Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochemistry (Mosc) ; 89(6): 1014-1023, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38981697

RESUMEN

Damages of various origin accumulated in the genomic DNA can lead to the breach of genome stability, and are considered to be one of the main factors involved in cellular senescence. DNA repair systems in mammalian cells ensure effective damage removal and repair of the genome structure, therefore, activity of these systems is expected to be correlated with high maximum lifespan observed in the long-lived mammals. This review discusses current results of the studies focused on determination of the DNA repair system activity and investigation of the properties of its key regulatory proteins in the cells of long-lived rodents and bats. Based on the works discussed in the review, it could be concluded that the long-lived rodents and bats in general demonstrate high efficiency in functioning and regulation of DNA repair systems. Nevertheless, a number of questions around the study of DNA repair in the cells of long-lived rodents and bats remain poorly understood, answers to which could open up new avenues for further research.


Asunto(s)
Quirópteros , Reparación del ADN , Roedores , Animales , Quirópteros/genética , Quirópteros/metabolismo , Roedores/genética , Roedores/metabolismo , Daño del ADN , Longevidad
2.
Stem Cells ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864549

RESUMEN

SIRT6 owns versatile types of enzymatic activities as a multitasking protein, including ribosyltransferase and deacetylase ones. To investigate the epigenetic regulations of SIRT6 on MSC fate determination via histone deacetylation, we utilized allosteric small molecules specifically controlling its histone 3 deacetylation activities. Results showed that enhanced deacetylation of SIRT6 promoted the ossific lineage commitment of MSC and finally achieved anabolic effects on hard tissues. Mechanistically, H3K9ac and H3K56ac, governed by SIRT6, in MSC orchestrated the transcriptions of crucial metabolic genes, mediating MSC fate determination. Most importantly, our data evidenced that modulating the epigenetic regulations of SIRT6, specifically via enhancing its deacetylation of H3K9ac and H3K56ac, was a promising choice to treat bone loss diseases and promote dentine regeneration. In this study, we revealed the specific roles of SIRT6's histone modification in MSC fate determination. These findings endow us with insights on SIRT6 and the promising therapeutic choices through SIRT6's epigenetic functions for hard tissues regeneration.

3.
An Bras Dermatol ; 99(4): 535-545, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38548549

RESUMEN

BACKGROUND: Cutaneous squamous cell carcinoma (CSCC) is one of the most common types of skin cancer worldwide. Therefore, the identification of biomarkers associated with CSCC progression could aid in the early detection of high-risk squamous cell carcinoma and the development of novel therapeutic strategies. OBJECTIVE: This study aimed to investigate the expression patterns of silent mating type Information Regulation 2 homolog 6 (SIRT6) in CSCC and its clinical significance. METHODS: The protein expression level of SIRT6 in tissues was detected by immunohistochemistry, and the correlation between SIRT6 expression and clinicopathological parameters in CSCC patients was analyzed. The relative expression of SIRT6 in CSCC cell lineage and tissue specimens was determined by western blotting and PCR. The effect of SIRT6 silencing on cell proliferation was evaluated using cell counting kit 8. Wound healing, transwell method, and flow cytometry were used to investigate the migration, invasion, and cell cycle distribution/apoptosis of CSCC cells after SIRT6 silencing, respectively. Western blot was used to detect the expression of EMT (Epithelial-Mesenchymal Transition), cycle, apoptosis, and other related proteins. RESULTS: The high expression of SIRT6 was correlated with the location of cancer tissue and Broder staging in CSCC patients. Knockdown of SIRT6 inhibited the proliferation, migration, invasion and EMT of CSCC cells, and promoted their apoptosis, with cells blocked in G1 phase. STUDY LIMITATIONS: No animal experiments were conducted to further verify the results. CONCLUSION: Decreased expression of SIRT6 can inhibit the occurrence and development of CSCC.


Asunto(s)
Apoptosis , Carcinoma de Células Escamosas , Proliferación Celular , Sirtuinas , Neoplasias Cutáneas , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/análisis , Western Blotting , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/genética , Ciclo Celular/fisiología , Línea Celular Tumoral , Movimiento Celular , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Inmunohistoquímica , Sirtuinas/genética , Sirtuinas/metabolismo , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/genética
4.
Ecotoxicol Environ Saf ; 274: 116191, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38460408

