Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Natl Sci Rev ; 10(6): nwad081, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37404853

RESUMEN

Thermally activated ultrafast diffusion, collision and combination of metal atoms comprise the fundamental processes of synthesizing burgeoning subnanometer metal clusters for diverse applications. However, so far, no method has allowed the kinetically controllable synthesis of subnanometer metal clusters without compromising metal loading. Herein, we have developed, for the first time, a graphene-confined ultrafast radiant heating (GCURH) method for the synthesis of high-loading metal cluster catalysts in microseconds, where the impermeable and flexible graphene acts as a diffusion-constrained nanoreactor for high-temperature reactions. Originating from graphene-mediated ultrafast and efficient laser-to-thermal conversion, the GCURH method is capable of providing a record-high heating and cooling rate of ∼109°C/s and a peak temperature above 2000°C, and the diffusion of thermally activated atoms is spatially limited within the confinement of the graphene nanoreactor. As a result, due to the kinetics-dominant and diffusion-constrained condition provided by GCURH, subnanometer Co cluster catalysts with high metal loading up to 27.1 wt% have been synthesized by pyrolyzing a Co-based metal-organic framework (MOF) in microseconds, representing one of the highest size-loading combinations and the quickest rate for MOF pyrolysis in the reported literature. The obtained Co cluster catalyst not only exhibits an extraordinary activity similar to that of most modern multicomponent noble metal counterparts in the electrocatalytic oxygen evolution reaction, but is also highly convenient for catalyst recycling and refining due to its single metal component. Such a novel GCURH technique paves the way for the kinetically regulated, limited diffusion distance of thermally activated atoms, which in turn provides enormous opportunities for the development of sophisticated and environmentally sustainable metal cluster catalysts.

2.
Angew Chem Int Ed Engl ; 62(32): e202303290, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37132602

RESUMEN

Cluster catalysts are attractive for their atomically precise structures, defined compositions, tunable coordination environments, uniform active sites, and their ability to transfer multiple electrons, but they suffer from poor stability and recyclability. Here, we report a general approach to the direct insolubilization of a water soluble polyoxometalate (POM) [{(B-α-PW9 O34 )Co3 (OH)(H2 O)2 (O3 PC(O)-(C3 H6 NH3 )PO3 )}2 Co]14- (Co7 ) and formation of a series of POM-based solid catalysts with the counter-cations Ag+ , Cs+ , Sr2+ , Ba2+ , Pb2+ , Y3+ , and Ce3+ . They exhibit improved catalytic activities for visible-light-driven water oxidation following the trend CsCo7 >SrCo7 >AgCo7 >CeIII Co7 >BaCo7 >YCo7 >PbCo7 . While CsCo7 exhibits mainly homogeneous catalysis, the others are predominantly heterogeneous catalysts. An optimal oxygen yield of 41.3 % and a high apparent quantum yield (AQY) of 30.6 % for SrCo7 is obtained, which is comparable to that of the parent homogeneous POM. Band gap structures, UV/Vis spectra, and real-time laser flash photolysis experiments collectively suggest that easier electron transfer from the solid POM catalyst to the photosensitizer promotes photocatalytic water oxidation performance. These solid POM catalysts exhibit good stability, which is directly confirmed by a combination of Fourier-transform infrared spectroscopy, electron microscopy, X-ray diffraction patterns, Raman spectroscopy, X-ray photoelectron spectroscopy, five cycles of tests, and poisoning experiments.

3.
Sci Total Environ ; 883: 163637, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37098396

RESUMEN

In recent years, the demand for biofuels has been growing exponentially, as has the interest in biodiesel produced from organic matrices. Particularly interesting, due to its economic and environmental advantages, is the use of the lipids present in sewage sludge as a raw material for the synthesis of biodiesel. The possible processes of this biodiesel synthesis, starting from lipid matter, are represented by the conventional process with sulfuric acid, by the process with aluminium chloride hexahydrate and by processes that use solid catalysts such as those consisting of mixed metal oxides, functionalized halloysites, mesoporous perovskite and functionalized silicas. In literature there are numerous Life Cycle Assessment (LCA) studies concerning biodiesel production systems, but not many studies consider processes that start from sewage sludge and that use solid catalysts. In addition, no LCA studies were reported on solid acid catalysts nor on those based on mixed metal oxides which present some precious advantages, over the homogeneous analogous ones, such as higher recyclability, prevention of foams and corrosion phenomena, and an easier separation and purification of biodiesel product. This research work reports the results of a comparative LCA study applied to a system that uses a solvent free pilot plant for the extraction and transformation of lipids from sewage sludge via seven different scenarios that differ in the type of catalyst used. The biodiesel synthesis scenario using aluminium chloride hexahydrate as catalyst has the best environmental profile. Biodiesel synthesis scenarios using solid catalysts are worse due to higher methanol consumption which requires higher electricity consumption. The worst scenario is the one using functionalized halloysites. Further future developments of the research require the passage from the pilot scale to the industrial scale in order to obtain environmental results to be used for a more reliable comparison with the literature data.

