Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 645
Filtrar
1.
Molecules ; 29(18)2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39339388

RESUMEN

(R)-1, 3-Butanediol (1, 3-BDO) is an important intermediate in the synthesis of aromatics, pheromones, insecticides, and beta-lactam antibiotics. The ChKRED20 is a robust NADH-dependent ketoreductase identified from Chryseobacterium sp. CA49. We obtained a ChKRED20 mutant (M12) through directed evolutionary screening of ChKRED20, the mutant with significantly improved activity to asymmetrically reduce 4-hydroxy-2-butanone (4H2B) to (R)-1, 3-BDO. So far, both ChKRED20 and its mutants have been expressed in intracellular in E. coli, the process of purification after intracellular expression is complicated, which leads to high cost. Here, we expressed M12 by constructing multicopy expression strains in P. pastoris, and the target protein yield was 302 mg/L in shake-flask fermentation and approximately 3.5 g/L in high-density fermentation. The recombinant M12 showed optimal enzyme activity at 30 °C and had high activity within a broad pH range of 6.0-8.0, and also showed high thermal stability. The recombinant M12 was further used for the reduction of 4H2B to (R)-1, 3-BDO, and 98.9% yield was achieved at 4540 mM 4H2B. The crude M12 enzyme extract was found to catalyze the bioreductive production of (R)-1, 3-BDO with excellent stereoselectivity (ee > 99%) and meet the production requirements. Our research shows that the M12 mutant can be used for the synthesis of (R)-1, 3-BDO, and the P. pastoris expression system is an ideal platform for the large-scale, low-cost preparation of ChKRED20 or its mutants, which may have applications in industrial settings.


Asunto(s)
Butileno Glicoles , Butileno Glicoles/metabolismo , Fermentación , Mutación , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Saccharomycetales/enzimología , Concentración de Iones de Hidrógeno , Expresión Génica
2.
J Agric Food Chem ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39321313

RESUMEN

Isopyrazam (IPZ) is a new chiral fungicide. For bioactivity, there was a 3.37-1578 times difference among the four stereoisomers. For Alternaria alternata and Phoma multirostrata, cis-(1S,4R,9S)-IPZ had the greatest activity. Using cis-IPZ might improve the efficacy and reduce the dosage of the racemate by 54.7-72.2% for A. alternata and P. multirostrata. To zebrafish, trans-IPZ showed the highest acute toxicity (LC50, 0.096 mg/L). The degradation half-lives of IPZ stereoisomers in the five crops ranged from 3.50 to 15.2 days. Cis-IPZ was preferentially degraded in grape, pear, and celery. The residual concentrations of IPZ in grape and celery were still higher than the maximum residue limit, and the acute and chronic dietary intake risks of IPZ in celery were unacceptable (RQa: 146-250%, HQ: 117-200%), which were worthy of further researching. Based on the research results, it is safer and more reasonable to use IPZ in the form of a racemate with a high ratio of cis-IPZ.

3.
Mol Divers ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39298085

RESUMEN

The ubiquitin-specific protease 7 (USP7), as a member of deubiquitination enzymes, represents an attractive therapeutic target for various cancers, including prostate cancer and liver cancer. The change of the inhibitor stereocenter from the S to R stereochemistry (S-ALM → R-ALM34) markedly improved USP7 inhibitory activity. However, the molecular mechanism for the stereo-selectivity of enantiomeric inhibitors to USP7 is still unclear. In this work, molecular docking, molecular dynamics (MD) simulations, molecular mechanics/Generalized-Born surface area (MM/GBSA) calculations, and free energy landscapes were performed to address this mystery. MD simulations revealed that S-ALM34 showed a high degree of conformational flexibility compared to the R-ALM34 counterpart, and S-ALM34 binding led to the enhanced intradomain motions of USP7, especially the BL1 and BL2 loops and the two helices α4 and α5. MM/GBSA calculations showed that the binding strength of R-ALM34 to USP7 was stronger than that of S-ALM34 by - 4.99 kcal/mol, a similar trend observed by experimental data. MM/GBSA free energy decomposition was further performed to differentiate the ligand-residue spectrum. These analyses not only identified the hotspot residues interacting with R-ALM34, but also revealed that the hydrophobic interactions from F409, K420, H456, and Y514 play the major determinants in the binding of R-ALM34 to USP7. This result is anticipated to shed light on energetic basis and conformational dynamics information to aid in the design of more potent and selective inhibitors targeting USP7.

