of some lymphatic-associated diseases, e.g., atherosclerosis, inflammation, lymphoedema, and cancer. Age-related detrimental tissue changes may occur in lymphatic vessels with diverse etiologies, and gradually shift towards chronic low-grade inflammation, so-called inflammaging, and lead to decreased immune response. The investigation of the relationship between advanced age and organ deterioration is becoming an area of rapidly increasing significance in lymphatic biology and medicine. Here we highlight the emerging importance of lymphangiogenesis and lymphatic remodeling in the regulation of aging-related pathological processes, which will help to find new avenues for effective intervention to promote healthy aging.


Asunto(s)
Envejecimiento , Linfangiogénesis , Vasos Linfáticos , Humanos , Linfangiogénesis/fisiología , Envejecimiento/fisiología , Envejecimiento/metabolismo , Envejecimiento/patología , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patología , Vasos Linfáticos/fisiopatología , Animales , Inflamación/metabolismo , Inflamación/patología , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/fisiopatología , Senescencia Celular/fisiología , Linfedema/metabolismo , Linfedema/patología , Linfedema/fisiopatología
3.
J Cell Mol Med ; 28(16): e70017, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39159071

RESUMEN

Acute myeloid leukaemia (AML) is a common and highly aggressive haematological malignancy in adults. Senescence-associated secretory phenotype (SASP) plays important roles in tumorigenesis and progression of tumour. However, the prognostic value of SASP in patients with AML has not been clarified. The present study aims to explore the prognostic value of SASP and develop a prognostic risk signature for AML. The RNA-sequencing data was collected from the TCGA, GTEx and TARGET databases. Subsequently, differentially expressed gene analysis, univariate Cox regression and LASSO regression were applied to identified prognostic SASP-related genes and construct a prognostic risk-scoring model. The risk score of each patient were calculated and patients were divided into high- or low-risk groups by the median risk score. This novel prognostic signature included 11 genes: G6PD, CDK4, RPS6KA1, UBC, H2BC12, KIR2DL4, HSF1, IFIT3, PIM1, RUNX3 and TRIM21. The patients with AML in the high-risk group had shorter OS, demonstrating that the risk score acted as a prognostic predictor, which was validated in the TAGET-AML dataset. Univariate and multivariate analysis revealed the risk score was an independent prognostic factor in patients with AML. Furthermore, the present study revealed that the risk score was associated with immune landscape, immune checkpoint gene expression and chemotherapeutic efficacy. In the present study, we constructed and validated a unique SASP-related prognostic model to assess therapeutic effect and prognosis in patients with AML, which might contribute to understanding the role of SASP in AML and guiding the treatment for AML.


Asunto(s)
Biomarcadores de Tumor , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/mortalidad , Pronóstico , Femenino , Biomarcadores de Tumor/genética , Masculino , Perfilación de la Expresión Génica , Persona de Mediana Edad , Regulación Leucémica de la Expresión Génica , Transcriptoma/genética , Adulto , Factores de Riesgo
4.
Toxicol Res (Camb) ; 13(4): tfae136, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39184219

RESUMEN

As an element with metalloid properties, arsenic is pervasively present in the environment and is recognized as a potent carcinogen. Consequently, the issue of human arsenic exposure has become a significant concern within the global public health sector. Numerous studies have indicated that arsenic induces cellular senescence through various mechanisms, including triggering epigenetic alterations, inducing the senescence-associated secretory phenotype (SASP), promoting telomere shortening, and causing mitochondrial dysfunction. This article collates and summarizes the latest research advancements on the involvement of cellular senescence in arsenic toxicity and explores the mechanisms of arsenic-induced toxicity. This study aims to provide new perspectives and directions for future research on arsenic toxicity and the development of prevention and treatment strategies.

