Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39065419

RESUMEN

Studying the influence of the host plant genotype on the spectral reflectance of crops infected by a pathogen is one of the key directions in the development of precision methods for monitoring the phytosanitary state of wheat agrocenoses. The purpose of this research was to study the influence of varietal factors and disease development on the spectral characteristics of winter wheat varieties of different susceptibility to diseases during the growing seasons of 2021, 2022 and 2023. The studied winter wheat crops were represented by three varieties differing in susceptibility to phytopathogens: Grom, Svarog and Bezostaya 100. Over three years of research, a clear and pronounced influence of the varietal factor on the spectral characteristics of winter wheat crops was observed, which in most cases manifested itself as an immunological reaction of specific varieties to the influence of pathogen development. The nature of the influence of the pathogenic background and the spectral characteristics of winter wheat crops were determined by the complex interaction of the development of individual diseases under the conditions of a particular year of research. A uniform and clear division of the spectral characteristics of winter wheat according to the intensity of the disease was recorded only at a level of pathogen development of more than 5%. Moreover, this gradation was most clearly manifested in the spectral channels of the near-infrared range and at a wavelength of 720 nm.

2.
PeerJ ; 12: e17663, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39035157

RESUMEN

Background: The species composition of and changes in grassland communities are important indices for inferring the number, quality and community succession of grasslands, and accurate monitoring is the foundation for evaluating, protecting, and utilizing grassland resources. Remote sensing technology provides a reliable and powerful approach for measuring regional terrain information, and the identification of grassland species by remote sensing will improve the quality and effectiveness of grassland monitoring. Methods: Ground hyperspectral images of a sericite-Artemisia desert grassland in different seasons were obtained with a Soc710 VP imaging spectrometer. First-order differential processing was used to calculate the characteristic parameters. Analysis of variance was used to extract the main species, namely, Seriphidium transiliense (Poljak), Ceratocarpus arenarius L., Petrosimonia sibirica (Pall), bare land and the spectral characteristic parameters and vegetation indices in different seasons. On this basis, Fisher discriminant analysis was used to divide the samples into a training set and a test set at a ratio of 7:3. The spectral characteristic parameters and vegetation indices were used to identify the three main plants and bare land. Results: The selection of parameters with significant differences (P < 0.05) between the recognition objects effectively distinguished different land features, and the identification parameters also differed due to differences in growth period and species. The overall accuracy of the recognition model established by the vegetation index decreased in the following order: June (98.87%) > September (91.53%) > April (90.37%). The overall accuracy of the recognition model established by the feature parameters decreased in the following order: September (89.77%) > June (88.48%) > April (85.98%). Conclusions: The recognition models based on vegetation indices in different months are superior to those based on feature parameters, with overall accuracies ranging from 1.76% to 9.40% higher. Based on hyperspectral image data, the use of vegetation indices as identification parameters can enable the identification of the main plants in sericite-Artemisia desert grassland, providing a basis for further quantitative classification of the species in community images.


Asunto(s)
Clima Desértico , Pradera , Tecnología de Sensores Remotos/métodos , Imágenes Hiperespectrales/métodos , Artemisia/clasificación , China , Estaciones del Año , Análisis Discriminante
3.
Artículo en Inglés | MEDLINE | ID: mdl-39017871

RESUMEN

Biomass pretreatment for the production of second-generation (2G) ethanol and biochemical products is a challenging process. The present study investigated the synergistic efficiency of purified carboxymethyl cellulase (CMCase), ß-glucosidase, and xylanase from Aspergillus fumigatus JCM 10253 in the hydrolysis of alkaline-pretreated sugarcane bagasse (SCB). The saccharification of pretreated SCB was optimised using a combination of CMCase and ß-glucosidase (C + ß; 1:1) and addition of xylanase (C + ß + xyl; 1:1:1). Independent and dependent variables influencing enzymatic hydrolysis were investigated using response surface methodology (RSM). Hydrolysis using purified CMCase and ß-glucosidase achieved yields of 18.72 mg/mL glucose and 6.98 mg/mL xylose. Incorporation of xylanase in saccharification increased the titres of glucose (22.83 mg/mL) and xylose (9.54 mg/mL). Furthermore, characterisation of SCB biomass by scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy respectively confirmed efficient structural disintegration and revealed the degree of crystallinity and spectral characteristics. Therefore, depolymerisation of lignin to produce high-value chemicals is essential for sustainable and competitive biorefinery development.