4.
Bioorg Chem ; 151: 107718, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39142195

RESUMEN

S-omeprazole and R-rabeprazole are important proton pump inhibitors (PPIs) used for treating peptic disorders. They can be biosynthesized from the corresponding sulfide catalyzed by Baeyer-Villiger monooxygenases (BVMOs). During the development of BVMOs for target sulfoxide preparation, stereoselectivity and overoxidation degree are important factors considered most. In the present study, LnPAMO-Mu15 designed previously and TtPAMO from Thermothelomyces thermophilus showed high (S)- and (R)-configuration stereoselectivity respectively towards thioethers. TtPAMO was found to be capable of oxidating omeprazole sulfide (OPS) and rabeprazole sulfide (RPS) into R-omeprazole and R-rabeprazole respectively. However, the overoxidation issue existed and limited the application of TtPAMO in the biosynthesis of sulfoxides. The structural mechanisms for adverse stereoselectivity between LnPAMO-Mu15 and TtPAMO towards OPS and the overoxidation of OPS by TtPAMO were revealed, based on which, TtPAMO was rationally designed focused on the flexibility of loops near catalytic sites. The variant TtPAMO-S482Y was screened out with lowest overoxidation degree towards OPS and RPS due to the decreased flexibility of catalytic center than TtPAMO. The success in this study not only proved the rationality of the overoxidation mechanism proposed in this study but also provided hints for the development of BVMOs towards thioether substrate for corresponding sulfoxide preparation.


Asunto(s)
Dominio Catalítico , Oxidación-Reducción , Sulfuros , Sulfuros/química , Sulfuros/metabolismo , Estructura Molecular , Oxigenasas de Función Mixta/metabolismo , Oxigenasas de Función Mixta/química , Diseño de Fármacos , Relación Estructura-Actividad , Relación Dosis-Respuesta a Droga
5.
Crit Rev Biotechnol ; : 1-18, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134447

RESUMEN

Ene-reductase (ER) has been widely applied for asymmetrical synthesis of chiral intermediates due to its substrate promiscuity, photoexcited reactivity, and excellent property with producing two chiral centers at a time. Natural ERs often exhibit the same stereoselectivity, and they need to be engineered for opposite configuration of chiral compounds. The hydrogenation process toward activated alkenes by ERs is composed of reductive half reaction and oxidative half reaction, which are dependent upon two cofactors NAD(P)H and flavin mononucleotide. The catalytic activity of ERs will be affected by the size of the substrate, the activating strength of the electron-withdrawing groups, redox potential of cofactors, and the loop flexibility around catalytic cavity. Currently, protein engineering to ERs has been successfully employed to enhance various catalytic properties, including photoexcited asymmetric synthesis. This review summarizes the approaches to reverse the stereoselectivity and enhance catalytic activity of ERs and new applications of the engineered ERs in photobiocatalytic asymmetric synthesis, besides the discussion with the existing molecular mechanisms of mutants regarding the improved catalytic performance.

6.
Macromol Rapid Commun ; : e2400486, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141848

RESUMEN

A series of binuclear rare-earth metal complexes based on the ligands containing bis(phosphinophenyl)amido-PNP unit are successfully synthesized. All the ligands and the corresponding binuclear complexes are fully characterized by NMR spectra (1H, 13C, and 31P). In conjunction with [Ph3C][B(C6F5)4], all the binuclear complexes exhibited high catalytic activity and high cis-1,4-selectivity (>99%) toward the polymerization of 1,3-conjugated dienes (isoprene, ß-myrcene and ß-farnesene) with excellent livingness at room temperature or even 80 °C.

