Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.334
Filtrar
1.
Mar Pollut Bull ; 205: 116655, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38955091

RESUMEN

Maritime agencies are imposing stricter limits on fuel sulfur content, and regional governments are encouraging the reduction of various emissions through subsidies. In this study, an evolutionary game model is constructed to analyze the interaction between regional governments and shipping companies under the fixed and dynamic subsidies. The sensitivity analysis reveals the effect of parameters on stabilization strategies. The results show that the bilateral stakeholders can adopt stabilization strategies under dynamic subsidies. The fines, maximum subsidies and extra cost paid by regional governments have a significant impact on these strategies. To reduce the dependence of shipping companies on subsidy policies, it is recommended to improve the LSFO refining technology in the future. Expanding the implementation scope of LSFO subsidy policies will increase the utilization of LSFO by shipping companies. This study offers insights for governments to optimize the LSFO subsidy policy and shipping companies to choose sulfur oxides reduction approaches.

2.
Math Biosci ; : 109247, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38969058

RESUMEN

The human papillomavirus (HPV) is threatening human health as it spreads globally in varying degrees. On the other hand, the speed and scope of information transmission continues to increase, as well as the significant increase in the number of HPV-related news reports, it has never been more important to explore the role of media news coverage in the spread and control of the virus. Using a decreasing factor that captures the impact of media on the actions of people, this paper develops a model that characterizes the dynamics of HPV transmission with media impact, vaccination and recovery. We obtain global stability of equilibrium points employing geometric method, and further yield effective methods to contain the HPV pandemic by sensitivity analysis. With the center manifold theory, we show that there is a forward bifurcation when R0=1. Our study suggested that, besides controlling contact between infected and susceptible populations and improving effective vaccine coverage, a better intervention would be to strengthen media coverage. In addition, we demonstrated that contact rate and the effect of media coverage result in multiple epidemics of infection when certain conditions are met, implying that interventions need to be tailored to specific situations.

3.
Sci Rep ; 14(1): 15155, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956414

RESUMEN

The accurate estimation of gas viscosity remains a pivotal concern for petroleum engineers, exerting substantial influence on the modeling efficacy of natural gas operations. Due to their time-consuming and costly nature, experimental measurements of gas viscosity are challenging. Data-based machine learning (ML) techniques afford a resourceful and less exhausting substitution, aiding research and industry at gas modeling that is incredible to reach in the laboratory. Statistical approaches were used to analyze the experimental data before applying machine learning. Seven machine learning techniques specifically Linear Regression, random forest (RF), decision trees, gradient boosting, K-nearest neighbors, Nu support vector regression (NuSVR), and artificial neural network (ANN) were applied for the prediction of methane (CH4), nitrogen (N2), and natural gas mixture viscosities. More than 4304 datasets from real experimental data utilizing pressure, temperature, and gas density were employed for developing ML models. Furthermore, three novel correlations have developed for the viscosity of CH4, N2, and composite gas using ANN. Results revealed that models and anticipated correlations predicted methane, nitrogen, and natural gas mixture viscosities with high precision. Results designated that the ANN, RF, and gradient Boosting models have performed better with a coefficient of determination (R2) of 0.99 for testing data sets of methane, nitrogen, and natural gas mixture viscosities. However, linear regression and NuSVR have performed poorly with a coefficient of determination (R2) of 0.07 and - 0.01 respectively for testing data sets of nitrogen viscosity. Such machine learning models offer the industry and research a cost-effective and fast tool for accurately approximating the viscosities of methane, nitrogen, and gas mixture under normal and harsh conditions.