RESUMEN

The reproduction toxicity of pubertal exposure to Microcystin-LR (MC-LR) and the underlying mechanism needs to be further investigated. In the current study, pubertal male ICR mice were intraperitoneally injected with 2 µg/kg MC-LR for four weeks. Pubertal exposure to MC-LR decreased epididymal sperm concentration and blocked spermatogonia proliferation. In-vitro studies found MC-LR inhibited cell proliferation of GC-1 cells and arrested cell cycle in G2/M phase. Mechanistically, MC-LR exposure evoked excessive reactive oxygen species (ROS) and induced DNA double-strand break in GC-1 cells. Besides, MC-LR inhibited DNA repair by reducing PolyADP-ribosylation (PARylation) activity of PARP1. Further study found MC-LR caused proteasomal degradation of SIRT6, a monoADP-ribosylation enzyme which is essential for PARP1 PARylation activity, due to destruction of SIRT6-USP10 interaction. Additionally, MG132 pretreatment alleviated MC-LR-induced SIRT6 degradation and promoted DNA repair, leading to the restoration of cell proliferation inhibition. Correspondingly, N-Acetylcysteine (NAC) pre-treatment mitigated the disturbed SIRT6-USP10 interaction and SIRT6 degradation, causing recovered DNA repair and subsequently restoration of cell proliferation inhibition in MC-LR treated GC-1 cells. Together, pubertal exposure to MC-LR induced spermatogonia cell cycle arrest and sperm count reduction by oxidative DNA damage and simultaneous SIRT6-mediated DNA repair failing. This study reports the effect of pubertal exposure to MC-LR on spermatogenesis and complex mechanism how MC-LR induces spermatogonia cell proliferation inhibition.


Asunto(s)
Toxinas Marinas , Microcistinas , Sirtuinas , Espermatogonias , Animales , Masculino , Ratones , Apoptosis , Proliferación Celular , Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN , Toxinas Marinas/metabolismo , Toxinas Marinas/toxicidad , Ratones Endogámicos ICR , Microcistinas/metabolismo , Microcistinas/toxicidad , Semen , Sirtuinas/efectos de los fármacos , Sirtuinas/metabolismo , Espermatogonias/efectos de los fármacos , Espermatogonias/metabolismo
5.
Cancers (Basel) ; 16(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38254877

RESUMEN

BACKGROUND: Gastric cancer, one of the leading causes of cancer-related death, is strongly associated with H. pylori infection, although other risk factors have been identified. The sirtuin (Sirt) family is involved in the tumorigenesis of gastric cancer, and sirtuins can have pro- or anti-tumorigenic effects. METHODS: After determining the overall survival rate of gastric cancer patients with or without Sirt6 expression, the effect of Sirt6 upregulation was also tested using a xenograft mouse model. The regulation of Sirt6 and Sirt1, leading to the induction of mouse double minute 2 homolog (MDM2) and reactive oxygen species (ROS), was mainly analyzed using Western blotting and immunofluorescence staining, and gastric cancer cell (SNU-638) death associated with these proteins was measured using flow cytometric analysis. RESULTS: Sirt6 overexpression led to Sirt1 suppression in gastric cancer cells, resulting in a higher level of gastric cancer cell death in vitro and a reduced tumor volume. ROS and MDM2 expression levels were upregulated by Sirt6 overexpression and/or Sirt1 suppression according to Western blot analysis. The upregulated ROS ultimately led to gastric cancer cell death as determined via Western blot and flow cytometric analysis. CONCLUSION: We found that the upregulation of Sirt6 suppressed Sirt1, and Sirt6- and Sirt1-induced gastric cancer cell death was mediated by ROS production. These findings highlight the potential of Sirt6 and Sirt1 as therapeutic targets for treating gastric cancer.

6.
Chem Biol Interact ; 390: 110890, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38278314

RESUMEN

Osteoarthritis (OA) is the most common type of arthritis and is an age-related joint disease that is particularly prevalent in subjects over 65 years old. The chronic rise of senescent cells has a close correlation with age-related diseases such as OA, and the senescence-associated secretory phenotype (SASP) is implicated in OA cartilage degeneration pathogenesis. Sirtuin 6 (SIRT6) is likely to be a key senescence-related regulator. Fisetin (FST) is a natural flavonol of the flavonoid family that is recommended as a senolytic drug to extend health and lifespan. However, the potential chondroprotective effects of FST on OA rats are largely unclarified. The aim of this study is to investigate the ameliorative effects of FST on OA joint cartilage and the relationship with SIRT6 and the detailed mechanisms from anti-inflammatory and anti-senescent perspectives. Rats were subjected to destabilization of the medial meniscus (DMM) surgery as a means of inducing the experimental OA model in vivo. Chondrocytes treated with IL-1ß were utilized for mimicking the OA cell model in vitro. Intra-articular injection of FST, OSS_128,167 (OSS, SIRT6 inhibitor), and MDL800 (MDL, SIRT6 agonist) in vivo or administering them in IL-1ß-induced rat chondrocytes in vitro were performed in order to determine the effects FST has on OA and the link with SIRT6. This study found SIRT6 level to be negatively correlated with OA severity. SIRT6 downregulation was validated in the joint cartilages of DMM rats and IL-1ß-treated chondrocytes. It was also notably demonstrated that FST can activate SIRT6. Both the administration of FST and activation of SIRT6 using MDL were found to rescue cartilage erosion, decrease extracellular matrix (ECM) degradation, prevent cartilage from apoptosis, and improve detrimental senescence-related phenotype. The alleviative effects of FST against inflammation, ECM degradation, apoptosis, and senescence in IL-1ß-stimulated chondrocytes were also confirmed. SIRT6 loss occurs in articular cartilage in OA pathogenesis, which is linked to aging. FST attenuates injury-induced aging-related phenotype changes in chondrocytes through the targeting of SIRT6.