7.
J Agric Food Chem ; 72(34): 18909-18917, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39141781

RESUMEN

Understanding the stereoselective bioactivity of chiral pesticides is crucial for accurately evaluating their effectiveness and optimizing their use. Isopyrazam, a widely used chiral SDHI fungicide, has been studied for its antifungal activity only at the racemic level. Therefore, to clarify the highly bioactive isomers, the stereoselective bioactivity of isopyrazam isomers against four typical phytopathogens was studied for the first time. The bioactivity ranking of the isomers was trans-1S,4R,9R-(+)-isopyrazam > cis-1R,4S,9R-(+)-isopyrazam > trans-1R,4S,9S-(-)-isopyrazam > cis-1S,4R,9S-(-)-isopyrazam. SDH activity was assessed by molecular docking simulation and actual detection to confirm the reasons for stereoselective bioactivity. The results suggest that the stereoselective bioactivity of isopyrazam is largely dependent on the differential binding ability of each isomer to the SDH ubiquitin-binding site, located within a cavity formed by the iron-sulfur subunit, the cytochrome b560 subunit, and the cytochrome b small subunit. Moreover, to reveal the molecular mechanism of isopyrazam stereoselectively affecting mycelial growth, the contents of succinic acid, fumaric acid, and ATP were measured. Furthermore, by measuring exospore polysaccharides and oxalic acid content, it was determined that 1S,4R,9R-(+)- and 1R,4S,9R-(+)-isopyrazam more strongly inhibited the ability of Sclerotinia sclerotiorum to infect plants. The findings provided essential data for the development of high-efficiency isopyrazam fungicides and offered a methodological reference for analyzing the enantioselective activity mechanism of SDHI fungicides.


Asunto(s)
Ascomicetos , Fungicidas Industriales , Simulación del Acoplamiento Molecular , Fungicidas Industriales/farmacología , Fungicidas Industriales/química , Estereoisomerismo , Ascomicetos/efectos de los fármacos , Ascomicetos/crecimiento & desarrollo , Ascomicetos/química , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Succinato Deshidrogenasa/antagonistas & inhibidores , Succinato Deshidrogenasa/metabolismo , Succinato Deshidrogenasa/química , Piridinas/química , Piridinas/farmacología , Relación Estructura-Actividad , Enfermedades de las Plantas/microbiología , Norbornanos , Pirazoles
8.
Int J Mol Sci ; 25(16)2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39201716

RESUMEN

The reagent system based on the combined use of Et3SiH/I2 acts as an efficient N-glycosidation promoter for the synthesis of natural and sugar-modified nucleosides. An analysis of reaction stereoselectivity in the absence of C2-positioned stereodirecting groups revealed high selectivity with six-membered substrates, depending on the nucleophilic character of the nucleobase or based on anomerization reactions. The synthetic utility of the Et3SiH/I2-mediated N-glycosidation reaction was highlighted by its use in the synthesis of the investigational drug apricitabine.


Asunto(s)
Yodo , Nucleósidos , Nucleósidos/química , Nucleósidos/síntesis química , Yodo/química , Glicosilación , Silanos/química , Glicósidos/química , Glicósidos/síntesis química , Azúcares/química
9.
Biomolecules ; 14(7)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39062466

RESUMEN

Dihydroxyacetone phosphate (DHAP)-dependent aldolases catalyze the aldol addition of DHAP to a variety of aldehydes and generate compounds with two stereocenters. This reaction is useful to synthesize chiral acyclic nucleosides, which constitute a well-known class of antiviral drugs currently used. In such compounds, the chirality of the aliphatic chain, which mimics the open pentose residue, is crucial for activity. In this work, three DHAP-dependent aldolases: fructose-1,6-biphosphate aldolase from rabbit muscle, rhanmulose-1-phosphate aldolase from Thermotoga maritima, and fuculose-1-phosphate aldolase from Escherichia coli, were used as biocatalysts. Aldehyde derivatives of thymine and cytosine were used as acceptor substrates, generating new acyclic nucleoside analogues containing two new stereocenters with conversion yields between 70% and 90%. Moreover, structural analyses by molecular docking were carried out to gain insights into the diasteromeric excess observed.


