Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(26): e2321579121, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38900795

RESUMEN

Cellular membranes exhibit a multitude of highly curved morphologies such as buds, nanotubes, cisterna-like sheets defining the outlines of organelles. Here, we mimic cell compartmentation using an aqueous two-phase system of dextran and poly(ethylene glycol) encapsulated in giant vesicles. Upon osmotic deflation, the vesicle membrane forms nanotubes, which undergo surprising morphological transformations at the liquid-liquid interfaces inside the vesicles. At these interfaces, the nanotubes transform into cisterna-like double-membrane sheets (DMS) connected to the mother vesicle via short membrane necks. Using super-resolution (stimulated emission depletion) microscopy and theoretical considerations, we construct a morphology diagram predicting the tube-to-sheet transformation, which is driven by a decrease in the free energy. Nanotube knots can prohibit the tube-to-sheet transformation by blocking water influx into the tubes. Because both nanotubes and DMSs are frequently formed by cellular membranes, understanding the formation and transformation between these membrane morphologies provides insight into the origin and evolution of cellular organelles.


Asunto(s)
Nanotubos , Polietilenglicoles , Nanotubos/química , Polietilenglicoles/química , Membrana Celular/metabolismo , Dextranos/química , Dextranos/metabolismo
2.
Neurophotonics ; 11(3): 034311, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38867758

RESUMEN

Significance: Stimulated emission depletion (STED) is a powerful super-resolution microscopy technique that can be used for imaging live cells. However, the high STED laser powers can cause significant photobleaching and sample damage in sensitive biological samples. The dynamic intensity minimum (DyMIN) technique turns on the STED laser only in regions of the sample where there is fluorescence signal, thus saving significant sample photobleaching. The reduction in photobleaching allows higher resolution images to be obtained and longer time-lapse imaging of live samples. A stand-alone module to perform DyMIN is not available commercially. Aim: In this work, we developed an open-source design to implement three-step DyMIN on a STED microscope and demonstrated reduced photobleaching for timelapse imaging of beads, cells, and tissue. Approach: The DyMIN system uses a fast multiplexer circuit and inexpensive field-programmable gate array controlled by Labview software that operates as a stand-alone module for a STED microscope. All software and circuit diagrams are freely available. Results: We compared time-lapse images of bead samples using our custom DyMIN system to conventional STED and recorded a ∼ 46 % higher signal when using DyMIN after a 50-image sequence. We further demonstrated the DyMIN system for time-lapse STED imaging of live cells and brain tissue slices. Conclusions: Our open-source DyMIN system is an inexpensive add-on to a conventional STED microscope that can reduce photobleaching. The system can significantly improve signal to noise for dynamic time-lapse STED imaging of live samples.

3.
ACS Nano ; 18(27): 17794-17805, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38913946

RESUMEN

Semiconductor lead halide perovskites are excellent candidates for realizing low threshold light amplification due to their tunable and highly efficient luminescence, ease of processing, and strong light-matter interactions. However, most studies on optical gain have addressed bulk films, nanowires, or nanocrystals that exhibit little or no size quantization. Here, we show by means of a multitude of optical spectroscopy methods that small CsPbBr3 nanocrystals (NCs) exhibit a progressive red shift of the band-edge transition upon addition of electron-hole pairs, at least one carrier of which occupies a 2-fold degenerate, delocalized state in agreement with strong confinement. We demonstrate that this combination results in a threshold for biexciton gain, well below the limit of one electron-hole pair on average per NC. On the other hand, both the luminescent lifetime and the optical Stark effect of 4.7 nm CsPbBr3 NCs indicate that the oscillator strength of the band-edge transition is considerably smaller than expected from the band-edge absorption. We assign this discrepancy to a mixed confinement regime, with one delocalized and one localized charge carrier, and show that the concomitant reduction of the oscillator strength for stimulated emission accounts for the surprisingly small material gain observed in small NCs. The conclusion of mixed confinement aligns with studies reporting small and large polarons for holes and electrons in lead halide perovskite nanocrystals, respectively, and creates opportunities for understanding multiexciton photophysics in confined perovskite materials.

4.
ACS Nano ; 18(20): 12897-12904, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38710615

RESUMEN

Semiconducting transition metal dichalcogenides (TMDs) have gained significant attention as a gain medium for nanolasers, owing to their unique ability to be easily placed and stacked on virtually any substrate. However, the atomically thin nature of the active material in existing TMD lasers and the limited size due to mechanical exfoliation presents a challenge, as their limited output power makes it difficult to distinguish between true laser operation and other "laser-like" phenomena. Here, we present room temperature lasing from a large-area tungsten disulfide (WS2) monolayer, grown by a wafer-scale chemical vapor deposition (CVD) technique. The monolayer is placed on a dual-resonance dielectric metasurface with a rectangular lattice designed to enhance both absorption and emission, resulting in an ultralow threshold operation (threshold well below 1 W/cm2). We provide a thorough study of the laser performance, paying special attention to directionality, output power, and spatial coherence. Notably, our lasers demonstrated a coherence length of over 30 µm, which is several times greater than what has been reported for 2D material lasers so far. Our realization of a single-mode laser from a CVD-grown monolayer presents exciting opportunities for integration and the development of real-world applications.