4.
J Theor Biol ; : 111897, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38971400

RESUMEN

Coral reefs, among the most diverse ecosystems on Earth, currently face major threats from pollution, unsustainable fishing practices , and perturbations in environmental parameters brought on by climate change. Corals also sustain regular wounding from other sea life and human activity. Recent reef restoration practices have even involved intentional wounding by systematically breaking coral fragments and relocating them to revitalize damaged reefs, a practice known as microfragmentation. Despite its importance, very little research has explored the inner mechanisms of wound healing in corals. Some reef-building corals have been observed to initiate an immunological response to wounding similar to that observed in mammalian species. Utilizing prior models of wound healing in mammalian species as the mathematical basis, we formulated a mechanistic model of wound healing, including observations of the immune response and tissue repair in scleractinian corals for the species Pocillopora damicornis. The model consists of four differential equations which track changes in remaining wound debris, number of cells involved in inflammation, number of cells involved in proliferation, and amount of wound closure through re-epithelialization. The model is fit to experimental wound size data from linear and circular shaped wounds on a live coral fragment. Mathematical methods, including numerical simulations and local sensitivity analysis, were used to analyze the resulting model. The parameter space was also explored to investigate drivers of other possible wound outcomes. This model serves as a first step in generating mathematical models for wound healing in corals that will not only aid in the understanding of wound healing as a whole, but also help optimize reef restoration practices and predict recovery behavior after major wounding events.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38976193

RESUMEN

A laboratory-scale mesophilic submerged anaerobic hybrid membrane bioreactor (An-HMBR) was operated for 270 days for the treatment of high-strength synthetic wastewater at different hydraulic retention times (HRTs) (3 days, 2 days, 1 day, and 0.5 days). Chemical oxygen demand (COD) removal efficiency of 92% was obtained with methane yield rate of 0.18 LCH4/g CODremoval at 1-day HRT. The results of lab scale reactor at 1-day HRT were utilized for upscaling and cost analysis. Cost analysis revealed that the total capital cost comprised tank system (48%), membrane cost (32%), screen and PUF sponge (5% each), PLCs (4%), liquid pumps (3%), and others (2%). The operational cost comprised chemical cost (46%), pumping energy (42%), and sludge disposal (12%). The results revealed that the tank and heating costs accounted for the largest fraction of the total life cycle cost for full-scale An-HMBR. The heating cost can be compensated by gas recovery. Sensitivity analysis revealed that the interest rates, influent flow, and membrane flux were the most crucial parameters which affected the total cost of An-HMBR.

6.
Sci Rep ; 14(1): 15584, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971827

RESUMEN

To address the shortcomings of traditional reliability theory in characterizing the stability of deep underground structures, the advanced first order second moment of reliability was improved to obtain fuzzy random reliability, which is more consistent with the working conditions. The traditional sensitivity analysis model was optimized using fuzzy random optimization, and an analytical calculation model of the mean and standard deviation of the fuzzy random reliability sensitivity was established. A big data hidden Markov model and expectation-maximization algorithm were used to improve the digital characteristics of fuzzy random variables. The fuzzy random sensitivity optimization model was used to confirm the effect of concrete compressive strength, thick-diameter ratio, reinforcement ratio, uncertainty coefficient of calculation model, and soil depth on the overall structural reliability of a reinforced concrete double-layer wellbore in deep alluvial soil. Through numerical calculations, these characteristics were observed to be the main influencing factors. Furthermore, while the soil depth was negatively correlated, the other influencing factors were all positively correlated with the overall reliability. This study provides an effective reference for the safe construction of deep underground structures in the future.

7.
Arch Suicide Res ; : 1-15, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38945167

RESUMEN

OBJECTIVE: Nearly 50,000 Americans die each year from suicide, despite suicide death being a rare event in the context of health risk assessment and modeling. Prior research has underscored the need for contextualizing suicide risk models in terms of their potential uses and generalizability. This sensitivity analysis makes use of the Maryland Suicide Data Warehouse (MSDW) and illustrates how results inform clinical decision support. METHOD: A cohort of 1 million living control patients were extracted from the MSDW in addition to 1,667 patients who had died by suicide between the years 2016 and 2019 according to the Maryland Office of the Medical Examiner (OCME). Data were extracted and aggregated as part of a 4-year retrospective design. Binary logistic and two penalized regression models were deployed in a repeated fivefold cross-validation. Model performances were evaluated using sensitivity, positive predictive value (PPV), and F1, and model coefficients were ranked according to coefficient size. RESULTS: Several features were significantly associated with patients having died by suicide, including male sex, depressive and anxiety disorder diagnoses, social needs, and prior suicidal ideation and suicide attempt. Cross-validated binary logistic regression outperformed either ridge or LASSO (least absolute shrinkage and selection operator) models but generally achieved low-to-moderate PPV and sensitivity across most thresholds and a peak F1 of 0.323. CONCLUSIONS: Suicide death prediction is constrained by the context of use, which determines the best balance of precision and recall. Predictive models must be evaluated close to the level of intervention. They may not hold up to different needs at different levels of care.

