Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 816
Filtrar
1.
Rev. biol. trop ; 72(1): e55957, ene.-dic. 2024. tab, graf
Artículo en Español | SaludCR, LILACS | ID: biblio-1559321

RESUMEN

Resumen Introducción: Los vertidos de líquidos inflamables pueden producir accidentes graves, principalmente en plantas industriales y en carretera. Para prevenir la dispersión de derrames, se utilizan diversas formas de recolecta, como la absorción con sólidos porosos. Residuos agroindustriales pueden ser aprovechados como materiales sorbentes de líquidos inflamables. Objetivo: Determinar la capacidad de absorción de las biomasas residuales del pedúnculo de la palma aceitera (Elaeis guineensis) y del endocarpio del fruto de coyol (Acrocomia sp.) para cuatro líquidos orgánicos inflamables. Métodos: Las biomasas residuales de E. guineensis y de Acrocomia sp. se evaluaron como sorbentes para combustibles derramados (diésel, queroseno de aviación, queroseno comercial y gasolina). Se midió la cantidad de líquido absorbida por las biomasas a 24 ºC durante una semana, y su cinética de desorción a 50 ºC, usando balanzas de secado. Resultados: La propiedad sorbente del material de Acrocomia sp. no fue satisfactoria, comparada con el pedúnculo de E. guineensis, debido a diferencias en arquitectura residual del material orgánico. Esta última biomasa muestra una capacidad de absorción para los combustibles de 2.4 ± 0.2 cm3 g-1 a 24 ºC. La diatomita absorbe mayor cantidad de los combustibles estudiados, pero la difusión de estos fluidos a 50 ºC por la matriz mineral es solo 0.26 ± 0.09 veces lo observado para el material de E. guineensis, como resultado del mayor grado de tortuosidad de los poros de la diatomita. Conclusiones: El pedúnculo de palma aceitera (E. guineensis) mostró un adecuado potencial desempeño para la aplicación pasiva en la mitigación de los riesgos de incendio, con respecto a la diatomita. El endocarpio del fruto de Acrocomia sp. no resultó útil para esta operación de recuperación.


Abstract Introduction: Spills of flammable liquids can lead to serious accidents, mainly in industrial plants and on roads. To prevent the spread of spills, various forms of collection are used, such as absorption with porous solids. Agroindustrial waste can be used as sorbent materials for flammable liquids. Objective: To determine the sorption capacity of the residual empty-fruit bunch of oil-palm (Elaeis guineensis) and the macaw palm (Acrocomia sp.) nutshell for four organic flammable liquids. Methods: The residual biomasses of E. guineensis and Acrocomia sp. were assessed as sorbents for spilled fuels (diesel, jet fuel, commercial kerosene, and gasoline). Volumetric measurement of liquid-fuel absorption at 24 ºC was taken during a week. Desorption was measured at 50 ºC as the drying kinetics, by using moisture scales. Results: The sorption capacity of the Acrocomia sp. material was not satisfactory, compared to the E. guineensis residual material, due to differences in the residual architecture of the organic material. This last can absorb 2.4 ± 0.2 cm3 g-1 at 24 ºC, during a one-week period. Diatomite absorbs greater quantities of the organic liquids but, the fluids diffusion at 50 ºC is 0.26 ± 0.09 times more slowly in the mineral matrix, because of the greater pore tortuosity in this mineral matrix. Conclusions: The oil-palm empty fruit bunch of E. guineensis, showed lesser but adequate performance than the sorbing behavior for fire hazard mitigation of diatomite. The nutshell of macaw palm (Acrocomia sp.) did not prove to be useful for this recovery operation.


