Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Synchrotron Radiat ; 31(Pt 5): 1264-1275, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39078692

RESUMEN

A 1D imaging soft X-ray spectrometer installed on the small quantum systems (SQS) scientific instrument of the European XFEL is described. It uses movable cylindrical constant-line-spacing gratings in the Rowland configuration for energy dispersion in the vertical plane, and Wolter optics for simultaneous 1D imaging of the source in the horizontal plane. The soft X-ray fluorescence spectro-imaging capability will be exploited in pump-probe measurements and in investigations of propagation effects and other nonlinear phenomena.

2.
ACS Nano ; 18(17): 11311-11322, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38623826

RESUMEN

Hierarchical structure-within-structure assemblies offer a route toward increasingly complex and multifunctional materials while pushing the limits of block copolymer self-assembly. We present a detailed study of the self-assembly of a series of fluorinated high-χ block copolymers (BCPs) prepared via postmodification of a single poly(styrene)-block-poly(glycidyl methacrylate) (S-b-G) parent polymer with the fluorinated alkylthiol pendent groups containing 1, 6, or 8 fluorinated carbons (termed trifluoro-ethanethiol (TFET), perfluoro-octylthiol (PFOT), and perfluoro-decylthiol (PFDT), respectively). Bulk X-ray scattering of thermally annealed samples demonstrates hierarchical molecular assembly with phase separation between the two blocks and within the fluorinated block. The degree of ordering within the fluorinated block is highly sensitive to synthetic variation; a lamellar sublattice was formed for S-b-GPFOT and S-b-GPFDT. Thermal analyses of S-b-GPFOT reveal that the fluorinated block exhibits liquid crystal-like ordering. The complex thin-film self-assembly behavior of an S-b-GPFOT polymer was investigated using real-space (atomic force microscopy and scanning electron microscopy) and reciprocal-space (resonant soft X-ray scattering (RSoXS), grazing incidence small- and wide-angle scattering) measurements. After thermal annealing in nitrogen or vacuum, films thicker than 1.5 times the primary lattice spacing exhibit a 90-degree grain boundary, exposing a thin layer of vertical lamellae at the free interface, while exhibiting horizontal lamellae on the preferential (polystyrene brush) substrate. RSoXS measurements reveal the near-perfect orthogonality between the primary and sublattice orientations, demonstrating hierarchical patterning at the nanoscale.

3.
J Appl Crystallogr ; 56(Pt 3): 868-883, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37284258

RESUMEN

Polarized resonant soft X-ray scattering (P-RSoXS) has emerged as a powerful synchrotron-based tool that combines the principles of X-ray scattering and X-ray spectroscopy. P-RSoXS provides unique sensitivity to molecular orientation and chemical heterogeneity in soft materials such as polymers and biomaterials. Quantitative extraction of orientation information from P-RSoXS pattern data is challenging, however, because the scattering processes originate from sample properties that must be represented as energy-dependent three-dimensional tensors with heterogeneities at nanometre to sub-nanometre length scales. This challenge is overcome here by developing an open-source virtual instrument that uses graphical processing units (GPUs) to simulate P-RSoXS patterns from real-space material representations with nanoscale resolution. This computational framework - called CyRSoXS (https://github.com/usnistgov/cyrsoxs) - is designed to maximize GPU performance, including algorithms that minimize both communication and memory footprints. The accuracy and robustness of the approach are demonstrated by validating against an extensive set of test cases, which include both analytical solutions and numerical comparisons, demonstrating an acceleration of over three orders of magnitude relative to the current state-of-the-art P-RSoXS simulation software. Such fast simulations open up a variety of applications that were previously computationally unfeasible, including pattern fitting, co-simulation with the physical instrument for operando analytics, data exploration and decision support, data creation and integration into machine learning workflows, and utilization in multi-modal data assimilation approaches. Finally, the complexity of the computational framework is abstracted away from the end user by exposing CyRSoXS to Python using Pybind. This eliminates input/output requirements for large-scale parameter exploration and inverse design, and democratizes usage by enabling seamless integration with a Python ecosystem (https://github.com/usnistgov/nrss) that can include parametric morphology generation, simulation result reduction, comparison with experiment and data fitting approaches.