8.
Epidemics ; 47: 100775, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38838462

RESUMEN

Across many fields, scenario modeling has become an important tool for exploring long-term projections and how they might depend on potential interventions and critical uncertainties, with relevance to both decision makers and scientists. In the past decade, and especially during the COVID-19 pandemic, the field of epidemiology has seen substantial growth in the use of scenario projections. Multiple scenarios are often projected at the same time, allowing important comparisons that can guide the choice of intervention, the prioritization of research topics, or public communication. The design of the scenarios is central to their ability to inform important questions. In this paper, we draw on the fields of decision analysis and statistical design of experiments to propose a framework for scenario design in epidemiology, with relevance also to other fields. We identify six different fundamental purposes for scenario designs (decision making, sensitivity analysis, situational awareness, horizon scanning, forecasting, and value of information) and discuss how those purposes guide the structure of scenarios. We discuss other aspects of the content and process of scenario design, broadly for all settings and specifically for multi-model ensemble projections. As an illustrative case study, we examine the first 17 rounds of scenarios from the U.S. COVID-19 Scenario Modeling Hub, then reflect on future advancements that could improve the design of scenarios in epidemiological settings.


Asunto(s)
COVID-19 , Técnicas de Apoyo para la Decisión , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , COVID-19/transmisión , Predicción , SARS-CoV-2 , Enfermedades Transmisibles/epidemiología , Pandemias/prevención & control , Toma de Decisiones , Proyectos de Investigación
9.
Sci Rep ; 14(1): 14730, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926595

RESUMEN

Ionic liquids (ILs) are highly effective for capturing carbon dioxide (CO2). The prediction of CO2 solubility in ILs is crucial for optimizing CO2 capture processes. This study investigates the use of deep learning models for CO2 solubility prediction in ILs with a comprehensive dataset of 10,116 CO2 solubility data in 164 kinds of ILs under different temperature and pressure conditions. Deep neural network models, including Artificial Neural Network (ANN) and Long Short-Term Memory (LSTM), were developed to predict CO2 solubility in ILs. The ANN and LSTM models demonstrated robust test accuracy in predicting CO2 solubility, with coefficient of determination (R2) values of 0.986 and 0.985, respectively. Both model's computational efficiency and cost were investigated, and the ANN model achieved reliable accuracy with a significantly lower computational time (approximately 30 times faster) than the LSTM model. A global sensitivity analysis (GSA) was performed to assess the influence of process parameters and associated functional groups on CO2 solubility. The sensitivity analysis results provided insights into the relative importance of input attributes on output variables (CO2 solubility) in ILs. The findings highlight the significant potential of deep learning models for streamlining the screening process of ILs for CO2 capture applications.

10.
Infect Dis Model ; 9(3): 975-994, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38881537

RESUMEN

Parameter identification involves the estimation of undisclosed parameters within a system based on observed data and mathematical models. In this investigation, we employ DAISY to meticulously examine the structural identifiability of parameters of a within-host SARS-CoV-2 epidemic model, taking into account an array of observable datasets. Furthermore, Monte Carlo simulations are performed to offer a comprehensive practical analysis of model parameters. Lastly, sensitivity analysis is employed to ascertain that decreasing the replication rate of the SARS-CoV-2 virus and curbing the infectious period are the most efficacious measures in alleviating the dissemination of COVID-19 amongst hosts.