Asunto(s)
Cartílago Articular , Osteoartritis , Sirtuinas , Humanos , Ratas , Animales , Anciano , Condrocitos , Osteoartritis/tratamiento farmacológico , Osteoartritis/patología , Flavonoles/farmacología , Flavonoles/metabolismo , Interleucina-1beta/metabolismo , Cartílago Articular/metabolismo , Sirtuinas/metabolismo , Senescencia Celular
7.
Clin Epigenetics ; 16(1): 7, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172884

RESUMEN

BACKGROUND: The management of myocardial ischemia-reperfusion injury (MIRI) presents continuous therapeutic challenges. NAD-dependent deacetylase Sirtuin 6 (Sirt6) plays distinct roles in various disease contexts and is hence investigated for potential therapeutic applications for MIRI. This study aimed to examine the impact of Sirt6-overexpressing exosomes derived from adipose stem cells (S-ASC-Exo) on MIRI, focusing on their influence on AIM2-pyroptosis and mitophagy processes. The sirtuin family of proteins, particularly Sirtuin 6 (Sirt6), play a pivotal role in these processes. This study aimed to explore the potential therapeutic effects of Sirt6-enriched exosomes derived from adipose stem cells (S-ASC-Exo) on regulating MIRI. RESULTS: Bioinformatic analysis revealed a significant downregulation of Sirt6 in MIRI subjected to control group, causing a consequential increase in mitophagy and pyroptosis regulator expressions. Therefore, our study revealed that Sirt6-enriched exosomes influenced the progression of MIRI through the regulation of target proteins AIM2 and GSDMD, associated with pyroptosis, and p62 and Beclin-1, related to mitophagy. The introduction of S-ASC-Exo inhibited AIM2-pyroptosis while enhancing mitophagy. Consequently, this led to a significant reduction of GSDMD cleavage and pyroptosis in endothelial cells, catalyzing a deceleration in the progression of atherosclerosis. Extensive in vivo and in vitro assays were performed to validate the expressions of these specific genes and proteins, which affirmed the dynamic modulation by Sirt6-enriched exosomes. Furthermore, treatment with S-ASC-Exo drastically ameliorated cardiac functions and limited infarct size, underlining their cardioprotective attributes. CONCLUSIONS: Our study underscores the potential therapeutic role of Sirt6-enriched exosomes in managing MIRI. We demonstrated their profound cardioprotective effect, evident in the enhanced cardiac function and attenuated tissue damage, through the strategic modulation of AIM2-pyroptosis and mitophagy. Given the intricate interplay between Sirt6 and the aforementioned processes, a comprehensive understanding of these pathways is essential to fully exploit the therapeutic potential of Sirt6. Altogether, our findings indicate the promise of Sirt6-enriched exosomes as a novel therapeutic strategy in treating ischemia-reperfusion injuries and cardiovascular diseases at large. Future research needs to underscore optimizing the balance of mitophagy during myocardial ischemia to avoid potential loss of normal myocytes.


Asunto(s)
Exosomas , Daño por Reperfusión Miocárdica , Sirtuinas , Ratas , Animales , Humanos , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Exosomas/metabolismo , Células Endoteliales/metabolismo , Ratas Sprague-Dawley , Metilación de ADN , Sirtuinas/genética , Epigénesis Genética , Células Madre/metabolismo , Proteínas de Unión al ADN/genética
8.
J Cell Physiol ; 239(3): e31027, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37099691

RESUMEN

Pulmonary fibrosis is a chronic and serious interstitial lung disease with little effective therapies currently. Our incomplete understanding of its pathogenesis remains obstacles in therapeutic developments. Sirtuin 6 (SIRT6) has been shown to mitigate multiple organic fibrosis. However, the involvement of SIRT6-mediated metabolic regulation in pulmonary fibrosis remains unclear. Here, we demonstrated that SIRT6 was predominantly expressed in alveolar epithelial cells in human lung tissues by using a single-cell sequencing database. We showed that SIRT6 protected against bleomycin-induced injury of alveolar epithelial cells in vitro and pulmonary fibrosis of mice in vivo. High-throughput sequencing revealed enriched lipid catabolism in Sirt6 overexpressed lung tissues. Mechanismly, SIRT6 ameliorates bleomycin-induced ectopic lipotoxicity by enhancing lipid degradation, thereby increasing the energy supply and reducing the levels of lipid peroxides. Furthermore, we found that peroxisome proliferator-activated receptor α (PPARα) was essential for SIRT6-mediated lipid catabolism, anti-inflammatory responses, and antifibrotic signaling. Our data suggest that targeting SIRT6-PPARα-mediated lipid catabolism could be a potential therapeutic strategy for diseases complicated with pulmonary fibrosis.