4.
Methods Enzymol ; 678: 121-144, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36641206

RESUMEN

Resonant soft X-ray scattering (RSoXS), a technique that combines X-ray absorption spectroscopy and X-ray scattering, can probe the nano- and meso-scale structure of biological assemblies with chemical specificity. RSoXS experiments yield scattering data collected at several photon energies, for example across an elemental absorption edge of interest. Collecting a near-edge X-ray absorption fine structure (NEXAFS) spectrum complements RSoXS experiments and determines X-ray energies that are best suited for RSoXS measurements. The analysis of RSoXS data is similar in many ways to analysis of small angle X-ray scattering using hard X-rays, with an added dimension that includes an X-ray energy dependence. This chapter discusses procedures for predicting scattering contrast and thereby identifying energies suitable for RSoXS measurements using NEXAFS spectra, analyses of 2D RSoXS images through integration into 1D profiles, and strategies for elucidating the origin of RSoXS scattering features. It also discusses existing and potential methods for interpretation of RSoXS data to gain detailed structural insights into biological systems.


Asunto(s)
Fotones , Rayos X , Espectroscopía de Absorción de Rayos X
5.
Chemphyschem ; 24(6): e202200807, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36422888

RESUMEN

Non-symmetric lactate-based chiral liquid crystal dimers containing an odd-membered spacer are shown to exhibit a chiral twist-bend nematic phase which is stable on cooling to room temperature. A comparison of racemic and optically pure materials reveals that the pitch length in the N*TB phase is not influenced by molecular chirality, whereas the nematic-twist-bend nematic transition temperature is increased.

6.
J Synchrotron Radiat ; 29(Pt 6): 1414-1419, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36345749

RESUMEN

A picosecond pump-probe resonant soft X-ray scattering measurement system has been developed at the Photon Factory storage ring for highly efficient data collection. A high-repetition-rate high-power compact laser system has been installed to improve efficiency via flexible data acquisition to a sub-MHz frequency in time-resolved experiments. Data are acquired by gating the signal of a channel electron multiplier with a pulse-counting mode capable of discriminating single-bunch soft X-ray pulses in the dark gap of the hybrid operation mode in the storage ring. The photoinduced dynamics of magnetic order for multiferroic manganite SmMn2O5 are clearly demonstrated by the detection of transient changes in the resonant soft X-ray scattering intensity around the Mn LIII- and O K-edges.

7.
Nano Lett ; 22(11): 4569-4575, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35584547

RESUMEN

Here, we report the relationship between helical pitch of the helical nanofilament (HNF) phase formed by bent-core molecule NOBOW and the concentration of achiral dopants 5CB and octane, using linearly polarized resonant soft X-ray scattering (RSoXS). Utilizing theory-based simulation, which fits well with the experiments, the molecular helices in the filament were probed and the superstructure of helical 5CB directed by groove of HNFs was observed. Quantitative pitch determination with RSoXS reveals that helical pitch variation is related to 5CB concentration with no temperature dependence. Doping rodlike immiscible 5CB led to a pitch shortening of up to 30%, which was attributed to a change in interfacial tension. By shedding light not only on phase behavior of binary systems but also enabling control over pitch length, our work may benefit various applications of HNF-containing binary systems, including optical rotation devices, circularly polarized light emitters, and chirality transfer agents.


Asunto(s)
Cristales Líquidos , Simulación por Computador , Cristales Líquidos/química , Temperatura
8.
Adv Mater ; 34(6): e2107316, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34750871

RESUMEN

Complex morphology in organic photovoltaics (OPVs) and other functional soft materials commonly dictates performance. Such complexity in OPVs originates from the mesoscale kinetically trapped non-equilibrium state, which governs device charge generation and transport. Resonant soft X-ray scattering (RSoXS) has been revolutionary in the exploration of OPV morphology in the past decade due to its chemical and orientation sensitivity. However, for non-fullerene OPVs, RSoXS analysis near the carbon K-edge is challenging, due to the chemical similarity of the materials used in active layers. An innovative approach is provided by nitrogen K-edge RSoXS (NK-RSoXS), utilizing the spatial and orientational contrasts from the cyano groups in the acceptor materials, which allows for determination of phase separation. NK-RSoXS clearly visualizes the combined feature sizes in PM6:Y6 blends from crystallization and liquid-liquid demixing, while PM6:Y6:Y6-BO ternary blends with reduced phase-separation size and enhanced material crystallization can lead to current amplification in devices. Nitrogen is common in organic semiconductors and other soft materials, and the strong and directional N 1s → π* resonances make NK-RSoXS a powerful tool to uncover the mesoscale complexity and open opportunities to understand heterogeneous systems.