11.
Artículo en Inglés | MEDLINE | ID: mdl-38896534

RESUMEN

This paper presents a new nonlinear epidemic model for the spread of SARS-CoV-2 that incorporates the effect of double dose vaccination. The model is analyzed using qualitative, stability, and sensitivity analysis techniques to investigate the impact of vaccination on the spread of the virus. We derive the basic reproduction number and perform stability analysis of the disease-free and endemic equilibrium points. The model is also subjected to sensitivity analysis to identify the most influential model parameters affecting the disease dynamics. The values of the parameters are estimated with the help of the least square curve fitting tools. Finally, the model is simulated numerically to assess the effectiveness of various control strategies, including vaccination and quarantine, in reducing the spread of the virus. Optimal control techniques are employed to determine the optimal allocation of resources for implementing control measures. Our results suggest that increasing the vaccination coverage, adherence to quarantine measures, and resource allocation are effective strategies for controlling the epidemic. The study provides valuable insights into the dynamics of the pandemic and offers guidance for policymakers in formulating effective control measures.

12.
World J Clin Cases ; 12(17): 3094-3104, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38898868

RESUMEN

BACKGROUND: The mucosal barrier's immune-brain interactions, pivotal for neural development and function, are increasingly recognized for their potential causal and therapeutic relevance to irritable bowel syndrome (IBS). Prior studies linking immune inflammation with IBS have been inconsistent. To further elucidate this relationship, we conducted a Mendelian randomization (MR) analysis of 731 immune cell markers to dissect the influence of various immune phenotypes on IBS. Our goal was to deepen our understanding of the disrupted brain-gut axis in IBS and to identify novel therapeutic targets. AIM: To leverage publicly available data to perform MR analysis on 731 immune cell markers and explore their impact on IBS. We aimed to uncover immunophenotypic associations with IBS that could inform future drug development and therapeutic strategies. METHODS: We performed a comprehensive two-sample MR analysis to evaluate the causal relationship between immune cell markers and IBS. By utilizing genetic data from public databases, we examined the causal associations between 731 immune cell markers, encompassing median fluorescence intensity, relative cell abundance, absolute cell count, and morphological parameters, with IBS susceptibility. Sensitivity analyses were conducted to validate our findings and address potential heterogeneity and pleiotropy. RESULTS: Bidirectional false discovery rate correction indicated no significant influence of IBS on immunophenotypes. However, our analysis revealed a causal impact of IBS on 30 out of 731 immune phenotypes (P < 0.05). Nine immune phenotypes demonstrated a protective effect against IBS [inverse variance weighting (IVW) < 0.05, odd ratio (OR) < 1], while 21 others were associated with an increased risk of IBS onset (IVW ≥ 0.05, OR ≥ 1). CONCLUSION: Our findings underscore a substantial genetic correlation between immune cell phenotypes and IBS, providing valuable insights into the pathophysiology of the condition. These results pave the way for the development of more precise biomarkers and targeted therapies for IBS. Furthermore, this research enriches our comprehension of immune cell roles in IBS pathogenesis, offering a foundation for more effective, personalized treatment approaches. These advancements hold promise for improving IBS patient quality of life and reducing the disease burden on individuals and their families.

13.
Comput Biol Med ; 178: 108756, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38901190

RESUMEN

BACKGROUND: Tuberculosis, a global health concern, was anticipated to grow to 10.6 million new cases by 2021, with an increase in multidrug-resistant tuberculosis. Despite 1.6 million deaths in 2021, present treatments save millions of lives, and tuberculosis may overtake COVID-19 as the greatest cause of mortality. This study provides a six-compartmental deterministic model that employs a fractal-fractional operator with a power law kernel to investigate the impact of vaccination on tuberculosis dynamics in a population. METHODS: Some important characteristics, such as vaccination and infection rate, are considered. We first show that the suggested model has positive bounded solutions and a positive invariant area. We evaluate the equation for the most important threshold parameter, the basic reproduction number, and investigate the model's equilibria. We perform sensitivity analysis to determine the elements that influence tuberculosis dynamics. Fixed-point concepts show the presence and uniqueness of a solution to the suggested model. We use the two-step Newton polynomial technique to investigate the effect of the fractional operator on the generalized form of the power law kernel. RESULTS: The stability analysis of the fractal-fractional model has been confirmed for both Ulam-Hyers and generalized Ulam-Hyers types. Numerical simulations show the effects of different fractional order values on tuberculosis infection dynamics in society. According to numerical simulations, limiting contact with infected patients and enhancing vaccine efficacy can help reduce the tuberculosis burden. The fractal-fractional operator produces better results than the ordinary integer order in the sense of memory effect at diffract fractal and fractional order values. CONCLUSION: According to our findings, fractional modeling offers important insights into the dynamic behavior of tuberculosis disease, facilitating a more thorough comprehension of their epidemiology and possible means of control.