Asunto(s)
Metabolismo de los Lípidos , Fibrosis Pulmonar , Sirtuinas , Animales , Humanos , Ratones , Bleomicina , PPAR alfa/genética , PPAR alfa/metabolismo , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/metabolismo , Sirtuinas/genética , Sirtuinas/metabolismo
9.
Kidney Int ; 105(1): 115-131, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37914087

RESUMEN

Arterial calcification is a hallmark of vascular pathology in the elderly and in individuals with chronic kidney disease (CKD). Vascular smooth muscle cells (VSMCs), after attaining a senescent phenotype, are implicated in the calcifying process. However, the underlying mechanism remains to be elucidated. Here, we reveal an aberrant upregulation of transcriptional factor GATA6 in the calcified aortas of humans, mice with CKD and mice subjected to vitamin D3 injection. Knockdown of GATA6, via recombinant adeno-associated virus carrying GATA6 shRNA, inhibited the development of arterial calcification in mice with CKD. Further gain- and loss-of function experiments in vitro verified the contribution of GATA6 in osteogenic differentiation of VSMCs. Samples of human aorta exhibited a positive relationship between age and GATA6 expression and GATA6 was also elevated in the aortas of old as compared to young mice. Calcified aortas displayed senescent features with VSMCs undergoing premature senescence, blunted by GATA6 downregulation. Notably, abnormal induction of GATA6 in senescent and calcified aortas was rescued in Sirtuin 6 (SIRT6)-transgenic mice, a well-established longevity mouse model. Suppression of GATA6 accounted for the favorable effect of SIRT6 on VSMCs senescence prevention. Mechanistically, SIRT6 inhibited the transcription of GATA6 by deacetylation and increased degradation of transcription factor Nkx2.5. Moreover, GATA6 was induced by DNA damage stress during arterial calcification and subsequently impeded the Ataxia-telangiectasia mutated (ATM)-mediated DNA damage repair process, leading to accelerated VSMCs senescence and osteogenic differentiation. Thus, GATA6 is a novel regulator in VSMCs senescence. Our findings provide novel insight in arterial calcification and a potential new target for intervention.


Asunto(s)
Insuficiencia Renal Crónica , Sirtuinas , Calcificación Vascular , Humanos , Ratones , Animales , Anciano , Músculo Liso Vascular , Factor de Transcripción GATA6/genética , Factor de Transcripción GATA6/metabolismo , Factor de Transcripción GATA6/farmacología , Osteogénesis , Células Cultivadas , Insuficiencia Renal Crónica/patología , Daño del ADN , Senescencia Celular/genética , Envejecimiento/genética , Sirtuinas/genética , Sirtuinas/metabolismo , Calcificación Vascular/genética , Calcificación Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo
10.
Heliyon ; 9(11): e22272, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38034611

RESUMEN

Although studies have shown that protein 53 (p53)-mediated ferroptosis is involved in acute lung injury (ALI), the mechanism of its regulation remains unclear. The protective effects of Sirtuin 6 (SIRT6), a histone deacetylase, have been demonstrated in multiple diseases; however, further studies are needed to elucidate the role of SIRT6 in ALI. In the present study, we hypothesize that SIRT6 protects against lipopolysaccharide (LPS)-induced ALI by regulating p53-mediated ferroptosis. We observed that the inhibition of ferroptosis prevented LPS-induced ALI. The knockout of p53 blocked LPS-induced ferroptosis and ALI, suggesting that p53 facilitated ALI by promoting ferroptosis. In addition, the inhibition of SIRT6 aggravated LPS-induced ferroptosis and ALI, while the depression of ferroptosis blocked the exacerbation of lung injury induced by SIRT6 inhibition. The results suggest that SIRT6 protects against ALI by regulating ferroptosis. Furthermore, the inhibition of SIRT6 reinforced the p53 acetylation and the deletion of p53 rescued the exacerbation of ferroptosis induced by SIRT6 inhibition. The findings indicate that SIRT6 regulates the acetylation of p53 and prevents p53-mediated ferroptosis. In conclusion, our results indicate that SIRT6 protects against LPS-induced ALI by regulating p53-mediated ferroptosis, thereby demonstrating that SIRT6 holds great promise as a therapeutic target for ALI.