4.
Chemosphere ; 362: 142598, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38871194

RESUMEN

Soil dissolved organic matter (SDOM) is an important part of the DOM pool in terrestrial systems, influencing the transport and fate of many pollutants. In this study, SDOMs from different regions across China were compared by a series of spectroscopic methods, including UV-vis spectroscopy, fluorescence spectroscopy, and Fourier transform infrared (FTIR) spectroscopy, and the hydrophobicity was quantified by partition coefficients of SDOM in the aqueous two-phase system (KATPS). The molecular weight, aromaticity, and hydrophobicity of SDOM from different regions exhibited strong heterogeneity, KATPS combined with UV-vis and fluorescence indices can be readily used for differentiating heterogeneous SDOM, and SDOMs were compositionally and structurally different from DOMs in aquatic systems based on spectral characterization. Importantly, the two-phase system (TPS) model has only been validated by DOMs in freshwater systems, and good organic carbon‒water partition coefficient (KOC) predictive power (RMSE = 0.11) could be provided by the TPS model when applied to heterogeneous SDOM without calibration, showing its broad applicability. Our results demonstrate the applicability of the TPS model for predicting the sorption behavior of terrestrial DOM, broadening the application scope of the TPS model and indicating its potential as a routine model for the risk assessment of hydrophobic organic compounds (HOCs) in organic contaminated sites.

5.
Sensors (Basel) ; 24(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38794038

RESUMEN

The U-shaped fiber configuration represents the elementary form of micro-displacement sensing, characterized by its exceptional freedom and flexibility. The study proposes the U-shaped bent single-mode-multimode-single-mode (SMS) fiber structure that integrates the multimode interference (MMI) effect for enhanced mode dispersion and the Mach-Zönder interference (MZI) effect for spectral sensitivity improvement. The transmission spectral properties of the U-shaped SMS fiber structure with a bent radius over 1 cm are experimentally measured as the change in displacement varied within the range of 5 mm in this work. As the radius decreases, the spectrum shows redshift, which is related to the central wavelength of the peak or dips-a smaller wavelength results in a stronger redshift for the same displacement change. The average sensitivity of micro-displacement measurement within a range of 5 mm is 5.41 pm/µm, and the linearity is 99.62%. The maximum sensitivity of U-shaped SMS fiber structure is 34.46 pm/µm, with the minimum displacement change of approximately 5.804 nm. The transmission spectral properties of the U-shaped SMS fiber structure within the ranges of 50 µm, 500 µm, and 5 mm are experimentally measured in this work. This experiment observed a relatively uniform spectral drift pattern in a large range of micro-displacement sensing. The measurement range is limited by the limited spectral range of the light source and the discontinuous variation in the effective refractive index. This provides an experimental reference for further understanding the characteristics of U-shaped fiber structures and applying its application in micro-displacement sensing.

6.
Sensors (Basel) ; 24(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38794051

RESUMEN

In recent years, the incidence of thyroid cancer has rapidly increased. To address the issue of the inefficient diagnosis of thyroid cancer during surgery, we propose a rapid method for the diagnosis of benign and malignant thyroid nodules based on hyperspectral technology. Firstly, using our self-developed thyroid nodule hyperspectral acquisition system, data for a large number of diverse thyroid nodule samples were obtained, providing a foundation for subsequent diagnosis. Secondly, to better meet clinical practical needs, we address the current situation of medical hyperspectral image classification research being mainly focused on pixel-based region segmentation, by proposing a method for nodule classification as benign or malignant based on thyroid nodule hyperspectral data blocks. Using 3D CNN and VGG16 networks as a basis, we designed a neural network algorithm (V3Dnet) for classification based on three-dimensional hyperspectral data blocks. In the case of a dataset with a block size of 50 × 50 × 196, the classification accuracy for benign and malignant samples reaches 84.63%. We also investigated the impact of data block size on the classification performance and constructed a classification model that includes thyroid nodule sample acquisition, hyperspectral data preprocessing, and an algorithm for thyroid nodule classification as benign and malignant based on hyperspectral data blocks. The proposed model for thyroid nodule classification is expected to be applied in thyroid surgery, thereby improving surgical accuracy and providing strong support for scientific research in related fields.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Nódulo Tiroideo , Nódulo Tiroideo/patología , Nódulo Tiroideo/clasificación , Nódulo Tiroideo/diagnóstico , Humanos , Neoplasias de la Tiroides/clasificación , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/diagnóstico , Imágenes Hiperespectrales/métodos , Procesamiento de Imagen Asistido por Computador/métodos
7.
Int J Biol Macromol ; 270(Pt 2): 132171, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729478