4.
ChemSusChem ; 16(16): e202300200, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37115962

RESUMEN

The synthesis of cyclized organic compounds with more than ten atoms (macrocycles) is traditionally based on reversible reactions under highly diluted conditions, typically <0.05 M, in order to circumvent the formation of intermolecular products. These reaction conditions severely hamper industrial productivity and the use of solid catalysts. Herein, it is shown that the intramolecular Mizoroki-Heck reaction of ω-iodide cinnamates proceeds at 1 M concentration when catalyzed by few-atom Pd clusters, either in solution or supported on a solid, to give different macrocycles in good yields. This paradigmatic increase in reaction concentration not only opens the door for macrocycle production with high throughputs but also enables the use of solid catalysts for a macrocyclization reaction in flow.

5.
Sci Total Environ ; 819: 153102, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35041950

RESUMEN

Antibiotics are widely supplied over all the world to animals and humans to fight and heal bacteriological diseases. The uptake of antibiotics has largely increased the average-life expectancy of living beings. However, these recalcitrant products have been detected at low concentrations in natural waters, with potential health risks due to alterations in food chains and an increase in the resistance to bacterial infection, control of infectious diseases, and damage of the beneficial bacteria. The high stability of antibiotics at mild conditions prevents their effective removal in conventional wastewater treatment plants. A powerful advanced oxidation processes such as the electro-Fenton (EF) process is being developed as a guarantee for their destruction by •OH generated as strong oxidant. This review presents a critical, exhaustive, and detailed analysis on the application of EF to remediate synthetic and real wastewaters contaminated with common antibiotics, covering the period 2017-2021. Homogeneous EF and heterogeneous EF involving iron solid catalysts or iron functionalized cathodes, as well as their hybrid and sequential treatments, are exhaustively examined. Their fundamentals and characteristics are detailed, and the main results obtained for the removal of the most used antibiotic families are carefully described and discussed. The role of generated oxidizing agents is explained, and the by-products generated, and reaction sequences proposed are detailed.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Antibacterianos , Electrodos , Peróxido de Hidrógeno/análisis , Oxidación-Reducción , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
6.
Environ Sci Pollut Res Int ; 26(32): 32804-32814, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31502052

RESUMEN

Biodiesel appears to be a possible substitute for non-renewable fossil fuels; however, its production requires the presence of a catalyst to accelerate the reaction. Serving the purpose of finding effective, cheap and environmentally safe, heterogeneous catalysts, this research used the fig leaves in three different forms, calcined, activated by KOH, and activated by both K2CO3 and CaCO3. Their efficiency in biodiesel synthesis, from spent cooking oil, was examined and compared with that of activated carbon which has been previously investigated. The properties of different catalyst forms were specified using X-ray diffraction, scanning electron microscope and Fourier transform infrared spectroscopy. Operating parameters studied for the three catalysts were reaction time (from 30 to 180 min), alcohol-to-oil molar ratio (from 4:1 to 10:1), catalyst loading (from 0.5 to 5% by wt.), and stirring speed (from 100 to 400 rpm). The increase in reaction time, molar ratio, and catalyst loading proved to have a favorable effect on % conversion to biodiesel but to a certain degree; increasing the stirring speed augmented the conversion. At optimum conditions (2 h of heating, 6:1 alcohol-to-oil molar ratio, 1% by wt. catalyst loading, and 400 rpm stirring), fig leaves activated by KOH provided the highest conversion to biodiesel (92.73%). The measured properties of the produced biodiesel (density, viscosity, flash point, cloud point, and pour point) yielded encouraging results. Graphical Abstract.


Asunto(s)
Biocombustibles/análisis , Culinaria , Ficus , Catálisis , Esterificación , Hojas de la Planta/química , Aceites de Plantas/química , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
7.
Small ; 15(46): e1903896, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31556483

RESUMEN

Currently, designing solid catalysts at high temperature is the main strategy to realize single-walled carbon nanotubes (SWNTs) with specific chirality, meaning it is very hard and challenging to create new catalysts or faces to fit new chirality. However, low temperatures make most catalysts solid, and developing solid catalysts at low temperature is desired to realize chirality control of SWNTs. A rational approach to grow SWNTs array with different chiralities on same solid Co catalysts at low temperature (650 °C) is herein put forward. Using solid Co catalysts, near-armchair (10, 9) tubes horizontal array with ≈75% selectivity and (12, 6) tubes array with ≈82% are realized by adopting a small amount of ethanol and large amount of CO respectively. (10, 9) tubes are enriched for thermodynamic stability and (12, 6) tubes for kinetics growth rate. Both kinds of tubes show a similar symmetry to the Co (1 1 1) face with threefold symmetry for the symmetry matching nucleation mechanism proposed earlier. This method provides a new strategy to study the nucleation mechanism and more possibilities for preparing new solid catalysts to control the structure of SWNTs.