11.
J Bone Miner Metab ; 41(6): 772-784, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37898986

RESUMEN

INTRODUCTION: CCN1 is an immediate-early gene product pivotal for arthritis progression. We have previously shown that sirtuin 6 (SIRT6) inhibited hypoxia-induced CCN1 expression in osteoblasts. Herein we examined the contribution of cyclic AMP-responsive element binding protein (CREB)/CRE to this suppressive action and the influence of CCN1 on cyclooxygenase (COX) 2 synthesis. MATERIALS AND METHODS: MC3T3-E1 murine osteoblasts were cultured under normoxia (21% oxygen) or hypoxia (2% oxygen). Expressions of CCN1, phospho-CREB (Ser133), COX2 and relevant kinases were assessed by Western blot. SIRT6 was overexpressed in cultured osteoblasts and arthritic joints by a lentiviral-based technique. Activities of CCN1 gene promoter constructs were examined by luciferase reporter assay. Interaction between CREB and CCN1 promoter was assessed by chromatin immunoprecipitation (ChIP). Collagen-induced arthritis (CIA) was established in 20 rats to evaluate the effects of SIRT6 therapy on osteoblastic expressions of phospho-CREB, CCN1 and COX2. RESULTS: SIRT6 suppressed hypoxia-enhanced CCN1 expression and CREB phosphorylation. Attenuation of calcium/calmodulin-dependent protein kinase II (CaMKII) may be responsible for SIRT6-induced CREB inhibition. CRE at - 286 bp upstream of the ATG start codon was essential for CCN1 expression under hypoxia and SIRT6 reduced hypoxia-stimulated CREB/CRE interaction. Forced expression of CREB rescued SIRT6-suppressed CCN1 synthesis. CCN1 induced COX2 expression in osteoblasts. In rat CIA, the therapeutic effect of SIRT6 was accompanied by decreases in osteoblastic expressions of phospho-CREB, CCN1 and COX2. CONCLUSION: Our study indicated that the benefits of SIRT6 to inflammatory arthritis and bone resorption are at least partially derived from its modulation of CREB/CCN1/COX2 pathway in osteoblasts.


Asunto(s)
Artritis Experimental , Sirtuinas , Ratas , Ratones , Animales , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Ciclooxigenasa 2/farmacología , Osteoblastos/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/farmacología , Hipoxia , Artritis Experimental/genética , Artritis Experimental/metabolismo , Fosforilación , Oxígeno/metabolismo , Oxígeno/farmacología , Sirtuinas/metabolismo , Sirtuinas/farmacología , AMP Cíclico/metabolismo , AMP Cíclico/farmacología
12.
Biomed Pharmacother ; 166: 115326, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37611438

RESUMEN

Sirtuin 6 (SIRT6) has a critical role in cutaneous Squamous Cell Carcinoma (cSCC): SIRT6 silencing in skin SCC cells has pro-differentiating effects and SIRT6 deletion abrogated DMBA-TPA-induced skin tumorigenesis in mice. On the other hand, SIRT6 acts as tumor suppressor in SCC by enhancing glycolysis in tumor propagating cells. Herein, pharmacological modulation of SIRT6 deacetylase activity was investigated in cSCC, with S6 (inhibitor) or MDL-800 (activator). In cSCC cells, S6 recreated the pro-differentiating effects of SIRT6 silencing, as the levels of Keratin 1, Keratin 10 and Loricrin were upregulated compared to controls. Next, the effects of SIRT6 pharmacological modulation were evaluated in a DMBA-TPA-induced skin cancer mouse model. Mice treated with the inhibitor S6 in a preventive approach, i.e. at the beginning of the promotion stage, presented reduced number and size of papillomas, compared to the controls. The epidermal hyperproliferation marker Keratin 6 and the cSCC marker Keratin 8 were less abundant when SIRT6 was inhibited. In S6-treated lesions, the Epithelial-Mesenchymal Transition (EMT) markers Zeb1 and Vimentin were less expressed compared to untreated lesions. In a therapeutic approach, i.e. treatment starting after papilloma appearance, the S6 group presented reduced papillomas (number and size), whereas MDL-800-treated mice displayed an opposite trend. In S6-treated lesions, Keratin 6 and Keratin 8 were less expressed, EMT was less advanced, with a higher E-cadherin/Vimentin ratio, indicating a delayed carcinogenesis when SIRT6 was inhibited. Our results confirm that SIRT6 plays a role in skin carcinogenesis and suggest SIRT6 pharmacological inhibition as a promising strategy in cSCC.


Asunto(s)
Carcinoma de Células Escamosas , Papiloma , Sirtuinas , Neoplasias Cutáneas , Animales , Ratones , Neoplasias Cutáneas/tratamiento farmacológico , Carcinoma de Células Escamosas/tratamiento farmacológico , Queratina-8 , Vimentina , Queratina-6 , Carcinogénesis
13.
Cells ; 12(15)2023 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-37566087