RESUMEN

Melanoidins are complex macromolecular compounds closely associated with the browning phenomenon in high-temperature sterilized lotus rhizome juice (HTSL). This study aimed to preliminarily investigate the structural properties of melanoidins extracted from HTSL. Results showed that the average molecular weight of HTSL melanoidins ranged from 1.48 to 41.40 kDa. Medium and high molecular weight melanoidins were the main contributors to the brown color of HTSL. Sugars, proteins, and phenolics were present in HTSL, among which sugar was the most abundant, with glucose being the predominant monosaccharide in acid degradation products of melanoidins. Through fluorescence and ultraviolet spectral analysis, we found that the melanoidins contained carboxyl and carbonyl compounds, as well as furan and pyran heterocyclic compounds. The infrared spectra and nuclear magnetic resonance spectra revealed a prominent sugar absorption peak, indicating that sugar was the main component of the melanoidins of HTSL. Furthermore, in vitro antioxidant experiments showed that the antioxidant activity of melanoidins was significantly positively correlated with phenolic compounds. Our results indicated that there were differences in the structural properties of melanoidins fractions with different molecular weights. MW-H fraction significantly impacted the color and antioxidant activity of HTSL.


Asunto(s)
Antioxidantes , Lotus , Rizoma , Rizoma/química , Antioxidantes/química , Antioxidantes/farmacología , Lotus/química , Peso Molecular , Fenoles/química , Fenoles/farmacología , Calor , Polímeros
8.
Nanomaterials (Basel) ; 14(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38727331

RESUMEN

Among different inorganic and organic polarizer elements, thin-film light polarizers occupy a special place because of their flexibility, ease of integration into any optoelectronic circuit, and good functioning in the visible and near-infrared spectral range and can compete with Glan and Nicolas volumetric prisms. This paper presents the results of a study on how carbon-based nanoparticles influence on the basic properties of a well-known PVA-based polymer matrix, using which it is possible to obtain good transparency for parallel light components. An accent is made on graphene oxide nanoparticles, which are used as PVA sensitizers. It was shown for the first time that the structuring of PVA with graphene oxides allows an increased transmittance of the parallel light component to be obtained, saving the transmittance of the orthogonal one. Moreover, the graphene network can increase the mechanical strength of such thin-film PVA-based polarizers and provoke a change in the wetting angle. These advantages make it possible to use graphene oxide-structured thin-film light polarizers based on a PVA matrix as an independent optoelectronic element. Some comparative results for polarizers based on PVA-C70 structures are shown as well.

9.
J Mol Model ; 30(5): 123, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573432

RESUMEN

CONTEXT: To gain a deeper understanding of zinc-doped boron clusters, theoretical calculations were performed to investigate the size effects and electronic properties of zinc-doped boron clusters. The study of the electronic properties, spectral characteristics, and geometric structures of Zn B n (n = 1-15) is of great significance in the fields of semiconductor materials science, material detection, and improving catalytic efficiency. The results indicate that Zn B n (n = 1-15) clusters predominantly exhibit planar or quasi-planar structures, with the Zn atom positioned in the outer regions of the B n framework. The second stable structure of Zn B 3 is a three-dimensional configuration, indicating that the structures of zinc-doped boron clusters begin to convert from the planar or quasi-planar structures to the 3D configurations. The second low-energy structure of Zn B 15 is a novel configuration. Relative stability analyses show that the Zn B 12 has better chemical stability than other clusters with a HOMO-LUMO gap of 2.79 eV. Electric charge analysis shows that part electrons on zinc atoms are transferred to boron atoms, and electrons prefer to cluster near the B n framework. According to the electron localization function, it gets harder to localize electrons as the equivalent face value drops, and it's challenging to see covalent bond formation between zinc and boron atoms. The spectrograms of Zn B n (n = 1-15) exhibit distinct properties and notable spectral features, which can be used as a theoretical basis for the identification and confirmation of boron clusters doped with single-atom transition metals. METHODS: The calculations were performed using the ABCluster global search technique combined with density functional theory (DFT) methods. The selected low-energy structures were subjected to geometric optimization and frequency calculations at the PBE0/6-311 + G(d) level to ensure structural stability and eliminate any imaginary frequencies. To acquire more precise relative energies, we performed single-point energies calculations for the low-lying isomers of Zn B n (n = 1-15) at the CCSD(T)/6-311 + G(d)//PBE0/6-311 + G(d) level of theory. All calculations were performed using Gaussian 09 software. To facilitate analysis, we utilized software tools such as Multiwfn, and VMD.