Asunto(s)
Aceite de Palma/análisis , Sistemas de Extinción de Incendios , Aceites de Plantas/análisis , Queroseno
2.
Drug Test Anal ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39086113

RESUMEN

Several protocols for the analysis of amphetamine-type stimulants (ATS) in hair have been developed over the years, with microextraction by packed sorbent (MEPS) being used for drugs like opiates, cocaine and ketamine. However, concerning ATS determination in hair samples, this approach has only been applied so far to amphetamine (AMP) and methamphetamine (MAMP). This study aimed at developing and validating a MEPS-based procedure for the determination in hair of not only AMP and MAMP but also of 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA), 1-(1,3-benzodioxol-5-yl)propan-2-yl (ethyl)amine (MDE) and N-methyl-1-(1,3-benzodioxol-5-yl)-2-aminobutane (MBDB) as well. Hair, 50 mg, was incubated with 1 M sodium hydroxide (NaOH) at 45°C overnight, neutralization with 10 M hydrochloric acid (HCl) and centrifugation followed. The design of experiments approach was used for MEPS optimization, with the final optimized conditions including conditioning (250 µL methanol and deionized water), loading (18 × 100 µL) and elution (7 × 100 µL 2% NH4OH in acetonitrile). The eluted extract was evaporated to dryness and underwent microwave-assisted derivatization with N-methyl-bis(trifluoroacetamide) (MBTFA), and it was afterwards injected onto the gas chromatography-mass spectrometer (GC-MS). The obtained recoveries ranged between 8% and 14% for AMP, 14% and 20% for MAMP, 10% and 15% for MDA, 18% and 28% for MDMA, 25% and 43% for MDE and 34% and 52% for MBDB, and the method was linear from 0.2 to 5.0 ng/mg. Precision and accuracy were in accordance with international method validation guidelines. This novel method involving MEPS coupled to GC-MS offers a swift, eco-friendly and cost-effective alternative to traditional procedures for detecting these AMPs in hair samples.

3.
Sci Rep ; 14(1): 19738, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39187526

RESUMEN

Sorption of Sr(II) and Eu(III) from aqueous solutions was studied using tin molybdate talc sorbent synthesized by the precipitation technique. The synthesized sorbent was characterized using different analytical tools, such as; FT-IR, SEM, XRD, XRF, TGA, and DTA. The sorption studies applied to Sr(II) and Eu(III) include the effects of shaking time, pH, concentrations, and saturation capacity. The sorption of Sr(II) and Eu(III) depends on pH, reaction kinetics obey the pseudo-2nd-order model, and the Langmuir model is better suited for the sorption isotherm. The thermodynamic parameters reflect an endothermic and spontaneous sorption process. Desorption studies showed that 0.1 M HCl was the best desorbing agent for the complete recovery of Sr(II) (96.8%) and Eu(III) (92.9%). Finally, the obtained data illustrates that the synthesized sorbent can be applied and used as an efficient sorbent for the sorption of Sr(II) and Eu(III) from aqueous solutions and can be used as a promising sorbent to remove Sr(II) and Eu(III).

4.
Small ; : e2406165, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39126365

RESUMEN

The calcium looping technology employing CaO-based sorbents is pivotal for capturing CO2 from flue gas. However, the intrinsic low thermodynamic stability of CaO-based sorbents and the requisite molding step induce severe sintering issues, diminishing their cyclic stability. Herein, a high-entropy fluorite oxide (HEFO) inert stabilizer premised on entropy stabilization and synergistic effect strategies is introduced. HEFO-modified, CaO-based sorbent pellets are synthesized via a rapid cigarette butt-assisted combustion process (15 min) combined with the graphite molding method. Post-multiple cycles, their CO2 capture capacity reaches 0.373 g g-1, which is 2.6-fold superior to that of pure CaO, demonstrating markedly enhanced anti-sintering properties. First, the subtle morphological and crystallographic modifications suggest that the inherent entropy stability of HEFO imparts robust thermal resistance. Concurrently, the disordered structure of single-phase HEFO exhibits a high affinity for CaO, resulting in an interface binding energy of -1.83 eV, in sharp contrast to the -0.112 eV of pure CaO, thereby restricting CaO migration. Additionally, the multi-element synergistic effect of HEFO reduces the energy barrier by 0.15 eV, leading to a 40% and 140% increase in carbonation and calcination rates, respectively. This work presents highly efficient and rapidly synthesized CaO-based sorbent pellets, showcasing promising potential for industrial application.