RESUMEN

Histone deacetylase Sirtuin 6 (SIRT6) regulates many biological processes. SIRT6 is known to regulate hepatic lipid metabolism and inhibit the development of nonalcoholic fatty liver disease (NAFLD). We aimed to investigate the role of hepatocyte SIRT6 in the development of atherosclerosis and further characterize the mechanism underlying SIRT6's effect on NAFLD. Ldlr-/- mice overexpressing or lacking hepatocyte SIRT6 were fed a Western diet for 16 weeks. The role of hepatic SIRT6 in the development of nonalcoholic steatohepatitis (NASH), atherosclerosis, and obesity was investigated. We also investigated whether p53 participates in the pathogenesis of NAFLD in mice overexpressing hepatic SIRT6. Our data show that loss of hepatocyte SIRT6 aggravated the development of NAFLD, atherosclerosis, and obesity in Ldlr-/- mice, whereas adeno-associated virus (AAV)-mediated overexpression of human SIRT6 in the liver had opposite effects. Mechanistically, hepatocyte SIRT6 likely inhibited the development of NAFLD by inhibiting lipogenesis, lipid droplet formation, and p53 signaling. Hepatocyte SIRT6 also likely inhibited the development of atherosclerosis by inhibiting intestinal lipid absorption and hepatic VLDL secretion. Hepatic SIRT6 also increased energy expenditure. In conclusion, our data indicate that hepatocyte SIRT6 protects against atherosclerosis, NAFLD, and obesity by regulating lipid metabolism in the liver and intestine.


Asunto(s)
Aterosclerosis , Enfermedad del Hígado Graso no Alcohólico , Sirtuinas , Humanos , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Hepatocitos/metabolismo , Obesidad/complicaciones , Sirtuinas/genética , Sirtuinas/metabolismo , Lípidos , Homeostasis , Aterosclerosis/metabolismo
14.
Int Immunopharmacol ; 121: 110506, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37343371

RESUMEN

Osteoarthritis (OA) is a prevalent disease among elderly individuals that is caused by cartilage degeneration. Chondrocyte senescence involved in the development of OA, and antisenescence therapies have been proposed for OA treatment. In our study, we identified the role of a microRNA, miR-33-5p, in promoting chondrocyte senescence and OA progression. miR-33-5p expression was upregulated under senescence conditions. miR-33-5p-mimic transfection can induce cellular senescence, while transfection of a miR-33-5p-inhibitor in chondrocytes alleviated senescence induced by IL-1ß. Moreover, SIRT6 expression was downregulated under IL-1ß treatment, and could be restored by miR-33-5p-inhibitor transfection. Luciferase assays revealed that miR-33-5p targeted the SIRT6 mRNA 3' UTR. In addition, SIRT6 mRNA expression showed negative correlations with senescence and OA degree in human cartilage. Bioinformatic analysis also confirmed the pro-senescence effect of miR-33-5p. Furthermore, periodic intraarticular injection of agomiR-33-5p induced cartilage loss and OA-like cartilage changes. To conclude, we revealed the pro-senescence and cartilage-destructive effect of miR-33-5p, whose expression was elevated under various senescence conditions, and showed that SIRT6 was one of its targets. Therefore, miR-33-5p is a potential therapeutic target for treating OA.


Asunto(s)
MicroARNs , Osteoartritis , Sirtuinas , Humanos , Anciano , Condrocitos , MicroARNs/metabolismo , Osteoartritis/metabolismo , Interleucina-1beta/metabolismo , Apoptosis , ARN Mensajero/metabolismo , Sirtuinas/metabolismo
15.
Exp Ther Med ; 26(1): 320, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37273757

RESUMEN

Pachymic acid (Pac), a major bioactive constituent of Poria cocos, is an antioxidant that inhibits triglyceride (TG) accumulation. To the best of our knowledge, the present study investigated for the first time whether Pac activated sirtuin 6 (SIRT6) signaling to alleviate oleic acid (OA)-palmitic acid (PA)-induced lipid metabolism disorders in mouse primary hepatocytes (MPHs). In the present study, MPHs challenged with Pac were used to test the effects of Pac on intracellular lipid metabolism. Molecular docking studies were performed to explore the potential targets of Pac in defending against lipid deposition. MPHs isolated from liver-specific SIRT6-deficient mice were subjected to OA + PA incubation and treated with Pac to determine the function and detailed mechanism. It was revealed that Pac activated SIRT6 by increasing its expression and deacetylase activity. Pa prevented OA + PA-induced lipid deposition in MPHs in a dose-dependent manner. Pac (50 µM) administration significantly reduced TG accumulation and increased fatty acid oxidation rate in OA + PA-incubated MPHs. Meanwhile, as per the results of molecular docking and relative mRNA levels, Pac activated SIRT6 and increased SIRT6 deacetylation levels. Furthermore, SIRT6 deletions in MPHs abolished the protective effects of Pac against OA + PA-induced hepatocyte lipid metabolism disorders. The present study demonstrated that Pac alleviates OA + PA-induced hepatocyte lipid metabolism disorders by activating SIRT6 signaling. Overall, SIRT6 signaling increases oxidative stress burden and promotes hepatocyte lipolysis.