10.
Environ Sci Pollut Res Int ; 31(16): 24250-24262, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38436847

RESUMEN

Biochar-derived dissolved organic matter (BDOM) has the potential to influence the environmental application of biochar and the behavior of heavy metals. In this study, the binding properties of BDOM derived from livestock manure biochar at different pyrolysis temperatures with Cu(II) were investigated based on a multi-analytical approach. The results showed that the DOC concentration, aromatics, and humification degree of BDOM were higher in the process of low pyrolysis of biochar. The pyrolysis temperature changed the composition of BDOM functional groups, which affected the binding mechanism of BDOM-Cu(II). Briefly, humic-like and protein-like substances dominated BDOM-Cu(II) binding at low and high pyrolysis temperatures, respectively. The higher binding capacity for Cu(II) was exhibited by BDOM derived from the lower pyrolysis temperature, due to the carboxyl as the main binding site in humic acid had high content and binding ability at low-temperature. The amide in proteins only participated in the BDOM-Cu(II) binding at high pyrolysis temperature, and polysaccharides also played an important role in the binding process. Moreover, the biochar underwent the secondary reaction at certain high temperatures, which led to condensation reaction of the aromatic structure and the conversion of large molecules into small molecules, affecting the BDOM-Cu(II) binding sites.


Asunto(s)
Ganado , Estiércol , Animales , Temperatura , Pirólisis , Carbón Orgánico/química , Sustancias Húmicas/análisis , Proteínas
11.
Molecules ; 29(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38276620

RESUMEN

The chemistry of conjugated nitrodienes is becoming increasingly popular. These molecules are successfully applied in cycloaddition to synthesize six-membered rings in Diels-Alder reactions. Nitrodienes can be also applied to obtain bis-compounds in [3+2] cycloaddition. Moreover, the presence of a nitro group in the structure provides a possibility of further modification of the products. The simplest symmetrical representative of conjugated nitrodienes is (1E,3E)-1,4-dinitro-1,3-butadiene. Although the first mentions of the compound date back to the early 1950s, the compound has not yet been examined thoroughly enough. Therefore, in this article, a comprehensive study of (1E,3E)-1,4-dinitro-1,3-butadiene has been described. For this purpose, an experimental study including the synthesis process as well as an evaluation of the spectral characteristics has been conducted. So as to better understand the properties of this compound, a computational study of reactivity indices based on MEDT and also an assessment of pharmacokinetics and biological activity according to ADME and PASS methodologies have been made. On this basis, some future application trends of (1E,3E)-1,4-dinitro-1,3-butadiene have been proposed.


Asunto(s)
Butadienos , Butadienos/química , Simulación por Computador
12.
Chemosphere ; 351: 141172, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38211797

RESUMEN

Biochar as an effective adsorbent can be used for the removal of triclocarban from wastewater. Biochar-derived dissolved organic carbon (BC-DOC) is an important carbonaceous component of biochar, nonetheless, its role in the interaction between biochar and triclocarban remains little known. Hence, in this study, sixteen biochars derived from pine sawdust and corn straw with different physico-chemical properties were produced in nitrogen-flow and air-limited atmospheres at 300-750 °C, and investigated the effect of BC-DOC on the interaction between biochar and triclocarban. Biochar of 600∼750 °C with low polarity, high aromaticity, and high porosity presented an adsorption effect on triclocarban owing to less BC-DOC release as well as the strong π-π, hydrophobic, and pore filling interactions between biochar and triclocarban. In contrast and intriguingly, biochar of 300∼450 °C with low aromaticity and high polarity exhibited a significant solubilization effect rather than adsorption effect on triclocarban in aqueous solution. The maximum solubilization content of triclocarban in biochar-added solution reached approximately 3 times its solubility in biochar-free solution. This is mainly because the solubilization effect of BC-DOC surpassed the adsorption effect of biochar though the BC-DOC only accounted for 0.01-1.5 % of bulk biochar mass. Furthermore, the high solubilization content of triclocarban induced by biochar was dependent on the properties of BC-DOC as well as the increasing BC-DOC content. BC-DOC with higher aromaticity, larger molecular size, higher polarity, and more humic-like matters had a greater promoting effect on the water-solubility of triclocarban. This study highlights that biochar may promote the solubility of some organic pollutants (e.g., triclocarban) in aqueous environment and enhance their potential risk.