5.
Molecules ; 29(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39124880

RESUMEN

Vacuum-Assisted Sorbent Extraction (VASE) is a novel extraction technique that uses vacuum to facilitate the transfer of volatile compounds from the matrix to the sorbent. This technique was explored for extraction of volatiles from cape gooseberry fruit, for both qualitative and quantitative analyses. Selected extraction parameters were tested: sample size, extraction temperature and time, influence of tissue disintegration on release of volatiles, and also addition of Ag+1 ions in the form of AgNO3 to stop enzymatic formation of volatile compounds. For selected conditions (10 g sample, extraction for 30 min. at 40 °C of volatiles from blended fruit) quantitative aspects were explored. Twenty-two compounds of cape gooseberry were tested. The method was characterized with a very good linearity in a range of 10-5000 µg/kg and good reproducibility. The experiments proved the usefulness of VASE in both volatile profiling and quantitative analyses of cape gooseberry and in prospective other fruit.


Asunto(s)
Frutas , Physalis , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/aislamiento & purificación , Compuestos Orgánicos Volátiles/química , Physalis/química , Frutas/química , Vacio , Reproducibilidad de los Resultados , Extractos Vegetales/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Extracción en Fase Sólida/métodos
6.
Molecules ; 29(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39125063

RESUMEN

The advancement of traditional sample preparation techniques has brought about miniaturization systems designed to scale down conventional methods and advocate for environmentally friendly analytical approaches. Although often referred to as green analytical strategies, the effectiveness of these methods is intricately linked to the properties of the sorbent utilized. Moreover, to fully embrace implementing these methods, it is crucial to innovate and develop new sorbent or solid phases that enhance the adaptability of miniaturized techniques across various matrices and analytes. Graphene-based materials exhibit remarkable versatility and modification potential, making them ideal sorbents for miniaturized strategies due to their high surface area and functional groups. Their notable adsorption capability and alignment with green synthesis approaches, such as bio-based graphene materials, enable the use of less sorbent and the creation of biodegradable materials, enhancing their eco-friendly aspects towards green analytical practices. Therefore, this study provides an overview of different types of hybrid graphene-based materials as well as their applications in crucial miniaturized techniques, focusing on offline methodologies such as stir bar sorptive extraction (SBSE), microextraction by packed sorbent (MEPS), pipette-tip solid-phase extraction (PT-SPE), disposable pipette extraction (DPX), dispersive micro-solid-phase extraction (d-µ-SPE), and magnetic solid-phase extraction (MSPE).

7.
Molecules ; 29(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39125112

RESUMEN

The physicochemical properties of natural bentonite and its sorbents were studied. It has been established the modification of natural bentonites using polyhydroxoxides of iron (III) (mod.1_Fe_5-c) and aluminum (III) (mod.1_Al_5-c) by the "co-precipitation" method led to changes in their chemical composition, structure, and sorption properties. It was shown that modified sorbents based on natural bentonite are finely porous (nanostructured) objects with a predominance of pores of 1.5-8.0 nm in size. The modification of bentonite with iron (III) and aluminum compounds by the "co-precipitation" method also leads to an increase in the sorption capacity of the obtained sorbents with respect to bichromate and arsenate anions. A kinetic analysis showed that, at the initial stage, the sorption process was controlled by an external diffusion factor, that is, the diffusion of the sorbent from the solution to the liquid film on the surface of the sorbent. The sorption process then began to proceed in a mixed diffusion mode when it limited both the external diffusion factor and the intra-diffusion factor (diffusion of the sorbent to the active centers through the system of pores and capillaries). To clarify the contribution of the chemical stage to the rate of adsorption of bichromate and arsenate anions by the sorbents under study, kinetic curves were processed using equations of chemical kinetics (pseudo-first-order, pseudo-second-order, and Elovich models). It was found that the adsorption of the studied anions by the modified sorbents based on natural bentonite was best described by a pseudo-second-order kinetic model. The high value of the correlation coefficient for the Elovich model (R2 > 0.9) allows us to conclude that there are structural disorders in the porous system of the studied sorbents, and their surfaces can be considered heterogeneous. Considering that heterogeneous processes occur on the surface of the sorbent, it is natural that all surface properties (structure, chemical composition of the surface layer, etc.) play an important role in anion adsorption.