14.
Int J Numer Method Biomed Eng ; : e3836, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837871

RESUMEN

Computational models of the cardiovascular system are increasingly used for the diagnosis, treatment, and prevention of cardiovascular disease. Before being used for translational applications, the predictive abilities of these models need to be thoroughly demonstrated through verification, validation, and uncertainty quantification. When results depend on multiple uncertain inputs, sensitivity analysis is typically the first step required to separate relevant from unimportant inputs, and is key to determine an initial reduction on the problem dimensionality that will significantly affect the cost of all downstream analysis tasks. For computationally expensive models with numerous uncertain inputs, sample-based sensitivity analysis may become impractical due to the substantial number of model evaluations it typically necessitates. To overcome this limitation, we consider recently proposed Multifidelity Monte Carlo estimators for Sobol' sensitivity indices, and demonstrate their applicability to an idealized model of the common carotid artery. Variance reduction is achieved combining a small number of three-dimensional fluid-structure interaction simulations with affordable one- and zero-dimensional reduced-order models. These multifidelity Monte Carlo estimators are compared with traditional Monte Carlo and polynomial chaos expansion estimates. Specifically, we show consistent sensitivity ranks for both bi- (1D/0D) and tri-fidelity (3D/1D/0D) estimators, and superior variance reduction compared to traditional single-fidelity Monte Carlo estimators for the same computational budget. As the computational burden of Monte Carlo estimators for Sobol' indices is significantly affected by the problem dimensionality, polynomial chaos expansion is found to have lower computational cost for idealized models with smooth stochastic response.

15.
Risk Anal ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862413

RESUMEN

Investigating the effects of spatial scales on the uncertainty and sensitivity analysis of the social vulnerability index (SoVI) model output is critical, especially for spatial scales finer than the census block group or census block. This study applied the intelligent dasymetric mapping approach to spatially disaggregate the census tract scale SoVI model into a 300-m grids resolution SoVI map in Davidson County, Nashville. Then, uncertainty analysis and variance-based global sensitivity analysis were conducted on two scales of SoVI models: (a) census tract scale; (b) 300-m grids scale. Uncertainty analysis results indicate that the SoVI model has better confidence in identifying places with a higher socially vulnerable status, no matter the spatial scales in which the SoVI is constructed. However, the spatial scale of SoVI does affect the sensitivity analysis results. The sensitivity analysis suggests that for census tract scale SoVI, the indicator transformation and weighting scheme are the two major uncertainty contributors in the SoVI index modeling stages. While for finer spatial scales like the 300-m grid's resolution, the weighting scheme becomes the uttermost dominant uncertainty contributor, absorbing uncertainty contributions from indicator transformation.