5.
Brain Res ; 1845: 149202, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39216694

RESUMEN

Alzheimer's Disease (AD) is a progressive neurological disease associated with behavioral abnormalities, memory loss, and cognitive impairment that cause major causes of dementia in the elderly. The pathogenetic processes cause complex effects on brain function and AD progression. The proper protein homeostasis, or proteostasis, is critical for cell health. AD causes the buildup of misfolded proteins, particularly tau and amyloid-beta, to break down proteostasis, such aggregates are toxic to neurons and play a critical role in AD pathogenesis. The rise of cellular senescence is accompanied by aging, marked by irreversible cell cycle arrest and the release of pro-inflammatory proteins. Senescent cell build-up in the brains of AD patients exacerbates neuroinflammation and neuronal degeneration. These cells senescence-associated secretory phenotype (SASP) also disturbs the brain environment. When proteostasis failure and cellular senescence coalesce, a cycle is generated that compounds each other. While senescent cells contribute to proteostasis breakdown through inflammatory and degradative processes, misfolded proteins induce cellular stress and senescence. The principal aspects of the neurodegenerative processes in AD are the interaction of cellular senescence and proteostasis failure. This review explores the interconnected roles of proteostasis disruption and cellular senescence in the pathways leading to neurodegeneration in AD.

6.
Front Transplant ; 3: 1422358, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38993765
7.
Front Endocrinol (Lausanne) ; 15: 1378356, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948528

RESUMEN

Background: Cellular senescence is a common biological process with a well-established link to cancer. However, the impact of cellular senescence on tumor progression remains unclear. To investigate this relationship, we utilized transcriptomic data from a senescence gene set to explore the connection between senescence and cancer prognosis. Methods: We developed the senescence score by the Least Absolute Shrinkage and Selection Operator (LASSO) Cox model. We obtained transcriptomic information of the senescence gene set from The Cancer Genome Atlas (TCGA) program. Additionally, we created a nomogram that integrates these senescence scores with clinical characteristics, providing a more comprehensive tool for prognosis evaluation. Results: We calculated the senescence score based on the expression level of 42 senescence-related genes. We established the nomogram based on the senescence score and clinical characteristics. The senescence score showed a positive correlation with epithelial-to-mesenchymal transition, cell cycle, and glycolysis, and a negative correlation with autophagy. Furthermore, we carried out Gene Ontology (GO) analysis to explore the signaling pathways and biological process in different senescence score groups. Conclusions: The senescence score, a novel tool constructed in this study, shows promise in predicting survival outcomes across various cancer types. These findings not only highlight the complex interplay between senescence and cancer but also indicate that cellular senescence might serve as a biomarker for tumor prognosis.


Asunto(s)
Senescencia Celular , Neoplasias , Humanos , Neoplasias/patología , Neoplasias/genética , Neoplasias/metabolismo , Pronóstico , Transición Epitelial-Mesenquimal , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Nomogramas , Transcriptoma , Femenino , Masculino , Regulación Neoplásica de la Expresión Génica , Perfilación de la Expresión Génica
8.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38928043

RESUMEN

Observational studies revealed changes in Immunoglobulin G (IgG) N-glycosylation during the aging process. However, it lacks causal insights and remains unclear in which direction causal relationships exist. The two-sample bidirectional Mendelian randomization (MR) design was adopted to explore causal associations between IgG N-glycans and the senescence-associated secretory phenotype (SASP). Inverse variance weighted (IVW) and Wald ratio methods were used as the main analyses, supplemented by sensitivity analyses. Forward MR analyses revealed causal associations between the glycan peak (GP) and SASP, including GP6 (odds ratio [OR] = 0.428, 95% confidence interval [CI] = 0.189-0.969) and GP17 (OR = 0.709, 95%CI = 0.504-0.995) with growth/differentiation factor 15 (GDF15), GP19 with an advanced glycosylation end-product-specific receptor (RAGE) (OR = 2.142, 95% CI = 1.384-3.316), and GP15 with matrix metalloproteinase 2 (MMP2) (OR = 1.136, 95% CI =1.008-1.282). The reverse MR indicated that genetic liability to RAGE was associated with increased levels of GP17 (OR = 1.125, 95% CI = 1.003-1.261) and GP24 (OR = 1.222, 95% CI = 1.046-1.428), while pulmonary and activation-regulated chemokines (PARC) exhibited causal associations with GP10 (OR = 1.269, 95% CI = 1.048-1.537) and GP15 (OR = 1.297, 95% CI = 1.072-1.570). The findings provided suggested evidence on the bidirectional causality between IgG N-glycans and SASP, which might reveal potential regulatory mechanisms.