8.
Water Res ; 265: 122293, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39167972

RESUMEN

Sorption-based atmospheric water harvesting holds promise for alleviating water scarcity, but current prototypes have not shown significant increases in practical yields despite efforts in the enlarged engineering scale. This is due to weakened heat and mass transfer with a packed sorbent bed. In this work, the desiccant-coated adsorbers were employed to fabricate the water harvesting device that incorporates internal fluid for cooling and heating during sorption and desorption. Featured with an internal cooling effect, practical water productivity could be improved by 1.75-9.96 times with a low desorption temperature (45-62 °C). The continuous water harvesting system could produce 0.77-3.98 Lwater/kgsorbent/day with a thermal energy consumption of 7.7-30.4 MJ/kg in wide climates from 20 % to 80 % RH, providing a reference for device design in the engineering view. The demonstration revealed that using natural cooling in the sorption stage has great benefits in improving water harvesting performance, which can be integrated into the building sectors or a wider range of scenarios.

9.
Isotopes Environ Health Stud ; : 1-14, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39077911

RESUMEN

Radon is a radioactive noble gas omnipresent in the environment, being part of the 238U and 232Th decay chains present in the Earth's crust. The gas can easily leak through the ground but also be present in natural construction materials and migrate into indoor places where it can be a carcinogen when inhaled. Studying the content and removal of indoor radon is crucial for the evaluation and mitigation of its radiological risks to public health. For more than 100 years, the removal by adsorption of the radon has been performed on activated charcoal. There is little progress in the field of radon adsorption at ambient conditions; the main progress is in the use of zeolite materials, having well-defined three-dimensional porous structures and radiation resistance. This study concerns a report on the state of the art of the application of zeolites in radon adsorption. Furthermore, an optimized approach for measuring the radon content in indoor environments and, consequently, its removal has been proposed. Adsorption systems based on zeolites have the potential to replace activated charcoal as a material of choice, allowing to facilitate the development of simple and compact radon adsorption systems.

10.
J Chromatogr A ; 1730: 465157, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39025028

RESUMEN

Capsule phase microextraction (CPME) is an efficient bioanalytical technique that streamlines the sample preparation by integrating the filtration and stirring mechanism directly into the device. A novel composite sorbent designed to be selective towards the target analytes consisting of mixed-mode sorbent chemistry synthesized by sol-gel technology is found promising and superior to the conventional C18 sorbents. Herein we describe the encapsulation of an ionic liquid (IL)/Carbowax 20M-functionalized sol-gel sorbent (sol-gel IL/Carbowax 20 M) in the lumen of porous polypropylene tubes for the capsule phase microextraction of three phosphodiesterase-5 inhibitors namely avanafil, sildenafil, and tadalafil in human serum and urine samples. The CPME device was characterized by Scanning Electron Microscopy (SEM) and Fourier-Transform Infrared Spectroscopy (FT-IR). The experimental parameters of CPME procedure (e.g. sample pH and ionic strength, extraction time, stirring rate, elution solvent and volume) were carefully optimized to achieve the highest possible extraction efficiency for the analytes. Method validation was conducted in terms of precision, linearity, accuracy, matrix effect, lower limits of quantification, and limits of detection (LOD). The method linearity was investigated in the range of 50-1000 ng mL-1 for all analytes while the precision was less than 11.8 % in all cases. For all analytes, the LOD values were 17 ng mL-1. The IL/CW 20M-functionalized microextraction capsules could be reused at least 25 times both for urine and serum samples. The green character and the applicability of the proposed method were evaluated using the ComplexGAPI and BAGI indexes. The optimized CPME protocol exhibited reduced consumption of organic solvent and generation of waste, cost-effectiveness, and simplicity. Finally, the proposed method was successfully applied to the analysis of sildenafil in human urine after administration of drug-containing formulation.