Asunto(s)
Carbanilidas , Carbón Orgánico , Materia Orgánica Disuelta , Solubilidad , Carbón Orgánico/química , Agua , Adsorción
13.
J Fluoresc ; 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37665510

RESUMEN

Herein, we report the extraction of natural pigment curcumin from curcuma longa and their linear and third-order nonlinear optical (NLO) characteristics. The characterization techniques viz., UV-Visible absorption, FT-IR, Micro Raman and Gas Chromatography Mass Spectrum (GC-MS) are used to study the spectral characteristics of curcumin. Third-order NLO features of curcumin are studied using Z‒scan technique with a semiconductor diode laser working at 405 nm wavelength. The natural pigment exhibits negative nonlinear index of refraction resulting from self-defocusing and positive coefficient of absorption is the consequence of reverse saturable absorption (RSA). The order of nonlinear index of refraction (n2) and nonlinear coefficient of absorption (ß) is measured to be 10-7 cm2/W and 10-2 cm/W, respectively. Third-order NLO susceptibility (χ(3)) and second-order hyperpolarizability (γ) of curcumin is measured to be 2.73 × 10‒7 esu and 1.67 × 10‒31 esu, respectively. A low optical limiting (OL) threshold of 0.71 mW is observed in the extracted pigment. The experimental results are supplemented by quantum mechanical calculations of the NLO parameters. The overall result finding is that curcumin extracted from curcuma longa has the potential to be novel optical candidates for photonics and optoelectronics applications.

14.
Environ Geochem Health ; 45(11): 8203-8219, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37555879

RESUMEN

Some soils in the Yueliangbao gold mining area have been contaminated by heavy metals, resulting in variations in vegetation. Hyperspectral remote sensing provides a new perspective for heavy metal inversion in vegetation. In this paper, we collected ground truth spectral data of three dominant vegetation species, Miscanthus floridulus, Equisetum ramosissimum and Eremochloa ciliaris, from contaminated and healthy non-mining areas of the Yueliangbao gold mining region, and determined their heavy metal contents. Firstly, we compared the spectral characteristics of vegetation in the mining and non-mining areas by removing the envelope and derivative transformation. Secondly, we extracted their characteristic identification bands using the Mahalanobis distance and PLS-DA method. Finally, we constructed the inverse model by selecting the vegetation index (such as the PRI, DCNI, MTCI, etc.) related to the characteristic band combined with the heavy metal content. Compared to previous studies, we found that the pollution level in the Yueliangbao gold mining area had greatly reduced, but arsenic metal pollution remained a serious issue. Miscanthus floridulus and Eremochloa ciliaris in the mining area exhibited obvious arsenic stress, with a large "red-edge blue shift" (9 and 6 nm). The extracted characteristic wavebands were around 550 and 680-740 nm wavelengths, and correlation analysis showed significant correlations between vegetation index and arsenic, allowing us to construct a prediction model for arsenic and realize the calculation of heavy metal content using vegetation spectra. This provides a methodological basis for monitoring vegetation pollution in other gold mining areas.


Asunto(s)
Arsénico , Metales Pesados , Contaminantes del Suelo , Arsénico/toxicidad , Arsénico/análisis , Oro/análisis , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Metales Pesados/toxicidad , Metales Pesados/análisis , Minería , Poaceae , Suelo , Monitoreo del Ambiente/métodos , China
15.
J Environ Manage ; 344: 118556, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37453302