9.
ACS Appl Mater Interfaces ; 13(47): 56394-56403, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34787408

RESUMEN

Commercialization and scale-up of organic solar cells (OSCs) using industrial solution printing require maintaining maximum performance at active-layer thicknesses >400 nm─a characteristic still not generally achieved in non-fullerene acceptor OSCs. NT812/PC71BM is a rare system, whose performance increases up to these thicknesses due to highly suppressed charge recombination relative to the classic Langevin model. The suppression in this system, however, uniquely depends on device processing, pointing toward the role of nanomorphology. We investigate the morphological origins of this suppressed recombination by combining results from a suite of X-ray techniques. We are surprised to find that while all investigated devices are composed of pure, similarly aggregated nanodomains, Langevin reduction factors can still be tuned from ∼2 to >1000. This indicates that pure aggregated phases are insufficient for non-Langevin (reduced) recombination. Instead, we find that large well-ordered conduits and, in particular, sharp interfaces between domains appear to help to keep opposite charges separated and percolation pathways clear for enhanced charge collection in thick active layers. To our knowledge, this is the first quantitative study to isolate the donor/acceptor interfacial width correlated with non-Langevin charge recombination. This new structure-property relationship will be key to successful commercialization of printed OSCs at scale.

10.
ACS Appl Mater Interfaces ; 13(44): 53202-53210, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34709800

RESUMEN

2D/3D perovskite heterostructures have emerged as a promising material composition to reduce nonradiative recombination in perovskite-based LEDs and solar cells. Such heterostructures can be created by a surface treatment with large organic cations, for example, n-butylammonium bromide (BABr). To understand the impact of the BABr surface treatment on the double-cation (Cs0.17FA0.83Pb(I0.6Br0.4)3) (FA = formamidinium) perovskite thin film and further optimize the corresponding structures, an in-depth understanding of the chemical and electronic properties of the involved surfaces, interfaces, and bulk is required. Hence, we study the impact of the BABr treatment with a combination of surface-sensitive X-ray photoelectron spectroscopy and bulk-sensitive resonant inelastic soft X-ray scattering (RIXS). A quantitative analysis of the BABr-treated perovskite thin film shows a modified chemical perovskite surface environment of carbon, nitrogen, bromine, iodine, and lead, indicating that the treatment leads to a perovskite surface with a modified composition and bonding structure. With K-edge RIXS, the local environment at the nitrogen and carbon atoms is probed, allowing us to identify the presence of BABr in the perovskite bulk albeit with a modified bonding environment. This, in turn, identifies a "hidden parameter" for the optimization of the BABr treatment and overall performance of 2D/3D perovskite solar cell absorbers.

11.
J Phys Condens Matter ; 33(31)2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34140434

RESUMEN

Small angle scattering methodologies have been evolving at fast pace over the past few decades due to the ever-increasing demands for more details on the complex nanostructures of multiphase and multicomponent soft materials like polymer assemblies and biomaterials. Currently, element-specific and contrast variation techniques such as resonant (elastic) soft/tender x-ray scattering, anomalous small angle x-ray scattering, and contrast-matching small angle neutron scattering, or combinations of above are routinely used to extract the chemical composition and spatial arrangement of constituent elements at multiple length scales and examine electronic ordering phenomena. Here we present some recent advances in selectively characterizing structural architectures of complex soft materials, which often contain multi-components with a wide range of length scales and multiple functionalities, where novel resonant scattering approaches have been demonstrated to decipher a higher level of structural complexity that correlates to functionality. With the advancement of machine learning and artificial intelligence assisted correlative analysis, high-throughput and autonomous experiments would open a new paradigm of material research. Further development of resonant x-ray scattering instrumentation with crossplatform sample environments will enable multimodalin situ/operando characterization of the system dynamics with much improved spatial and temporal resolution.

12.
J Phys Condens Matter ; 33(16)2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33498032

RESUMEN

We present the design and performance of a polarized resonant soft x-ray scattering (RSoXS) station for soft matter characterization built by the national institute of standards and technology at the national synchrotron light source-II (NSLS-II). The RSoXS station is located within the spectroscopy soft and tender beamline suite at NSLS-II located in Brookhaven national laboratory, New York. Numerous elements of the RSoXS station were designed for optimal performance for measurements on soft matter systems, where it is of critical importance to minimize beam damage and maximize collection efficiency of polarized x-rays. These elements include a novel optical design, sample manipulator and sample environments, as well as detector setups. Finally, we will report the performance of the measurement station, including energy resolution, higher harmonic content and suppression methods, the extent and mitigation of the carbon absorption dip on optics, and the range of polarizations available from the elliptically polarized undulator source.