Asunto(s)
Inmunoglobulina G , Análisis de la Aleatorización Mendeliana , Fenotipo , Humanos , Glicosilación , Inmunoglobulina G/genética , Inmunoglobulina G/metabolismo , Polisacáridos/metabolismo , Envejecimiento/genética , Envejecimiento/metabolismo , Polimorfismo de Nucleótido Simple , Glicoproteínas
9.
Inflamm Regen ; 44(1): 28, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831382

RESUMEN

Cellular senescence is the state in which cells undergo irreversible cell cycle arrest and acquire diverse phenotypes. It has been linked to chronic inflammation and fibrosis in various organs as well as to individual aging. Therefore, eliminating senescent cells has emerged as a potential target for extending healthy lifespans. Cellular senescence plays a beneficial role in many biological processes, including embryonic development, wound healing, and tissue regeneration, which is mediated by the activation of stem cells. Therefore, a comprehensive understanding of cellular senescence, including both its beneficial and detrimental effects, is critical for developing safe and effective treatment strategies to target senescent cells. This review provides an overview of the biological and pathological roles of cellular senescence, with a particular focus on its beneficial or detrimental functions among its various roles.

10.
Int J Mol Sci ; 25(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38791371

RESUMEN

The process of aging is intimately linked to alterations at the tissue and cellular levels. Currently, the role of senescent cells in the tissue microenvironment is still being investigated. Despite common characteristics, different cell populations undergo distinctive morphofunctional changes during senescence. Mesenchymal stem cells (MSCs) play a pivotal role in maintaining tissue homeostasis. A multitude of studies have examined alterations in the cytokine profile that determine their regulatory function. The extracellular matrix (ECM) of MSCs is a less studied aspect of their biology. It has been shown to modulate the activity of neighboring cells. Therefore, investigating age-related changes in the MSC matrisome is crucial for understanding the mechanisms of tissue niche ageing. This study conducted a broad proteomic analysis of the matrisome of separated fractions of senescent MSCs, including the ECM, conditioned medium (CM), and cell lysate. This is the first time such an analysis has been conducted. It has been established that there is a shift in production towards regulatory molecules and a significant downregulation of the main structural and adhesion proteins of the ECM, particularly collagens, fibulins, and fibrilins. Additionally, a decrease in the levels of cathepsins, galectins, S100 proteins, and other proteins with cytoprotective, anti-inflammatory, and antifibrotic properties has been observed. However, the level of inflammatory proteins and regulators of profibrotic pathways increases. Additionally, there is an upregulation of proteins that can directly cause prosenescent effects on microenvironmental cells (SERPINE1, THBS1, and GDF15). These changes confirm that senescent MSCs can have a negative impact on other cells in the tissue niche, not only through cytokine signals but also through the remodeled ECM.


Asunto(s)
Senescencia Celular , Matriz Extracelular , Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Humanos , Matriz Extracelular/metabolismo , Proteómica/métodos , Proteoma/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Células Cultivadas , Medios de Cultivo Condicionados/farmacología
11.
J Affect Disord ; 360: 163-168, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38795779

RESUMEN

BACKGROUND: The senescence-associated secretory phenotype (SASP) is a biomarker index based on the profile of 22 blood proteins associated with cellular senescence. The SASP index has not been assessed in older patients with bipolar disorder (BD). We hypothesized that older adults with BD will have elevated cellular senescence burden as measured by the SASP index. METHODS: We measured the 22 SASP proteins to calculate the SASP index in 38 older patients with BD and 34 non-psychiatric comparison individuals (HC). RESULTS: The SASP index scores were significantly higher in BD than HC after controlling for age, sex, psychopathology, and physical health (F(1,8) = 5.37, p = 0.024, η2 = 0.08). SASP index scores were also associated with higher age, more severe depressive symptoms, and physical illness burden (p < 0.05) in the whole sample. LIMITATION: Cross-sectional study and small sample size. CONCLUSION: This is the first report of increased SASP index scores in older adults with BD. Our results suggest that dysregulation of age-related biological processes may contribute to more severe depressive symptoms and worse physical health in older adults with BD.