RESUMEN

Magnetic biochar has been widely used in potentially toxic elements (PTEs) polluted soils due to its magnetic separation capability and synchronous immobilization for multiple metals. However, the contribution of magnetic biochar to soil dissolve organic material (SDOM) and its binding behavior with PTEs needs to be further clarified prior to its remediation application on lead smelting sites. In this study, multi-spectral techniques of excitation-emission matrix (EEM) fluorescence spectroscopy and two-dimensional FTIR correlation spectroscopy (2D-FTIR-COS) were used to explore the evolution characteristics of SDOM in the lead smelting site under the remediation of magnetic biochar, and to further analyze its affinity and binding behavior with Pb and As. Results showed that magnetic biochar significantly increased SDOM content and decreased Pb and As available content. EEM and parallel factor analysis (EEM-PARAFAC) and Self-Organizing map analysis showed that humus-like and aromatic DOM increased and microbial-derived SDOM decreased after magnetic biochar cultivation. Furthermore, 2D-FTIR-COS correlation spectroscopy analysis indicated that BDOM had a stronger binding affinity to Pb, while SDOM has a stronger binding affinity to As. The binding sequences of different DOMs to PTEs varied greatly, the carboxyl and amide groups of SDOM and BDOM showed a remarkable and rapid response. Our results enhance the insights of magnetic biochar on soil function and PTEs remediation potential, providing novel information for its environmental remediation application.


Asunto(s)
Materia Orgánica Disuelta , Plomo , Carbón Orgánico/química , Suelo/química , Espectrometría de Fluorescencia/métodos , Sustancias Húmicas/análisis
16.
J Environ Manage ; 345: 118596, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37421722

RESUMEN

The compost-derived humic acids (HA) and fulvic acids (FA) contain abundant active functional groups with strong redox capacity, which can function as an electron shuttles for promoting the reduction of heavy metals, thus changing the form of the pollutants in the environment and reducing their toxicity. Therefore, in this study, UV-Vis, FTIR, 3D-EEM, electrochemical analysis were applied to study the spectral characteristics and electron transfer capacity (ETC) of HA and FA. Upon analysis, the results showed an increasing trend of ETC and humification degree (SUVA254) for both HA and FA during composting. However, the aromatic degree (SUVA280) of HA was higher than FA. After 7 days of culture, 37.95% of Cr (Ⅵ) was reduced by Shewanella oneidensis MR-1 (MR-1) alone. Whereas, only if HA or FA existed, the diminution of Cr (Ⅵ) reached 37.43% and 40.55%, respectively. However, the removal rate of Cr (Ⅵ) by HA/MR-1 and FA/MR-1 increased to 95.82% and 93.84% respectively. It indicated that HA and FA acted as electron shuttles, mediating the transfer of electrons between MR-1 and the final electron acceptor, effectively facilitating the bioreduction of Cr (Ⅵ) to Cr (Ⅲ) and also determined via correlation analysis. This study suggested compost-derived HA and FA coupling with MR-1 exhibited excellent performance for the bioreduction of Cr (Ⅵ) to Cr (Ⅲ).


Asunto(s)
Compostaje , Shewanella , Cromo , Oxidación-Reducción , Sustancias Húmicas/análisis
17.
Molecules ; 28(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36903493

RESUMEN

Biochar-derived dissolved organic carbon (BDOC), as a highly activated carbonaceous fraction of biochar, significantly affects the environmental effect of biochar. This study systematically investigated the differences in the properties of BDOC produced at 300-750 °C in three atmosphere types (including N2 and CO2 flows and air limitation) as well as their quantitative relationship with biochar properties. The results showed that BDOC in biochar pyrolyzed in air limitation (0.19-2.88 mg/g) was more than that pyrolyzed in N2 (0.06-1.63 mg/g) and CO2 flows (0.07-1.74 mg/g) at 450-750 °C. The aliphaticity, humification, molecular weight, and polarity of BDOC strongly depended on the atmosphere types as well as the pyrolysis temperatures. BDOC produced in air limitation contained more humic-like substances (0.65-0.89) and less fulvic-like substances (0.11-0.35) than that produced in N2 and CO2 flows. The multiple linear regression of the exponential form of biochar properties (H and O contents, H/C and (O+N)/C) could be used to quantitatively predict the bulk content and organic component contents of BDOC. Additionally, self-organizing maps could effectively visualize the categories of fluorescence intensity and components of BDOC from different pyrolysis atmospheres and temperatures. This study highlights that pyrolysis atmosphere types are a crucial factor controlling the BDOC properties, and some characteristics of BDOC can be quantitatively evaluated based on the properties of biochar.