16.
J Environ Manage ; 362: 121251, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38823295

RESUMEN

The production of biogas from microalgae has gained attention due to their rapid growth, CO2 sequestration, and minimal land use. This study uses life cycle assessment to assess the environmental impacts of biogas production from wastewater-grown microalgae through anaerobic digestion within an optimized microalgae-based system. Using SimaPro® 9 software, 3 scenarios were modeled considering the ReCiPe v1.13 midpoint and endpoint methods for environmental impact assessment in different categories. In the baseline scenario (S1), a hypothetical system for biogas production was considered, consisting of a high rate algal pond (HRAP), a settling, an anaerobic digester, and a biogas upgrading unit. The second scenario (S2) included strategies to enhance biogas yield, namely co-digestion and thermal pre-treatment. The third scenario (S3), besides considering the strategies of S2, proposed the biogas upgrading in the HRAP and the digestate recovery as a biofertilizer. After normalization, human carcinogenic toxicity was the most positively affected category due to water use in the cultivation step, accounted as avoided product. However, this category was also the most negatively affected by the impacts of the digester heating energy. Anaerobic digestion was the most impactful step, constituting on average 60.37% of total impacts. Scenario S3 performed better environmentally, primarily due to the integration of biogas upgrading within the cultivation reactor and digestate use as a biofertilizer. Sensitivity analysis highlighted methane yield's importance, showing potential for an 11.28% reduction in ionizing radiation impacts with a 10% increase. Comparing S3 biogas with natural gas, the resource scarcity impact was reduced sixfold, but the human health impact was 23 times higher in S3.


Asunto(s)
Biocombustibles , Microalgas , Aguas Residuales , Microalgas/metabolismo , Microalgas/crecimiento & desarrollo , Aguas Residuales/química , Anaerobiosis , Ambiente
17.
Front Bioeng Biotechnol ; 12: 1391957, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903189

RESUMEN

Introduction: Numerical modeling of the intervertebral disc (IVD) is challenging due to its complex and heterogeneous structure, requiring careful selection of constitutive models and material properties. A critical aspect of such modeling is the representation of annulus fibers, which significantly impact IVD biomechanics. This study presents a comparative analysis of different methods for fiber reinforcement in the annulus fibrosus of a finite element (FE) model of the human IVD. Methods: We utilized a reconstructed L4-L5 IVD geometry to compare three fiber modeling approaches: the anisotropic Holzapfel-Gasser-Ogden (HGO) model (HGO fiber model) and two sets of structural rebar elements with linear-elastic (linear rebar model) and hyperelastic (nonlinear rebar model) material definitions, respectively. Prior to calibration, we conducted a sensitivity analysis to identify the most important model parameters to be calibrated and improve the efficiency of the calibration. Calibration was performed using a genetic algorithm and in vitro range of motion (RoM) data from a published study with eight specimens tested under four loading scenarios. For validation, intradiscal pressure (IDP) measurements from the same study were used, along with additional RoM data from a separate publication involving five specimens subjected to four different loading conditions. Results: The sensitivity analysis revealed that most parameters, except for the Poisson ratio of the annulus fibers and C01 from the nucleus, significantly affected the RoM and IDP outcomes. Upon calibration, the HGO fiber model demonstrated the highest accuracy (R2 = 0.95), followed by the linear (R2 = 0.89) and nonlinear rebar models (R2 = 0.87). During the validation phase, the HGO fiber model maintained its high accuracy (RoM R2 = 0.85; IDP R2 = 0.87), while the linear and nonlinear rebar models had lower validation scores (RoM R2 = 0.71 and 0.69; IDP R2 = 0.86 and 0.8, respectively). Discussion: The results of the study demonstrate a successful calibration process that established good agreement with experimental data. Based on our findings, the HGO fiber model appears to be a more suitable option for accurate IVD FE modeling considering its higher fidelity in simulation results and computational efficiency.