Asunto(s)
Aldehído-Liasas , Escherichia coli , Fructosa-Bifosfato Aldolasa , Simulación del Acoplamiento Molecular , Nucleósidos de Pirimidina , Thermotoga maritima , Animales , Escherichia coli/enzimología , Nucleósidos de Pirimidina/química , Nucleósidos de Pirimidina/síntesis química , Aldehído-Liasas/metabolismo , Aldehído-Liasas/química , Conejos , Fructosa-Bifosfato Aldolasa/química , Fructosa-Bifosfato Aldolasa/metabolismo , Thermotoga maritima/enzimología , Dihidroxiacetona Fosfato/metabolismo , Dihidroxiacetona Fosfato/química , Estereoisomerismo
10.
Chemistry ; : e202400785, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958609

RESUMEN

Organic halogen compounds are cornerstones of applied chemical sciences. Halogen substitution is a smart molecular design strategy adopted to influence reactivity, membrane permeability and receptor interaction. Chiral bioreceptors may restrict the stereochemical requirements in the halo-ligand design. Straightforward (but expensive) catalyzed stereospecific halogenation has been reported. Historically, PCl5 served access to uncatalyzed stereoselective chlorination although the stereochemical outcomes were influenced by steric parameters. Nonetheless, stereochemical investigation of PCl5 reaction mechanism with carbamoyl (RCONHX) compounds has never been addressed. Herein, we provide the first comprehensive stereochemical mechanistic explanation outlining halogenation of carbamoyl compounds with PCl5; the key regioselectivity-limiting nitrilimine intermediate (8-Z.HCl); how substitution pattern influences regioselectivity; why oxadiazole byproduct (P1) is encountered; stereo-electronic factors influencing the hydrazonoyl chloride (P2) production; and discovery of two stereoselectivity-limiting parallel mechanisms (stepwise and concerted) of elimination of HCl and POCl3. DFT calculations, synthetic methodology optimization, X-ray evidence and experimental reaction kinetics study evidence all supported the suggested mechanism proposal (Scheme 2). Finally, we provide mechanism-inspired future recommendations for directing the reaction stereoselectivity toward elusive and stereochemically inaccessible (E)-bis-hydrazonoyl chlorides along with potentially pivotal applications of both (E/Z)-stereoisomers especially in medicinal chemistry and protein modification.

11.
Angew Chem Int Ed Engl ; : e202408211, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39076073

RESUMEN

A palladium-catalyzed highly C‒S-selective Stille cross-coupling between aryl thianthrenium salts and tri- or tetrasubstituted alkenyl stannanes is described. Herein, critical challenges including site- and chemoselectivity control are well addressed through C‒H thianthrenation and C‒S alkenylation, thereby providing an expedient access to stereodefined tri- and tetrasubstituted alkenes in a stereoretentive fashion. Indeed, the palladium-catalyzed Stille-alkenylation of poly(pseudo)halogenated arenes displays privileged capability to differentiate C‒S over C‒I, C‒Br, C‒Cl bonds, as well as oxygen-based triflates (C‒OTf), tosylates (C‒OTs), carbamates and sulfamates under mild reaction conditions. Sequential and multiple cross-couplings via selective C‒X functionalization should be widely applicable for increasing functional molecular complexity. Modular installation of stereospecific alkene motifs into pharmaceuticals illustrated the synthetic application of the present protocol in drug discovery.

12.
Pestic Biochem Physiol ; 203: 106024, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39084783

RESUMEN

Indoxacarb is a chiral insecticide that consists of two enantiomers, S-(+)-indoxacarb and R-(-)-indoxacarb, of which only S-(+)-indoxacarb has insecticidal activity. Previous enantioselective toxicology studies of indoxacarb focused mostly on simple environmental model organisms. The lack of a toxicology evaluation of indoxacarb conducted in a mammalian system could mean that the extent of the potential health risk posed by the insecticide to humans is not adequately known. In this study, we reported on a new pair of enantiomers, S-IN-RM294 and R-IN-RM294, derived from the metabolic breakdown of S-(+)-indoxacarb and R-(-)-indoxacarb, respectively, in rats. The toxicokinetics of S-(+)-indoxacarb, R-(-)-indoxacarb, S-IN-RM294, and R-IN-RM294 in rats were evaluated to provide a more comprehensive risk assessment of these molecules. The bioavailability and excretion rates of both S-(+)-indoxacarb and R-(-)-indoxacarb were relatively low, which may be due to their faster metabolism and accumulation in the tissues. In addition, there were significant differences in the metabolism and distribution between the two indoxacarb enantiomers and their metabolites in vivo. S-(+)-Indoxacarb was found to be more easily metabolized in the blood compared with R-(-)-indoxacarb, as shown by the differences in pharmacokinetic parameters between oral and intravenous administration. Analysis of their tissue distribution showed that S-(+)-indoxacarb was less likely to accumulate in most tissues. The results obtained for the two metabolites were consistent with those of the two parent compounds. S-IN-RM294 was more readily cleared from the blood and less likely to accumulate in the tissues compared with R-IN-RM294. Therefore, whether from the perspective of insecticidal activity or from the perspective of mammalian and environmental friendliness, the application of optically pure S-(+)-indoxacarb in agriculture may be a more efficient and safer strategy.