Asunto(s)
Líquidos Iónicos , Microextracción en Fase Líquida , Inhibidores de Fosfodiesterasa 5 , Humanos , Líquidos Iónicos/química , Límite de Detección , Cromatografía Líquida con Espectrometría de Masas , Microextracción en Fase Líquida/métodos , Inhibidores de Fosfodiesterasa 5/sangre , Inhibidores de Fosfodiesterasa 5/orina , Inhibidores de Fosfodiesterasa 5/química , Reproducibilidad de los Resultados , Citrato de Sildenafil/sangre , Citrato de Sildenafil/orina , Microextracción en Fase Sólida/métodos
11.
J Mol Model ; 30(8): 297, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085447

RESUMEN

CONTEXT: Phographene and its family member structures are of the newly proposed semiconductors for detection of chemicals. That is, in this project, the potential of using α-phographene (α-POG) both for adsorption and detection of five types of the most important air pollutant gases containing SO2, AsH3, CF3H, NO2, and CO2 species were investigated.  The results of the time dependent density functional theory (TD-DFT) calculations indicate that during the adsorption of NO2, and SO2 by the sorbent, big redshifts occur (up to 866.2 nm, and 936.5, respectively) resulting in considerable changes in the orbitals and the electronic structures of the systems. Moreover, the results of the thermodynamic calculations reveal that α-POG could selectively adsorb SO2, NO2, and AsH3 gases (with different orders), but it could not adsorb the two other gases.Finally, the outcome of the band gap calculations shows that between all mentioned gases, α-POG could selectively detect the presence of SO2, and then NO2; while, this nanosheet could not sense the existence of AsH3, CF3H, or CO2 gases. METHODS: All of the calculations were carried out by using the Gaussian 03 quantum chemical package. In addition, the physiochemical parameters were extracted from the output files for further calculations. Studies on all saddle points and the following calculations were performed applying the B3LYP/6-311g(d,p) level of theory.

12.
Molecules ; 29(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38930873

RESUMEN

This study examined the possibility of using various types of waste paper-used newsprint (NP), used lightweight coated paper (LWC), used office paper (OP), and used corrugated cardboard (CC)-for the removal of anionic dyes, Acid Red 18 (AR18) and Acid Yellow 23 (AY23), and cationic dyes, Basic Violet 10 (BV10) and Basic Red 46 (BR46), from aqueous solutions. The scope of this research included the characterization of sorbents (FTIR, SEM, BET surface area, porosity, pHPZC, effectiveness of water coloration), determination of pH effect on the effectiveness of dye sorption, sorption kinetics (pseudo-first-order model, second-order model, intraparticular diffusion model), and the maximum sorption capacity (Langmuir models and Freundlich model) of the tested sorbents. The use of waste paper materials as sorbents was found to not pose any severe risk of aquatic environment contamination. AR18, AY23, and BV10 sorption intensities were the highest at pH 2, and that of RB46 at pH 6. The waste paper sorbents proved particularly effective in removing cationic dyes, like in the case of, e.g., NP, which had a sorption capacity that reached 38.87 mg/g and 90.82 mg/g towards BV10 and BR46, respectively, and were comparable with that of selected activated carbons (literature data).