18.
Environ Sci Pollut Res Int ; 31(27): 39794-39822, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38833051

RESUMEN

Groundwater resources worldwide face significant challenges that require urgent implementation of sustainable measures for effective long-term management. Managed aquifer recharge (MAR) is regarded as one of the most promising management technologies to address the degradation of groundwater resources. However, in urban aquifers, locating suitable areas that are least vulnerable to contamination for MAR implementation is complex and challenging. Hence, the present study proposes a framework encapsulating the combined assessment of groundwater vulnerability and MAR site suitability analysis to pinpoint the most featured areas for installing drywells in Kayseri, Turkey. To extrapolate the vulnerable zones, not only the original DRASTIC but also its multi-criteria decision-making (MCDA)-based modified variants were evaluated with regard to different hydrochemical parameters using the area under the receiver operating characteristic (ROC) curve (AUC). Besides, the fuzzy analytical hierarchy process (FAHP) rationale was adopted to signify the importance level of criteria and the robustness of the framework was highlighted with sensitivity analysis. In addition, the decision layers and the attained vulnerability layer were combined using the weighted overlay (WOA). The findings indicate that the DRASTIC-SWARA correlates well with the arsenic (AUC = 0.856) and chloride (AUC = 0.648) and was adopted as the vulnerability model. Groundwater quality parameters such as chloride and sodium adsorption ratio, as well as the vadose zone thickness, were found to be the most significant decision parameters with importance levels of 16.75%, 14.51%, and 15.73%, respectively. Overall, 28.24% of the study area was unsuitable for recharge activities with high to very high vulnerability, while the remaining part was further prioritized into low to high suitability classes for MAR application. The proposed framework offers valuable tool to decision-makers for the delineation of favorable MAR sites with minimized susceptibility to contamination.


Asunto(s)
Toma de Decisiones , Sistemas de Información Geográfica , Agua Subterránea , Agua Subterránea/química , Turquía , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis
19.
J Mech Behav Biomed Mater ; 156: 106575, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38824865

RESUMEN

Articular cartilage tissue exhibits a spatial dependence in material properties that govern mechanical behaviour. A mathematical model of cartilage tissue under one dimensional confined compression testing is developed for normal tissue that takes account of these variations in material properties. Modifications to the model representative of a selection of mechanisms driving osteoarthritic cartilage are proposed, allowing application of the model to both physiological and pathophysiological, osteoarthritic tissue. Incorporating spatial variations into the model requires the specification of more parameters than are required in the absence of these variations. A global sensitivity analysis of these parameters is implemented to identify the dominant mechanisms of mechanical response, in normal and osteoarthritic cartilage tissue, to both static and dynamic loading. The most sensitive parameters differ between dynamic and static mechanics of the cartilage, and also differ between physiological and osteoarthritic pathophysiological cartilage. As a consequence changes in cartilage mechanics in response to alterations in cartilage structure are predicted to be contingent on the nature of loading and the health, or otherwise, of the cartilage. In particular the mechanical response of cartilage, especially deformation, is predicted to be much more sensitive to cartilage stiffness in the superficial zone given the onset of osteoarthritic changes to material properties, such as superficial zone increases in permeability and reductions in fixed charge. In turn this indicates that any degenerative changes in the stiffness associated with the superficial cartilage collagen mesh are amplified if other elements of osteoarthritic disease are present, which provides a suggested mechanism-based explanation for observations that the range of mechanical parameters representative of normal and osteoarthritic tissue can overlap substantially.


Asunto(s)
Cartílago Articular , Osteoartritis , Fenómenos Biomecánicos , Osteoartritis/fisiopatología , Fenómenos Mecánicos , Modelos Biológicos , Humanos , Estrés Mecánico , Ensayo de Materiales , Soporte de Peso , Pruebas Mecánicas
20.
Stat Med ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890728

RESUMEN

An important strategy for identifying principal causal effects (popular estimands in settings with noncompliance) is to invoke the principal ignorability (PI) assumption. As PI is untestable, it is important to gauge how sensitive effect estimates are to its violation. We focus on this task for the common one-sided noncompliance setting where there are two principal strata, compliers and noncompliers. Under PI, compliers and noncompliers share the same outcome-mean-given-covariates function under the control condition. For sensitivity analysis, we allow this function to differ between compliers and noncompliers in several ways, indexed by an odds ratio, a generalized odds ratio, a mean ratio, or a standardized mean difference sensitivity parameter. We tailor sensitivity analysis techniques (with any sensitivity parameter choice) to several types of PI-based main analysis methods, including outcome regression, influence function (IF) based and weighting methods. We discuss range selection for the sensitivity parameter. We illustrate the sensitivity analyses with several outcome types from the JOBS II study. This application estimates nuisance functions parametrically - for simplicity and accessibility. In addition, we establish rate conditions on nonparametric nuisance estimation for IF-based estimators to be asymptotically normal - with a view to inform nonparametric inference.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...