Asunto(s)
Disponibilidad Biológica , Insecticidas , Oxazinas , Ratas Sprague-Dawley , Toxicocinética , Animales , Masculino , Oxazinas/farmacocinética , Oxazinas/toxicidad , Oxazinas/metabolismo , Estereoisomerismo , Insecticidas/toxicidad , Insecticidas/farmacocinética , Insecticidas/química , Ratas
13.
Curr Opin Chem Biol ; 81: 102504, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39068821

RESUMEN

[4 + 2] Cyclases are potent biocatalysts that have been bestowed upon microorganisms and plants by nature, equipping them with the powerful tools to utilize and implement the [4 + 2] cycloaddition reaction for constructing the cyclohexene core in synthesizing valuable molecules. Over the past two years, eleven new enzymes have joined this pericyclase club and undergone extensive investigation. In this review, we present a comprehensive overview of recent advancements in characterizing [4 + 2] cyclases with regard to their catalytic mechanism and stereoselectivity. We particularly focus on insights gained from enzyme co-crystal structures, cofactors, as well as the effects of glycosylation. Advancements in understanding the mechanisms of natural [4 + 2] cyclases offer the potential to mimic evolutionary processes and engineer artificial enzymes for the development of valuable and practical biocatalysts.


Asunto(s)
Evolución Molecular , Estereoisomerismo , Biocatálisis , Glicosilación , Reacción de Cicloadición
14.
J Mol Model ; 30(8): 274, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023638

RESUMEN

CONTEXT: The cyclopropane skeleton plays a significant role in bioactive  molecules due to its distinctive structural properties. This has sparked keen interest and in-depth exploration in the field of stereoselective synthesis of cyclopropane derivatives. In the present study, the mechanism and the origin of stereoselectivity of diastereodivergent synthesis of cyclopropane derivatives via the catalyst-free [2 + 1]-cyclopropanation reactions of 3-diazo-N-methylindole (R1) with two types of electron-deficient olefins (R2 and R3) in both aqueous and toluene media have been studied using the DFT calculations. The findings indicate that these [2 + 1] cycloaddition reactions proceed in two stages, where the first step is not only the rate-determining step but also critically dictates the stereoselectivity of the product. The calculated diastereomeric ratios are in agreement with the experimental results. Furthermore, by utilizing non-covalent interaction (NCI) analysis and energy decomposition analysis based on molecular force fields (EDA-FF), we elucidated that the electrostatic interactions between reactant fragments in the transition state TS1s for the first step are the predominant factors determining the stereoselectivity, as opposed to the experimentally hypothesized steric hindrance and π-π stacking interactions. METHODS: The geometrical structures of all minima and transition states on the potential energy surface (PES) in solvents water and toluene were fully optimized using the DFT method at the M06-2X(D3)/SMD/6-31 + G(d,p) level of theory. Single-point energy calculations were carried out based on the optimized geometries in the solution at the M06-2X(D3)/6-311 + G(d,p) level. All the DFT calculations were performed using the Gaussian 09 software. The optimized molecular structures were visualized using CYLview software. NCI analysis was performed using the Multiwfn and VMD softwares. The Multiwfn program was also used for CDFT and EDA-FF analyses.