Asunto(s)
Materia Orgánica Disuelta , Pirólisis , Temperatura , Dióxido de Carbono/análisis , Carbón Orgánico , Sustancias Húmicas/análisis , Carbono
18.
Cells ; 12(3)2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36766719

RESUMEN

Identifying infectious pathogens quickly and accurately is significant for patients and doctors. Identifying single bacterial strains is significant in eliminating culture and speeding up diagnosis. We present an advanced optical method for the rapid detection of infectious (including common and uncommon) pathogens by combining hyperspectral microscopic imaging and deep learning. To acquire more information regarding the pathogens, we developed a hyperspectral microscopic imaging system with a wide wavelength range and fine spectral resolution. Furthermore, an end-to-end deep learning network based on feature fusion, called BI-Net, was designed to extract the species-dependent features encoded in cell-level hyperspectral images as the fingerprints for species differentiation. After being trained based on a large-scale dataset that we built to identify common pathogens, BI-Net was used to classify uncommon pathogens via transfer learning. An extensive analysis demonstrated that BI-Net was able to learn species-dependent characteristics, with the classification accuracy and Kappa coefficients being 92% and 0.92, respectively, for both common and uncommon species. Our method outperformed state-of-the-art methods by a large margin and its excellent performance demonstrates its excellent potential in clinical practice.


Asunto(s)
Enfermedades Transmisibles , Aprendizaje Profundo , Humanos , Diferenciación Celular , Imágenes Hiperespectrales
19.
Environ Geochem Health ; 45(3): 913-923, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35366716

RESUMEN

Dissolved organic matter (DOM) plays an important role in promoting or suppressing methylmercury (MeHg) production in wetlands. However, the effects of DOM spectral characteristics on MeHg levels remain poorly understood in boreal peatlands in Northeast China, where is undergoing remarkable climate warming. In the present work, soil samples were collected from 22 peatlands in the Greater Khingan Mountains (GKM) to test the hypothesis that DOM spectral properties control MeHg levels. DOM was characterized by UV-Vis absorption and fluorescence spectroscopy; the three-dimensional fluorescence excitation-emission matrix (EEM) was used to unveil the origin of DOM. The average total mercury (THg) and MeHg contents were 112.76 µg/kg and 12.43 µg/kg across all peatlands, respectively. There was a significantly positive correlation between MeHg and the longitude spanning the range from 120 to 123°E (p < 0.05). Proportions of MeHg to THg (%MeHg), 12.3% on average, were positively correlated with DOM humification degree at p < 0.05 level. Protein-like components of DOM (P-like) were negatively related to %MeHg. DOM had positive effects on THg, and P-like components, HIX and BIX can negatively affect THg as well as MeHg. Our findings demonstrate that the spectral characteristics of DOM in soil are crucial to the content of methyl mercury in the GKM soil.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Materia Orgánica Disuelta , Mercurio/análisis , Suelo/química , Espectrometría de Fluorescencia , China
20.
J Hazard Mater ; 442: 130076, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36193612

RESUMEN

Characterization of the biochar-derived dissolved organic matter (BDOM) is essential to understanding the environmental efficacy of biochar and the behavior of heavy metals. In this study, the binding properties of BDOM derived from different pyrolysis temperatures, wetland plants, and plant organs with Cu was investigated based on a multi-analytical approach. In general, the pyrolysis temperature exhibited a more significant impact on both the spectral characteristics of BDOM and Cu binding behavior than those of the feedstocks. With the pyrolysis temperature increased, the dissolved organic carbon, aromaticity, and fluorescence substance of BDOM decreased and the structure became more condensed. Humic-and tryptophan-like substance was more susceptible to the addition of Cu for BDOM pyrolyzed at 300 â„ƒ and 500 â„ƒ, respectively. In addition, the more tyrosine-like substance is involved in Cu binding at higher pyrolysis temperature (500 â„ƒ). However, the fluvic-like substance occurred preferentially with Cu than the other fluorophores. Moreover, the higher binding capacity for Cu was exhibited by the humic-like substance and by BDOM derived from the higher pyrolysis temperature and the lower elevation plants with the corresponding average stability constants (log KM) of 5.58, 5.36, and 5.16.


Asunto(s)
Metales Pesados , Pirólisis , Temperatura , Cobre/química , Materia Orgánica Disuelta , Humedales , Triptófano , Carbón Orgánico/química , Sustancias Húmicas/análisis , Tirosina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...