13.
J Synchrotron Radiat ; 27(Pt 6): 1577-1589, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33147182

RESUMEN

The impressive progress in the performance of synchrotron radiation sources is nowadays driven by the so-called `ultimate storage ring' projects which promise an unprecedented improvement in brightness. Progress on the detector side has not always been at the same pace, especially as far as soft X-ray 2D detectors are concerned. While the most commonly used detectors are still based on microchannel plates or CCD technology, recent developments of CMOS (complementary metal oxide semiconductor)-type detectors will play an ever more important role as 2D detectors in the soft X-ray range. This paper describes the capabilities and performance of a camera equipped with a newly commercialized backside-illuminated scientific CMOS (sCMOS-BSI) sensor, integrated in a vacuum environment, for soft X-ray experiments at synchrotron sources. The 4 Mpixel sensor reaches a frame rate of up to 48 frames s-1 while matching the requirements for X-ray experiments in terms of high-intensity linearity (>98%), good spatial homogeneity (<1%), high charge capacity (up to 80 ke-), and low readout noise (down to 2 e- r.m.s.) and dark current (3 e- per second per pixel). Performance evaluations in the soft X-ray range have been carried out at the METROLOGIE beamline of the SOLEIL synchrotron. The quantum efficiency, spatial resolution (24 line-pairs mm-1), energy resolution (<100 eV) and radiation damage versus the X-ray dose (<600 Gy) have been measured in the energy range from 40 to 2000 eV. In order to illustrate the capabilities of this new sCMOS-BSI sensor, several experiments have been performed at the SEXTANTS and HERMES soft X-ray beamlines of the SOLEIL synchrotron: acquisition of a coherent diffraction pattern from a pinhole at 186 eV, a scattering experiment from a nanostructured Co/Cu multilayer at 767 eV and ptychographic imaging in transmission at 706 eV.

14.
J Synchrotron Radiat ; 27(Pt 6): 1601-1608, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33147184

RESUMEN

Resonant soft X-ray scattering (RSOXS) has become a premier probe to study complex three-dimensional nanostructures in soft matter through combining the robust structural characterization of small-angle scattering with the chemical sensitivity of spectroscopy. This technique borrows many of its analysis methods from alternative small-angle scattering measurements that utilize contrast variation, but thus far RSOXS has been unable to reliably achieve an absolute scattering intensity required for quantitative analysis of domain compositions, volume fraction, or interfacial structure. Here, a novel technique to calibrate RSOXS to an absolute intensity at the carbon absorption edge is introduced. It is shown that the X-ray fluorescence from a thin polymer film can be utilized as an angle-independent scattering standard. Verification of absolute intensity is then accomplished through measuring the Flory-Huggins interaction parameter in a phase-mixed polymer melt. The necessary steps for users to reproduce this intensity calibration in their own experiments to improve the scientific output from RSOXS measurements are discussed.

15.
ACS Appl Mater Interfaces ; 12(33): 37757-37763, 2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32696641

RESUMEN

SrRuO3 (SRO) thin films and their heterostructure have attracted much attention because of the recently demonstrated fascinating properties, such as topological Hall effect and skyrmions. Critical to the understanding of those SRO properties is the study of the spin configuration. Here, we conduct resonant soft X-ray scattering (RSXS) at the oxygen K edge to investigate the spin configuration of a four-unit-cell SRO film that was grown epitaxially on a single-crystal SrTiO3. The RSXS signal under a magnetic field (∼0.4 tesla) clearly shows a magnetic dichroism pattern around the specular reflection. Model calculations on the RSXS signal demonstrate that the magnetic dichroism pattern originates from a Néel-type chiral spin structure in this SRO thin film. We believe that the observed spin structure of the SRO system is a critical piece of information for understanding its intriguing magnetic and transport properties.

16.
Chemphyschem ; 20(10): 1261-1271, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-30737862

RESUMEN

In this article, the capabilities of soft and hard X-ray techniques, including X-ray absorption (XAS), soft X-ray emission spectroscopy (XES), resonant inelastic soft X-ray scattering (RIXS), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD), and their application to solid-state hydrogen storage materials are presented. These characterization tools are indispensable for interrogating hydrogen storage materials at the relevant length scales of fundamental interest, which range from the micron scale to nanometer dimensions. Since nanostructuring is now well established as an avenue to improve the thermodynamics and kinetics of hydrogen release and uptake, due to properties such as reduced mean free paths of transport and increased surface-to-volume ratio, it becomes of critical importance to explicitly identify structure-property relationships on the nanometer scale. X-ray diffraction and spectroscopy are effective tools for probing size-, shape-, and structure-dependent material properties at the nanoscale. This article also discusses the recent development of in-situ soft X-ray spectroscopy cells, which enable investigation of critical solid/liquid or solid/gas interfaces under more practical conditions. These unique tools are providing a window into the thermodynamics and kinetics of hydrogenation and dehydrogenation reactions and informing a quantitative understanding of the fundamental energetics of hydrogen storage processes at the microscopic level. In particular, in-situ soft X-ray spectroscopies can be utilized to probe the formation of intermediate species, byproducts, as well as the changes in morphology and effect of additives, which all can greatly affect the hydrogen storage capacity, kinetics, thermodynamics, and reversibility. A few examples using soft X-ray spectroscopies to study these materials are discussed to demonstrate how these powerful characterization tools could be helpful to further understand the hydrogen storage systems.