15.
Angew Chem Int Ed Engl ; 63(36): e202404880, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38884594

RESUMEN

This review analyzes a development in biochemistry, enzymology and biotechnology that originally came as a surprise. Following the establishment of directed evolution of stereoselective enzymes in organic chemistry, the concept of partial or complete deconvolution of selective multi-mutational variants was introduced. Early deconvolution experiments of stereoselective variants led to the finding that mutations can interact cooperatively or antagonistically with one another, not just additively. During the past decade, this phenomenon was shown to be general. In some studies, molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) computations were performed in order to shed light on the origin of non-additivity at all stages of an evolutionary upward climb. Data of complete deconvolution can be used to construct unique multi-dimensional rugged fitness pathway landscapes, which provide mechanistic insights different from traditional fitness landscapes. Along a related line, biochemists have long tested the result of introducing two point mutations in an enzyme for mechanistic reasons, followed by a comparison of the respective double mutant in so-called double mutant cycles, which originally showed only additive effects, but more recently also uncovered cooperative and antagonistic non-additive effects. We conclude with suggestions for future work, and call for a unified overall picture of non-additivity and epistasis.


Asunto(s)
Simulación de Dinámica Molecular , Mutación , Ingeniería de Proteínas , Teoría Cuántica
16.
Molecules ; 29(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38930904

RESUMEN

A new series of chiral 4,5-dihydro-1H-[1,2,4]-triazoline molecules, featuring a ß-ᴅ-glucopyranoside appendage, were synthesized via a 1,3-dipolar cycloaddition reaction between various hydrazonyl chlorides and carbohydrate Schiff bases. The isolated enantiopure triazolines (8a-j) were identified through high-resolution mass spectrometry (HRMS) and vibrational spectroscopy. Subsequently, their solution structures were elucidated through NMR spectroscopic techniques. Single-crystal X-ray analysis of derivative 8b provided definitive evidence for the 3-D structure of this compound and revealed important intermolecular forces in the crystal lattice. Moreover, it confirmed the (S)-configuration at the newly generated stereo-center. Selected target compounds were investigated for anti-tumor activity in 60 cancer cell lines, with derivative 8c showing the highest potency, particularly against leukemia. Additionally, substituent-dependent anti-fungal and anti-bacterial behavior was observed.


Asunto(s)
Triazoles , Humanos , Cristalografía por Rayos X , Triazoles/química , Triazoles/farmacología , Triazoles/síntesis química , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Carbohidratos/química , Estructura Molecular , Estereoisomerismo , Acetilación , Relación Estructura-Actividad , Espectroscopía de Resonancia Magnética
17.
Proc Natl Acad Sci U S A ; 121(26): e2313683121, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38905237

RESUMEN

Strigolactones (SLs) are plant apocarotenoids with diverse roles and structures. Canonical SLs, widespread and characterized by structural variations in their tricyclic lactone (ABC-ring), are classified into two types based on C-ring configurations. The steric C-ring configuration emerges during the BC-ring closure, downstream of the biosynthetic intermediate, carlactonoic acid (CLA). Most plants produce either type of canonical SLs stereoselectively, e.g., tomato (Solanum lycopersicum) yields orobanchol with an α-oriented C-ring. The mechanisms driving SL structural diversification are partially understood, with limited insight into functional implications. Furthermore, the exact molecular mechanism for the stereoselective BC-ring closure reaction is yet to be known. We identified an enzyme, the stereoselective BC-ring-forming factor (SRF), from the dirigent protein (DIR) family, specifically the DIR-f subfamily, whose biochemical function had not been characterized, making it a key enzyme in stereoselective canonical SL biosynthesis with the α-oriented C-ring. We first confirm the precise catalytic function of the tomato cytochrome P450 SlCYP722C, previously shown to be involved in orobanchol biosynthesis [T. Wakabayashi et al., Sci. Adv. 5, eaax9067 (2019)], to convert CLA to 18-oxocarlactonoic acid. We then show that SRF catalyzes the stereoselective BC-ring closure reaction of 18-oxocarlactonoic acid, forming orobanchol. Our methodology combines experimental and computational techniques, including SRF structure prediction and conducting molecular dynamics simulations, suggesting a catalytic mechanism based on the conrotatory 4π-electrocyclic reaction for the stereoselective BC-ring formation in orobanchol. This study sheds light on the molecular basis of how plants produce SLs with specific stereochemistry in a controlled manner.