13.
Small ; : e2401303, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856002

RESUMEN

Nowadays, moisture-swing adsorption technology still relies on quaternary ammonium resins with limited CO2 capacity under ambient air conditions. In this work, a groundbreaking moisture-driven sorbent is developed starting from commercial graphene flakes and using glycidyltrimethylammonium chloride for incorporation of CO2-sensitive quaternary ammonium functional groups. Boasting an outstanding CO2 capture performance under ultra-diluted conditions (namely, 3.24 mmol g-1 at CO2 400 ppm and 20% RH), the functionalized sorbent (fGO) features clear competitive advantages over current technologies for direct air capture. Notably, fGO demonstrated unprecedented moisture-swing capacity, ease of regenerability, versatility, selectivity, and longevity. These distinctive features position the fGO as an advanced and promising solution, showcasing its potential to outperform existing methods for moisture-swing direct air capture of CO2.

14.
Molecules ; 29(11)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38893504

RESUMEN

The chemical industry explosion in the 20th century has led to increased environmental pollution, affecting fauna, flora, and waterways. These substances alter water's taste, color, and smell, making it unfit for consumption or toxic. Agricultural water networks face threats from pollution before and after treatment. Some chemical contaminants, like pesticides, are embedded in natural biogeochemical cycles. In this study, we developed a simple and low-cost procedure for the fabrication of needles coated with polydimethylsiloxane (PDMS) as an efficient sorbent for the microextraction of organic pollutant traces from water. The prepared needles were used as an alternative for commercial solid-phase micro-extraction (SPME) devices in analytical chemistry. The PDMS polymeric phase was characterized by Fourier-transform infrared spectroscopy (FT-IR), thermogravimetry (TGA), and scanning electron microscopy (SEM). The PDMS-coated needles were used for extraction of thirteen pesticides by direct-immersion solid-phase microextraction (DI-SPME) from contaminated waters, followed by determination with gas chromatography-mass spectrometry (GC-MS). The developed analytical method showed limits of detection (LODs) between 0.3 and 2.5 ng mL-1 and RSDs in the range of 0.8-12.2%. The homemade needles were applied for the extraction of pesticides in surface and ground aqueous samples collected from an agricultural area. Several target pesticides were identified and quantified in the investigated water samples.


Asunto(s)
Plaguicidas , Microextracción en Fase Sólida , Contaminantes Químicos del Agua , Microextracción en Fase Sólida/métodos , Plaguicidas/análisis , Plaguicidas/aislamiento & purificación , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/aislamiento & purificación , Cromatografía de Gases y Espectrometría de Masas/métodos , Agricultura , Dimetilpolisiloxanos/química , Agua/química , Espectroscopía Infrarroja por Transformada de Fourier , Límite de Detección , Agujas
15.
Materials (Basel) ; 17(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38893909

RESUMEN

Biochar enriched with metals has an increased potential for sorption of organic and inorganic pollutants. The aim of the research was to identify the possibility of using biochar composites produced on the basis of waste plant biomass and waste FFH (ferryferrohydrosol) containing iron atoms, after CO2 capture. The composites were produced in a one-stage or two-stage pyrolysis process. Their selected properties were determined as follows: pH, ash content, C, H, N, O, specific surface area, microstructure and the presence of surface functional groups. The produced biochar and composites had different properties resulting from the production method and the additive used. The results of experiments on the removal of methylene blue (MB) from solutions allowed us to rank the adsorbents used according to the maximum dye removal value achieved as follows: BC1 (94.99%), B (84.61%), BC2 (84.09%), BC3 (83.23%) and BC4 (83.23%). In terms of maximum amoxicillin removal efficiency, the ranking is as follows: BC1 (55.49%), BC3 (23.51%), BC2 (18.13%), B (13.50%) and BC4 (5.98%). The maximum efficiency of diclofenac removal was demonstrated by adsorbents BC1 (98.71), BC3 (87.08%), BC4 (74.20%), B (36.70%) and BC2 (30.40%). The most effective removal of metals Zn, Pb and Cd from the solution was demonstrated by BC1 and BC3 composites. The final concentration of the tested metals after sorption using these composites was less than 1% of the initial concentration. The highest increase in biomass on prepared substrates was recorded for the BC5 composite. It was higher by 90% and 54% (for doses of 30 g and 15 g, respectively) in relation to the biomass growth in the soil without additives. The BC1 composite can be used in pollutant sorption processes. However, BC5 has great potential as a soil additive in crop yield and plant growth.