Asunto(s)
Trastorno Bipolar , Senescencia Celular , Fenotipo , Humanos , Femenino , Masculino , Anciano , Estudios Transversales , Persona de Mediana Edad , Biomarcadores/sangre
12.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38612842

RESUMEN

The tumor microenvironment (TME) plays an essential role in tumor progression and in modulating tumor response to anticancer therapy. Cellular senescence leads to a switch in the cell secretome, characterized by the senescence-associated secretory phenotype (SASP), which may regulate tumorigenesis. Senolytic therapy is considered a novel anticancer strategy that eliminates the deleterious effects of senescent cells in the TME. Here, we show that two different types of senolytic drugs, despite efficiently depleting senescent cells, have opposite effects on cancer-associated fibroblasts (CAFs) and their ability to regulate epithelial-mesenchymal transition (EMT). We found that senolytic drugs, navitoclax and the combination of dasatinib/quercetin, reduced the number of spontaneously senescent and TNF-induced senescent CAFs. Despite the depletion of senescent cells, the combination of dasatinib/quercetin versus navitoclax increased the secretion of the SASP pro-inflammatory cytokine IL-6. This differential effect correlated with the promotion of enhanced migration and EMT in MC38 colorectal cancer cells. Our results demonstrate that some senolytics may have side effects unrelated to their senolytic activity and may promote tumorigenesis. We argue for more careful and extensive studies of the effects of senolytics on various aspects of tumor progression and tumor resistance to therapy before the senolytic strategy is implemented in the clinic.


Asunto(s)
Compuestos de Anilina , Fibroblastos Asociados al Cáncer , Senoterapéuticos , Sulfonamidas , Humanos , Dasatinib/farmacología , Quercetina/farmacología , Carcinogénesis , Transformación Celular Neoplásica , Transición Epitelial-Mesenquimal , Citocinas , Microambiente Tumoral
13.
MedComm (2020) ; 5(5): e542, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38660685

RESUMEN

Aging exhibits several hallmarks in common with cancer, such as cellular senescence, dysbiosis, inflammation, genomic instability, and epigenetic changes. In recent decades, research into the role of cellular senescence on tumor progression has received widespread attention. While how senescence limits the course of cancer is well established, senescence has also been found to promote certain malignant phenotypes. The tumor-promoting effect of senescence is mainly elicited by a senescence-associated secretory phenotype, which facilitates the interaction of senescent tumor cells with their surroundings. Targeting senescent cells therefore offers a promising technique for cancer therapy. Drugs that pharmacologically restore the normal function of senescent cells or eliminate them would assist in reestablishing homeostasis of cell signaling. Here, we describe cell senescence, its occurrence, phenotype, and impact on tumor biology. A "one-two-punch" therapeutic strategy in which cancer cell senescence is first induced, followed by the use of senotherapeutics for eliminating the senescent cells is introduced. The advances in the application of senotherapeutics for targeting senescent cells to assist cancer treatment are outlined, with an emphasis on drug categories, and the strategies for their screening, design, and efficient targeting. This work will foster a thorough comprehension and encourage additional research within this field.