Asunto(s)
Lactonas , Lactonas/metabolismo , Lactonas/química , Estereoisomerismo , Solanum lycopersicum , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Reguladores del Crecimiento de las Plantas/química , Reguladores del Crecimiento de las Plantas/metabolismo
18.
Bull Entomol Res ; : 1-9, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38708572

RESUMEN

Carboxylesterases (CarEs) is an important detoxification enzyme system in phase Ⅰ participating in insecticides resistance. In our previous study, SlCarE054, a CarEs gene from lepidoptera class, was screened out to be upregulated in a pyrethroids and organophosphates resistant population. Its overexpression was verified in two field-collected populations of Spodoptera litura (Lepidoptera: Noctuidae) resistant to pyrethroids and organophosphates by qRT-PCR. Spatiotemporal expression results showed that SlCarE054 was highly expressed in the pupae stage and the digestive tissue midgut. To further explore its role in pyrethroids and organophosphates resistance, its metabolism activity to insecticides was determined by UPLC. Its recombinant protein showed significant metabolism activity to cyhalothrin and fenvalerate, but not to phoxim or chlorpyrifos. The metabolic activity of SlCarE054 to ß-cypermethrin showed stereoselectivity, with higher metabolic activity to θ-cypermethrin than the enantiomer α-cypermethrin. The metabolite of ß-cypermethrin was identified as 3-phenoxybenzaldehyde. Further modelling and docking analysis indicated that ß-cypermethrin, cyhalothrin and fenvalerate could bind with the catalytic triad of the 3D structure of SlCarE054. The interaction of ß-cypermethrin with SlCarE054 also showed the lowest binding energy. Our work provides evidence that SlCarE054 play roles in ß-cypermethrin resistance in S. litura.

19.
Carbohydr Res ; 540: 109121, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692248

RESUMEN

Precise and selective modification of carbohydrates is a critical strategy in producing diverse carbohydrate derivatives for exploiting their functions. We disclosed a simple, efficient, and highly regioselective and stereoselective protocol to controllable amination of 2-nitroglycals under mild conditions in 5 min. A range of 3-amino-carbohydrates including 3-arylamino-2-nitro-glycals and 1,3-di-amino-carbohydrate derivatives were obtained in good to excellent yield with excellent stereoselectivity. The produced 3-amino-2-nitro-glycals can be used as a precursor for further transformation.


Asunto(s)
Nitrocompuestos , Aminación , Estereoisomerismo , Estructura Molecular , Nitrocompuestos/química , Nitrocompuestos/síntesis química , Carbohidratos/química , Carbohidratos/síntesis química
20.
Environ Pollut ; 351: 124059, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38703979

RESUMEN

The hazards of man-made chiral compounds are of great public concern, with reports of worrying stereoselective compounds and an urgent need to assess their transport. This study evaluated the transport of 2-arylpropionic acid derivatives enantiomers (2-APA) in porous media under a variety of solution chemistry conditions via column packing assays. The results revealed the introduction of Malic acid (MA) enantiomers enhanced the mobility of 2-APA enantiomers, but the enhancement effect was different for different 2-APA enantiomers. Batch sorption experiments confirmed that the MA enantiomers occupied the sorption site of the quartz sand, thus reducing the deposition of the 2-APA enantiomer. Homo- or heterochirality between 2-APA and MA dominates the transport of 2-APA enantiomers, with homochirality between them triggering stronger retention and vice versa. Further evaluating the effect of solution chemistry conditions on the transport of 2-APA enantiomers, increased ionic strength attenuated the mobility of 2-APA enantiomers, whereas introduced coexisting cations enhanced the retention of 2-APA enantiomers in the column. The redundancy analyses corroborated these solution chemistry conditions were negatively correlated with the transport of 2-APA enantiomers. The coupling of pH and these conditions reveals electrostatic forces dominate the transport behavior and stereoselective interactions of 2-APA enantiomers. Distinguishing the transport of enantiomeric pair helps to understand the difference in stereoselectivity of enantiomers and promises to remove the more hazardous one.


Asunto(s)
Propionatos , Estereoisomerismo , Propionatos/química , Porosidad , Adsorción , Malatos/química , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...