16.
ACS Appl Mater Interfaces ; 16(23): 29834-29843, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38831710

RESUMEN

cis-Diol-containing molecules, an essential type of compounds in living organisms, have attracted intensive research interest from various fields. The analysis of cis-diol-containing molecules is still suffering from some drawbacks, including low abundance and abundant interference. Metal-organic frameworks (MOFs) have proven to be an ideal sorbent for sample preparation. However, most of the reported MOFs are mainly restricted to a microporous regime (pore size <2 nm), which greatly limits the application. Herein, a facile strategy is established to construction of boronate affinity MOFs via the postsynthetic ligand-exchange process. Owing to the fact that the ligand-exchange process was assisted by the structural integrity of the primitive metal-organic framework and the great compatibility of click chemistry, the obtained EPBA-PCN-333(Fe) is able to realize the maximum maintaining the porosity and crystallinity of the parent material. Several intriguing features of EPBA-PCN-333(Fe) (e.g., excellent selectivity, efficient diffusion, good accessibility, and size exclusion effect) are experimentally demonstrated via a series of cis-diol-containing molecules with different molecular sizes (small molecules, glycopeptides, and glycoproteins). The binding performance of EPBA-PCN-333(Fe) is evaluated by employing catechol as the test molecule (binding capacity: 0.25 mmol/g, LOD: 200 ng/mL). Finally, the real-world applications of EPBA-PCN-333(Fe) were demonstrated by the detection of nucleosides of human urine samples.

17.
Med Mycol J ; 65(2): 29-32, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38825527

RESUMEN

Mucormycosis is a fungal infectious disease caused by Rhizopus oryzae and other members of the order Mucorales, and it is known as one of the most lethal fungal infections. Early diagnosis of mucormycosis improves prognosis because of limited effective treatments and the rapid progression of the disease. On the other hand, the lack of characteristic clinical findings in mucormycosis and the challenge of early definitive diagnosis make early treatment difficult. Our goal was to establish a serodiagnostic method to detect Rhizopus specific antigen (RSA), and we have developed a diagnostic kit by Enzyme-linked immuno-sorbent assay (ELISA) using a monoclonal antibody against this antigen. RSA increased over time in the serum and alveolar lavage fluid of R. oryzae-infected mice. RSA was also detected in serum and alveolar fluid, even at an early stage (Day 1), when the tissue invasion of R. oryzae mycelium was not histopathologically detectable in the lungs of R. oryzae-infected mice. Further evaluation is needed to determine the feasibility of using this assay in clinical practice.


Asunto(s)
Antígenos Fúngicos , Biomarcadores , Ensayo de Inmunoadsorción Enzimática , Mucormicosis , Rhizopus oryzae , Mucormicosis/diagnóstico , Animales , Ratones , Antígenos Fúngicos/inmunología , Antígenos Fúngicos/sangre , Biomarcadores/sangre , Líquido del Lavado Bronquioalveolar/microbiología , Modelos Animales de Enfermedad , Anticuerpos Monoclonales , Rhizopus/aislamiento & purificación , Pulmón/microbiología , Pulmón/patología , Humanos , Pruebas Serológicas/métodos
18.
J Sep Sci ; 47(11): e2300730, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38819790

RESUMEN

A fast and effective analytical method with biomass solid-phase microextraction sorbent combined with a high-performance liquid chromatography-ultraviolet detector was proposed for the determination of benzoylurea (BU) insecticides in tea products. The novel sorbent was prepared by activating and then carbonizing water hyacinth with a fast growth rate and low application value as raw material and showed a high specific surface area and multiple interactions with analytes, such as electrostatic action, hydrogen bonding, and π-π conjugation. After optimizing the three most important extraction parameters (pH [X1], sample loading rate [X2], and solution volume [X3]) by Box-Behnken design, the as-established analytical method showed good extraction performance: excellent recovery (80.13%-106.66%) and wide linear range (1-400 µg/L) with a determination coefficient of 0.9992-0.9999, a low limit of detection of 0.02-0.1 µg/L and the satisfactory practical application results in tea products. All these indicate that the water hyacinth-derived material has the potential as a solid-phase extraction sorbent for the detection and removal of BU insecticides from tea products, and at the same time, it can also achieve the effect of rational use of biological resources, maintaining ecological balance, turning waste into treasure, and achieving industrial production.