16.
Aging (Albany NY) ; 15(10): 4288-4303, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37199639

RESUMEN

BACKGROUND: Intervertebral disc degeneration (IDD) is a complex phenomenon and a multifactorial degenerative disease that creates a heavy economic burden on health systems globally. Currently, there is no specific treatment proven to be effective in reversing and delaying the progression of IDD. METHOD: This study consisted of animal and cell culture experiments. The role of DNA methyltransferase 1 (DNMT1) on regulating the M1/M2 macrophages polarization and pyroptosis, as well as its effect on Sirtuin 6 (SIRT6) expression in an IDD rat model and in tert-butyl hydroperoxide (TBHP)-treated nucleus pulposus cells (NPCs) were explored. Rat models were constructed, followed by transfection with lentiviral vector to inhibit DNMT1 or overexpress SIRT6. The NPCs were treated with THP-1-cells conditioned medium, and their pyroptosis, apoptosis, and viability were evaluated. Western blot, histological and immunohistochemistry staining, ELISA, PCR, and flow cytometry were all used to evaluate the role of DNMT1/ SIRT6 on macrophage polarization. RESULTS: Silencing DNMT1 inhibited apoptosis, the expression of related inflammatory mediators (e.g., iNOS) and inflammatory cytokines (e.g., IL6 and TNF-α). Moreover, silencing DNMT1 significantly inhibited the expression of pyroptosis markers IL- 1ß, IL-6, and IL-18 and decreased the NLRP3, ASC, and caspase-1 expression. On the other hand, M2 macrophage specific markers CD163, Arg-1, and MR were overexpressed upon silencing DNMT1 or SIRT6 overexpression. At the same time, silencing DNMT1 exerted a regulatory effect on increasing the SIRT6 expression. CONCLUSIONS: DNMT1 may be a promising potential target for IDD treatment due to its ability to ameliorate the progression of the disease.


Asunto(s)
Degeneración del Disco Intervertebral , Núcleo Pulposo , Sirtuinas , Ratas , Animales , Degeneración del Disco Intervertebral/metabolismo , Piroptosis , Núcleo Pulposo/metabolismo , Apoptosis , Macrófagos/metabolismo , Sirtuinas/genética , Sirtuinas/metabolismo
17.
Mol Immunol ; 158: 68-78, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37146480

RESUMEN

The immune system plays a crucial role in controlling colorectal cancer (CRC) development. Natural killer (NK) cells are tumoricidal but undergo exhaustion in CRC patients. The current research aims to understand the role of sirtuin 6 (SIRT6) in CRC-associated NK cell exhaustion in a murine inflammatory colorectal cancer model. To this end, inflammatory CRC was induced by treating mice with azoxymethane plus dextran sulfate sodium. The expression of SIRT6 in NK cells in murine mesenteric lymph nodes (mLNs) and the CRC tissue was characterized by Immunoblotting. SIRT6 knockdown was achieved by lentiviral transduction of murine splenic NK cells, followed by evaluation of NK cell proliferation and the expression of cytotoxic mediators using flow cytometry. NK cell cytotoxicity was measured by cytotoxicity assays. Adoptive transfer of murine NK cells was applied to analyze the effect of SIRT6 knockdown in vivo. We found that SIRT6 was up-regulated in infiltrating NK cells in the murine CRC tissue, especially NK cells with an exhausted phenotype and impaired cytotoxicity. SIRT6 knockdown significantly boosted murine splenic NK cell functionality, as evidenced by accelerated proliferation, increased production of cytotoxic mediators, and higher tumoricidal activity both in vitro and in vivo. Furthermore, the adoptive transfer of SIRT6-knockdown NK cells into CRC-bearing mice effectively suppressed CRC progression. Therefore, SIRT6 up-regulation is essential for murine NK cell exhaustion in CRC because it impedes the tumoricidal activity of murine NK cells. Artificial SIRT6 down-regulation could boost the function of infiltrating NK cells to oppress CRC progression in mice.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Sirtuinas , Ratones , Animales , Células Asesinas Naturales , Regulación hacia Abajo , Sirtuinas/metabolismo
18.
Int J Med Sci ; 20(5): 581-594, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37082736

RESUMEN

Sirtuin6 (SIRT6) has been demonstrated to be involved in a range of physiological processes and diseases, while its role in acute respiratory distress syndrome (ARDS) remains unclear. Therefore, this study focused on the role and underlying mechanism of SIRT6 in ARDS with the aim of identifying potential therapeutic targets. In this study, we found that SIRT6 was significantly decreased in lipopolysaccharide (LPS)-induced A549 cells and a murine model. In vitro overexpression of SIRT6 restored the expression of tight junction proteins (ZO-1 and occludin) and alleviated cell apoptosis and inflammation, while knockdown of SIRT6 aggravated the loss of tight junction proteins (ZO-1 and occludin) and promoted cell apoptosis and inflammation in LPS-induced A549 cells. Furthermore, the overexpression of SIRT6 enhanced autophagy and inhibited the ERK1/2 pathway, while the knockdown of SIRT6 inhibited autophagy and activated the ERK1/2 pathway. The autophagy activator rapamycin and the ERK1/2 inhibitor PD98059 rescued the effects of SIRT6 knockdown on tight junction proteins, apoptosis, and inflammation. Mechanistically, SIRT6 deacetylated histone 3 at Lys9 to negatively regulate the ERK1/2 pathway. In vivo, the SIRT6-specific inhibitor OSS_128167 also significantly accelerated LPS-induced loss of tight junction proteins, lung inflammation, and apoptosis. Meanwhile, the SIRT6-specific inhibitor OSS_128167 also activated the ERK1/2 pathway and inhibited lung autophagy. These results suggested that SIRT6 could ameliorate the loss of tight junction proteins, inflammation, and apoptosis in LPS-induced ARDS by inhibiting the ERK1/ 2 pathway and enhancing autophagy, indicating that SIRT6 plays a beneficial role in ARDS and might be a potential therapeutic target for ARDS.