14.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38542294

RESUMEN

An important hallmark of radiation dermatitis is the impairment of the mitotic ability of the stem/progenitor cells in the basal cell layers due to radiation-induced DNA damage, leading to suppressed cell renewal in the epidermis. However, this mechanism alone does not adequately explain the complex pathogenesis of radiation-induced skin injury. In this review, we summarize the latest findings on the complex pathogenesis of radiation dermatitis and correlate these with the clinical features of radiation-induced skin reactions. The current studies show that skin exposure to ionizing radiation induces cellular senescence in the epidermal keratinocytes. As part of their epithelial stress response, these senescent keratinocytes secrete pro-inflammatory mediators, thereby triggering skin inflammation. Keratinocyte-derived cytokines and chemokines modulate intercellular communication with the immune cells, activating skin-resident and recruiting skin-infiltrating immune cells within the epidermis and dermis, thereby orchestrating the inflammatory response to radiation-induced tissue damage. The increased expression of specific chemoattractant chemokines leads to increased recruitment of neutrophils into the irradiated skin, where they release cytotoxic granules that are responsible for the exacerbation of an inflammatory state. Moreover, the importance of IL-17-expressing γδ-T cells to the radiation-induced hyperproliferation of keratinocytes was demonstrated, leading to reactive hyperplasia of the epidermis. Radiation-induced, reactive hyperproliferation of the keratinocytes disturbs the fine-tuned keratinization and cornification processes, leading to structural dysfunction of the epidermal barrier. In summary, in response to ionizing radiation, epidermal keratinocytes have important structural and immunoregulatory barrier functions in the skin, coordinating interacting immune responses to eliminate radiation-induced damage and to initiate the healing process.


Asunto(s)
Dermatitis , Radiodermatitis , Neoplasias Cutáneas , Humanos , Epidermis/metabolismo , Queratinocitos/metabolismo , Piel/patología , Radiodermatitis/patología , Dermatitis/patología , Neoplasias Cutáneas/patología , Quimiocinas/metabolismo
15.
Metabolites ; 14(3)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38535306

RESUMEN

Chronic low back pain, a major cause of disability with a great global socioeconomic impact, has been inextricably associated with intervertebral disc degeneration. On the other hand, an enhanced number of senescent cells has been identified in aged and degenerated intervertebral discs and their senescence-associated secretory phenotype (SASP) has been connected with qualitative/quantitative alterations in the extracellular matrix and ultimately with the disturbance of tissue homeostasis. Given that selective elimination of senescent cells (by the so-called senolytics) or amendment of their secretome towards a less catabolic/inflammatory phenotype (by molecules known as senomorphics) has been reported to alleviate symptoms of several age-associated diseases and to improve tissue quality during aging, here we will review the emerging role of senolytic and senomorphic agents derived from plants and natural products against intervertebral disc degeneration. The mode of action of these senotherapeutics, as well as the challenges in their practical application, will also be explicitly discussed in an attempt to direct their more targeted and effective use in exclusive or combinatorial therapeutic schemes for the prevention and/or treatment of disc degenerative disorders.

16.
Biomolecules ; 14(3)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38540708

RESUMEN

Both the senescence of cancer cells and the maintenance of cancer stem cells seem to be mutually exclusive because senescence is considered a physiological mechanism that effectively suppresses tumor growth. Recent studies have revealed common signaling pathways between cellular senescence and the maintenance of stemness in cancer cells, thus challenging the conventional understanding of this process. Although the links between these processes have not yet been fully elucidated, emerging evidence indicates that senescent cancer cells can undergo reprograming to recover stemness. Herein, we provide a comprehensive overview of the close correlation between senescence and stemness reprograming in cancer cells, with a particular focus on the mechanisms by which senescent cancer cells recover their stemness in various tumor systems.