Asunto(s)
Biomasa , Eichhornia , Insecticidas , , Insecticidas/análisis , Insecticidas/química , Insecticidas/aislamiento & purificación , Eichhornia/química , Té/química , Adsorción , Cromatografía Líquida de Alta Presión , Microextracción en Fase Sólida , Compuestos de Fenilurea/análisis , Compuestos de Fenilurea/química , Compuestos de Fenilurea/aislamiento & purificación
19.
Adv Colloid Interface Sci ; 329: 103196, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38781828

RESUMEN

A growing number of variables, including rising population, water scarcity, growth in the economy, and the existence of harmful heavy metals in the water supply, are contributing to the increased demand for wastewater treatment on a global scale. One of the innovative water treatment technologies is the adsorptive removal of heavy metals through the application of natural and engineered adsorbents. However, adsorption currently has setbacks that prevent its wider application for heavy metals sequestration from aquatic environments using various adsorbents, including difficulty in selecting suitable desorption eluent to recover adsorbed heavy metals and regeneration techniques to recycle the spent adsorbents for further use and safe disposal. Therefore, the recovery of adsorbed heavy metal ions and the ability to reuse the spent adsorbents is one of the economic and environmental sustainability approaches. This study presents a state-of-the-art critical review of different desorption agents that could be used to retrieve heavy metals and regenerate the spent adsorbents for further adsorption-desorption processes. Additionally, an attempt was made to discuss and summarize some of the independent factors influencing heavy metals desorption, recovery, and adsorbent regeneration. Furthermore, isotherm and kinetic modeling have been summarized to provide insights into the adsorption-desorption mechanisms of heavy metals. Finally, the review provided future perspectives to provide room for researchers and industry players who are interested in heavy metals desorption, recovery, and spent adsorbents recycling to reduce the high cost of adsorbents reproduction, minimize secondary waste generation, and thereby provide substantial economic and environmental benefits.

20.
Talanta ; 276: 126189, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38718645

RESUMEN

A film composed of agarose and graphene (G) and magnetic nanoparticles (G-MNPs) is proposed as a sorbent for the extraction and determination of medroxyprogesterone (MED), levonorgestrel (LEV), norethisterone (NOR) and progesterone (PRO) in natural water samples. Both the preparation of the film and the extraction procedure were optimized. The optimal extraction parameters were as follows: isopropyl alcohol as activation solvent, sample pH value of 3.0, extraction time of 30 min, 1.00 mL of acetonitrile as eluent, elution time of 5 min and sample volume of 100.00 mL. HPLC with photodiode array detector was used for the separation and determination. The method presented a linear range between 2.50 and 75.0 µg L-1 for all analytes, and the LODs were between 1.40 and 1.80 µg L-1. The method was applied to natural water samples, obtaining satisfactory recovery values (75-111 %). In conclusion, for the immobilization of the G-MNPs, agarose was used, which is a non-toxic, renewable and biodegradable material. The G-MNPs-agarose film was reused up to 70 times, without losing its extraction capacity significantly and presenting excellent sorbent properties, which allow the extraction and preconcentration of the progestogens under study.


Asunto(s)
Progestinas , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/aislamiento & purificación , Contaminantes Químicos del Agua/química , Progestinas/aislamiento & purificación , Progestinas/análisis , Progestinas/química , Adsorción , Nanopartículas de Magnetita/química , Extracción en Fase Sólida/métodos , Sefarosa/química , Cromatografía Líquida de Alta Presión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...