Asunto(s)
Síndrome de Dificultad Respiratoria , Sirtuinas , Ratones , Animales , Sistema de Señalización de MAP Quinasas , Lipopolisacáridos/farmacología , Ocludina/metabolismo , Uniones Estrechas , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Síndrome de Dificultad Respiratoria/genética , Apoptosis , Proteínas de Uniones Estrechas/metabolismo , Sirtuinas/genética , Sirtuinas/metabolismo , Sirtuinas/farmacología , Inflamación/metabolismo , Autofagia/genética
19.
Ann Transl Med ; 11(1): 21, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36760260

RESUMEN

Background: Programmed death-ligand 1 (PD-L1) is a common biomarker of immune checkpoint inhibitors (ICIs). The purpose of our study was to investigate the relationship between Sirtuin 6 (SIRT6) and PD-L1 expressions in lung adenocarcinoma. Methods: Recombinant plasmids containing green fluorescent protein (GFP)/no SIRT6 (h-NULL) and GFP/SIRT6 (h-SIRT6) were constructed and transfected into A549 cells by lentivirus as vector. The experiment was divided into control, h-NULL and h-SIRT6 groups. We detected apoptosis and the cell cycle by flow cytometry and observed migration and proliferation by wound-healing assays and methyl thiazolyl tetrazolium. The expressions of SIRT6, PD-L1, serine/threonine protein kinase-1 (AKT1), mammalian target of rapamycin (mTOR), B-cell lymphoma-2 (BCL-2) associated X protein (BAX), and BCL-2 were detected by real-time fluorescence quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot. We retrospectively analyzed the relationship between SIRT6 expression and survival in lung adenocarcinoma treated by ICIs. Results: The expression of BAX, apoptosis rate, and proportion of G0G1 and G2M phases in the h-SIRT6 group were higher than in the control and h-NULL groups (P<0.05). The expressions of PD-L1, BCL-2, AKT1, and mTOR migration and proliferation rates and proportion of S phase in the h-SIRT6 group were lower than in the control and h-NULL groups (P<0.05). Survival in lung adenocarcinoma with high SIRT6 expression was better than with low SIRT6 expression. Conclusions: SIRT6 over expression, through the inhibition of the AKT1/mTOR pathway, down-regulated PD-L1 expression, influenced biological behaviors, and prolonged survival of lung adenocarcinoma. SIRT6 expression may be a potential gene biomarker for immunotherapy in lung adenocarcinoma.

20.
Cell Biol Toxicol ; 39(4): 1489-1507, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-35798905

RESUMEN

The sirtuin 6 (SIRT6) participates in regulating glucose and lipid homeostasis. However, the function of SIRT6 in the process of cardiac pathogenesis caused by obesity-associated lipotoxicity remains to be unveiled. This study was designed to elucidate the role of SIRT6 in the pathogenesis of cardiac injury due to nutrition overload-induced obesity and explore the downstream signaling pathways affecting oxidative stress in the heart. In this study, we used Sirt6 cardiac-specific knockout murine models treated with a high-fat diet (HFD) feeding to explore the function and mechanism of SIRT6 in the heart tissue during HFD-induced obesity. We also took advantage of neonatal cardiomyocytes to study the role and downstream molecules of SIRT6 during HFD-induced injury in vitro, in which intracellular oxidative stress and mitochondrial content were assessed. We observed that during HFD-induced obesity, Sirt6 loss-of-function aggravated cardiac injury including left ventricular hypertrophy and lipid accumulation. Our results evidenced that upon increased fatty acid uptake, SIRT6 positively regulated the expression of endonuclease G (ENDOG), which is a mitochondrial-resident molecule that plays an important role in mitochondrial biogenesis and redox homeostasis. Our results also showed that SIRT6 positively regulated superoxide dismutase 2 (SOD2) expression post-transcriptionally via ENDOG. Our study gives a new sight into SIRT6 beneficial role in mitochondrial biogenesis of cardiomyocytes. Our data also show that SIRT6 is required to reduce intracellular oxidative stress in the heart triggered by high-fat diet-induced obesity, involving the control of ENDOG/SOD2.


Asunto(s)
Estrés Oxidativo , Sirtuinas , Ratones , Animales , Estrés Oxidativo/fisiología , Sirtuinas/metabolismo , Obesidad/etiología , Obesidad/metabolismo , Lípidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...