17.
J Appl Crystallogr ; 51(Pt 5): 1378-1386, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30279640

RESUMEN

In most cases, the analysis of small-angle and wide-angle X-ray scattering (SAXS and WAXS, respectively) requires a theoretical model to describe the sample's scattering, complicating the interpretation of the scattering resulting from complex heterogeneous samples. This is the reason why, in general, the analysis of a large number of scattering patterns, such as are generated by time-resolved and scanning methods, remains challenging. Here, a model-free classification method to separate SAXS/WAXS signals on the basis of their inflection points is introduced and demonstrated. This article focuses on the segmentation of scanning SAXS/WAXS maps for which each pixel corresponds to an azimuthally integrated scattering curve. In such a way, the sample composition distribution can be segmented through signal classification without applying a model or previous sample knowledge. Dimensionality reduction and clustering algorithms are employed to classify SAXS/WAXS signals according to their similarity. The number of clusters, i.e. the main sample regions detected by SAXS/WAXS signal similarity, is automatically estimated. From each cluster, a main representative SAXS/WAXS signal is extracted to uncover the spatial distribution of the mixtures of phases that form the sample. As examples of applications, a mudrock sample and two breast tissue lesions are segmented.

18.
J Synchrotron Radiat ; 25(Pt 4): 1106-1112, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29979171

RESUMEN

Anomalous small-angle X-ray scattering (ASAXS) and resonant soft X-ray scattering (RSoXS) are two related techniques that can enable element-specific structural information to be obtained. The development of iron-fortified milk products can greatly benefit from such techniques, allowing the structure of iron and other minerals (such as native calcium) within the casein micelle to be determined. Each method has advantages and disadvantages: for ASAXS, the sample preparation is straightforward, but the signal is relatively low and information about the structure of Ca is difficult to access. RSoXS can be used to study both Ca and Fe, and the element-specific signals observed are proportionally much higher; however, the measurements are challenging due to the difficulty of precise control of the solution thickness using currently available vacuum-compatible liquid cells. Nevertheless, complementary results from both techniques indicate Fe is co-located with Ca, i.e. within the colloidal calcium phosphate nanoclusters that are present within native casein micelles in milk.

19.
Artículo en Inglés | MEDLINE | ID: mdl-38680764

RESUMEN

There is a need to characterize nanoscale molecular orientation in soft materials, and polarized scattering is a powerful means to measure this property. However, few approaches have been demonstrated that quantitatively relate orientation to scattering. Here, a modeling framework to relate the molecular orientation of nanostructures to polarized resonant soft X-ray scattering measurements is developed. A variable-angle transmission measurement called critical-dimension X-ray scattering enables the characterization of the three-dimensional shape of periodic nanostructures. When this measurement is conducted at resonant soft X-ray energies with different polarizations to measure soft material nanostructures, the scattering contains convolved information about the nanostructure shape and the preferred molecular orientation as a function of position, which is extracted by fitting using inverse iterative algorithms. A computationally efficient Born approximation simulation of the scattering has been developed, with a full tensor treatment of the electric field that takes into account biaxial molecular orientation, and this approach is validated by comparing it with a rigorous coupled wave simulation. The ability of various sample models to generate unique best fit solutions is then analyzed by generating simulated scattering pattern sets and fitting them with an inverse iterative algorithm. The interaction of the measurement geometry and the change in orientation across a periodic repeat unit leads to distinct asymmetry in the scattering pattern which must be considered for an accurate fit of the scattering.

20.
Adv Mater ; 28(42): 9423-9429, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27606970

RESUMEN

Fine energy-level modulations of small-molecule acceptors (SMAs) are realized via subtle chemical modifications on strong electron-withdrawing end-groups. The two new SMAs (IT-M and IT-DM) end-capped by methyl-modified dicycanovinylindan-1-one exhibit upshifted lowest unoccupied molecular orbital (LUMO) levels, and hence higher open-circuit voltages can be observed in the corresponding devices. Finally, a top power conversion efficiency of 12.05% is achieved.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...