8.
Adv Mater ; : e1707582, 2018 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-29873121

RESUMEN

Crystalline frameworks including primarily metal organic frameworks (MOF) and covalent organic frameworks (COF) have received much attention in the field of heterogeneous catalysts recently. Beyond providing large surface area and spatial confinement, these crystalline frameworks can be designed to either directly act as or influence the catalytic sites at molecular level. This approach offers a unique advantage to gain deeper insights of structure-activity correlations in solid materials, leading to new guiding principles for rational design of advanced solid catalysts for potential important applications related to energy and fine chemical synthesis. In this review, recent key progress achieved in designing MOF- and COF-based molecular solid catalysts and the mechanistic understanding of the catalytic centers and associated reaction pathways are summarized. The state-of-the-art rational design of MOF- and COF-based solid catalysts in this review is grouped into seven different areas: (i) metalated linkers, (ii) metalated moieties anchored on linkers, (iii) organic moieties anchored on linkers, (iv) encapsulated single sites in pores, and (v) metal-mode-based active sites in MOFs. Along with this, some attention is paid to theoretical studies about the reaction mechanisms. Finally, technical challenges and possible solutions in applying these catalysts for practical applications are also presented.

9.
Molecules ; 21(2): 146, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26821005

RESUMEN

A new solid phase catalyst, poly(N-4-vinylbenzyl-1,4,7-triazacyclononane) copper(I) complex, grafted onto polystyrene particles, has been employed for the oxidative polymerization of 2,6-dimethylphenol using an aqueous biphasic (water/toluene) solvent system. The solid catalyst was synthesized by first grafting N-(4-vinylbenzyl)-1,4,7-triaza-cyclononane onto polystyrene particles using a radical mediated polymerization method and next by creating the polymer-metal complex of copper-triazacyclononane with these modified particles. Poly(2,6-dimethyl-1,4-phenylene oxide) was successfully obtained from the polymerization of 2,6-dimethylphenol using this new metal-organic solid phase catalyst.


Asunto(s)
Compuestos Aza/síntesis química , Cobre/química , Piperidinas/síntesis química , Xilenos/química , Compuestos Aza/química , Catálisis , Estructura Molecular , Piperidinas/química , Polimerizacion , Propiedades de Superficie
10.
J Colloid Interface Sci ; 449: 102-14, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25591825

RESUMEN

A series of transition metal acetylacetonates and acetates were used as precursors to generate high loadings of metal sites finely dispersed on SBA-15 silica. To achieve this, grafting of chelated transition metal precursors was performed directly to the surface of the as-synthesized SBA-15/P123 composite material. The thus-obtained metal/SBA-15 materials were studied by a variety of methods, e.g., elemental analysis, Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), diffuse reflectance UV-visible spectroscopy (DR-UV-vis), X-ray photoelectron spectroscopy (XPS) and N2 physisorption measurements at -196 °C. From the results, the proposed functionalization method was found to be a highly tunable and reproducible strategy to disperse transition metal oxides in mesoporous silica materials. The results from elemental analysis of the modified materials confirmed that the amount of grafted species is a function of the initial concentration of precursor in the solution used for grafting. The chelated complexes were found to strongly interact with the silanol groups of the silica material, resulting in a ligand-exchange process, as corroborated by FTIR. However, different metal precursors showed distinct reactivity towards the surface of mesoporous silica, owing to differences in the stability of the complexes under the conditions used for grafting. DR-UV-vis and XPS analyses suggest that when the stability of a given precursor decreases, the grafting procedure can lead to the formation of small clusters of the metal oxide on the silica surface. XRD and SEM also show that grafting of lower stability complexes, such as Mn(acac)3, Cu(acetate)2 and VO(acac)2, on the silica surface can result in the formation of large crystals on the external surface of the SBA-15 particles. Nevertheless, it was established by XPS analysis that only a small percentage of the grafted species leads to the formation of bulk crystals while the remaining species are substituted into the silica framework. Obviously, a well-controlled and increased dispersion of the metal cations/oxides on the surface of highly porous silica materials is of great interest since these M(x)O(y)-SiO2 mixed oxides could demonstrate high catalytic activity in a large variety of reactions.

11.
Angew Chem Int Ed Engl ; 40(16): 2954-71, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-12203619

RESUMEN

The development of new solid catalysts for use in industrial chemistry has hitherto been based to a large extent upon the empirical testing of a wide range of different materials. In only a few exceptional cases has success been achieved in understanding the overall, usually very complex mechanism of the chemical reaction through the elucidation of individual intermediate aspects of a heterogeneously catalyzed reaction. With the modern approach of combinatorial catalysis it is now possible to prepare and test much more rapidly a wide range of different materials within a short time and thus find suitable catalysts or optimize their chemical composition. Our understanding of the mechanisms of reactions catalyzed by these materials must be developed, however, by spectroscopic investigations on working catalysts under conditions that are as close as possible to practice (temperature, partial pressures of the reactants, space velocity). This demands the development and the application of new techniques of in situ spectroscopy. This review will show how this objective is being achieved. By the term in situ (Lat.: in the original position) is meant the investigation of the chemical reactions which are taking place as well as the changes in the working catalysts directly in the spectrometer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...