Asunto(s)
Neoplasias , Humanos , Transducción de Señal , Células Madre Neoplásicas , Senescencia Celular/fisiología
17.
Methods Cell Biol ; 181: 59-72, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38302244

RESUMEN

Cellular senescence, whereby cells cease to proliferate, is known to contribute to the aging process and age-related pathologies. It is elicited either by cell-intrinsic mechanisms such as progressive telomere shortening or due to the extrinsic stress-related factors, which via p53-p21 and p16-pRB tumor suppressor pathways signal cells to cease proliferation. A proper identification and characterization of senescent cells is necessary to understand the process of aging, age-related pathologies, and the development of therapeutics to treat age-related dysfunctions. The landmark discovery of Senescence-Associated-Beta-Galactosidase (SA-ß-Gal) marker, and a simple colorimetric method to detect SA-ß-Gal greatly facilitated identification of the senescent cells in human and rodent cells pertaining to age-related diseases (Dimri et al., 1995). Despite the availability of additional senescence biomarkers, the SA-ß-Gal marker and histochemical detection method remain the most widely used tool to identify senescent cells in vitro and in vivo. Here, we revisit the original colorimetric method to detect senescent cells that was first published in 1995 (Dimri et al., 1995).


Asunto(s)
Senescencia Celular , Colorimetría , Humanos , Senescencia Celular/genética , Envejecimiento/metabolismo , Biomarcadores/metabolismo , Transducción de Señal
18.
Front Endocrinol (Lausanne) ; 15: 1291389, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38298378

RESUMEN

The increasing life expectancy observed in recent years has resulted in a higher prevalence of late-onset hypogonadism (LOH) in older men. LOH is characterized by the decline in testosterone levels and can have significant impacts on physical and mental health. While the underlying causes of LOH are not fully understood, there is a growing interest in exploring the role of inflammaging in its development. Inflammaging is a concept that describes the chronic, low-grade, systemic inflammation that occurs as a result of aging. This inflammatory state has been implicated in the development of various age-related diseases. Several cellular and molecular mechanisms have been identified as contributors to inflammaging, including immune senescence, cellular senescence, autophagy defects, and mitochondrial dysfunction. Despite the extensive research on inflammaging, its relationship with LOH has not yet been thoroughly reviewed in the literature. To address this gap, we aim to review the latest findings related to inflammaging and its impact on the development of LOH. Additionally, we will explore interventions that target inflammaging as potential treatments for LOH.


Asunto(s)
Hipogonadismo , Masculino , Humanos , Anciano , Envejecimiento , Senescencia Celular , Inflamación , Esperanza de Vida
19.
Heliyon ; 10(4): e25538, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38375248

RESUMEN

The worldwide elderly population is on the rise, and aging is a major osteoporosis risk factor. Senescent cells accumulation can have a detrimental effect the body as we age. The senescence-associated secretory phenotype (SASP), an essential cellular senescence hallmark, is an important mechanism connecting cellular senescence to osteoporosis. This review describes in detail the characteristics of SASPs and their regulatory agencies, and shed fresh light on how SASPs from different senescent cells contribute to osteoporosis development. Furthermore, we summarized various innovative therapy techniques that target SASPs to lower the burden of osteoporosis in the elderly and discussed the potential challenges of SASPs-based therapy for osteoporosis as a new clinical trial.

20.
Res Sq ; 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38410468

RESUMEN

Stress urinary incontinence (SUI) greatly affects the daily life of numerous women and is closely related to a history of vaginal delivery and aging. We used vaginal balloon dilation to simulate vaginal birth injury in young and middle-aged rats to produce a SUI animal model, and found that young rats restored urethral structure and function well, but not the middle-aged rats. To identify the characteristics of cellular and molecular changes in the urethral microenvironment during the repair process of SUI. We profiled 51,690 individual female rat urethra cells from 24 and 48 weeks old, with or without simulated vaginal birth injury. Cell interaction analysis showed that signal networks during repair process changed from resting to active, and aging altered the distribution but not the overall level of cell interaction in the repair process. Similarity analysis showed that muscle, fibroblasts, and immune cells underwent large transcriptional changes during aging and repair. In middle-aged rats, cell senescence occurs mainly in the superficial and middle urothelium due to cellular death and shedding, and the basal urothelium expressed many Senescence-Associated Secretory Phenotype (SASP) genes. In conclusion, we established the aging and vaginal balloon dilation (VBD) model of female urethral cell anatomy and the signal network landscape, which provides an insight into the normal or disordered urethra repair process and the scientific basis for developing novel SUI therapies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...