5.
Vet World ; 17(3): 550-557, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38680149

RESUMEN

Background and Aim: Electrical stimulation (ES) and light amplification by stimulated emission of radiation (LASER) therapy are frequently used in post-operative rehabilitation; however, there is currently insufficient research comparing their effectiveness. This study aimed to assess the effectiveness of post-operative rehabilitation following medial patellar luxation (MPL) surgical correction by comparing ES and LASER therapy when combined with exercise. This was compared with a control group that consisted solely of post-operative home exercise implemented by the owner. Materials and Methods: We conducted a prospective clinical trial on dogs that had undergone surgical treatment for MPL. The dogs were categorized into the following three groups: The control group, which did not participate in any post-operative rehabilitation program; the ES group, which received post-operative rehabilitation involving ES therapy; and the LASER group, which underwent post-operative rehabilitation featuring LASER therapy. Results: There were no significant differences among the groups regarding the evaluation parameters, including lameness score, pain score, thigh muscle circumference, and range of motion. Although there may have been a difference in pain score in some groups, it could be attributed to the pre-operative condition of patients. These results aligned with the owner questionnaires' canine brief pain inventory assessments, showing no significant differences between treatment groups. Conclusion: Post-operative rehabilitation for MPL correction may enhance limb usage, joint function, muscle mass, and pain relief. However, the duration and level of post-operative pain may influence the necessity for rehabilitation. In addition, ES and LASER therapy offer similar pain-relieving effects after MPL surgery; therefore, the choice between these methods depends on the availability of equipment and veterinarian preferences.

6.
ACS Nano ; 18(13): 9605-9612, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38497777

RESUMEN

Two-dimensional cadmium selenide nanoplatelets (NPLs) exhibit large absorption cross sections and homogeneously broadened band-edge transitions that offer utility in wide-ranging optoelectronic applications. Here, we examine the temperature-dependence of amplified spontaneous emission (ASE) in 4- and 5-monolayer thick NPLs and show that the threshold for close-packed (neat) films decreases with decreasing temperature by a factor of 2-10 relative to ambient temperature owing to extrinsic (trapping) and intrinsic (phonon-derived line width) factors. Interestingly, for pump intensities that exceed the ASE threshold, we find development of intense emission to lower energy in particular provided that the film temperature is ≤200 K. For NPLs diluted in an inert polymer, both biexcitonic ASE and low-energy emission are suppressed, suggesting that described neat-film observables rely upon high chromophore density and rapid, collective processes. Transient emission spectra reveal ultrafast red-shifting with the time of the lower energy emission. Taken together, these findings indicate a previously unreported process of amplified stimulated emission from polyexciton states that is consistent with quantum droplets and constitutes a form of exciton condensate. For studied samples, quantum droplets form provided that roughly 17 meV or less of thermal energy is available, which we hypothesize relates to polyexciton binding energy. Polyexciton ASE can produce pump-fluence-tunable red-shifted ASE even 120 meV lower in energy than biexciton ASE. Our findings convey the importance of biexciton and polyexciton populations in nanoplatelets and show that quantum droplets can exhibit light amplification at significantly lower photon energies than biexcitonic ASE.

7.
Nano Lett ; 24(10): 3005-3013, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38416810

RESUMEN

Most aggregation-induced emission (AIE) luminogens exhibit high brightness, excellent photostability, and good biocompatibility, but these AIE-active agents, which kill two birds with one stone to result in applications in both stimulated emission depletion (STED) super-resolution imaging and photodynamic therapy (PDT), have not been reported yet but are urgently needed. To meet the requirements of STED nanoscopy and PDT, D-A-π-A-D type DTPABT-HP is designed by tuning conjugated π spacers. It exhibits red-shifted emission, high PLQY of 32.04%, and impressive 1O2 generation (9.24 fold compared to RB) in nanoparticles (NPs). Then, DTPABT-HP NPs are applied in cell imaging via STED nanoscopy, especially visualizing the dynamic changes of lysosomes in the PDT process at ultrahigh resolution. After that, in vivo PDT was also conducted by DTPABT-HP NPs, resulting in significantly inhibited tumor growth, with an inhibition rate of 86%. The work here is beneficial to the design of multifunctional agents and the deep understanding of their phototheranostic mechanism in biological research.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotosensibilizantes/uso terapéutico , Diagnóstico por Imagen , Neoplasias/tratamiento farmacológico , Fotoquimioterapia/métodos
8.
J Hazard Mater ; 465: 133371, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38185082

RESUMEN

The emerging stress caused by nanomaterials in the environment is of great concern because they can have toxic effects on organisms. However, thorough study of the interactions between cells and diverse nanoparticles (NPs) using a unified approach is challenging. Here, we present a novel approach combining stimulated emission depletion (STED) microscopy and scanning transmission electron microscopy (STEM) for quantitative assessment, real-time tracking, and in situ imaging of the intracellular behavior of gold-silver nanoclusters (AuAgNCs), based on their fluorescence and electron properties. The results revealed an aggregated state of AuAgNCs within the mitochondria and an increase in sulfur content in AuAgNCs, presumably owing to their reaction with thiol-containing molecules inside the mitochondria. Moreover, AuAgNCs (100 µg/mL) induced a 75% decline in mitochondrial membrane potential and a 12-fold increase of mitochondrial reactive oxygen species in comparison to control. This mitochondrial damage may be triggered by the reaction of AuAgNCs with thiol, which provides direct imaging evidence for uncovering the action mechanism of AuAgNCs on the mitochondria. The proposed dual-imaging strategy using STED and STEM is a potential tool to offer valuable insights into cytotoxicity between subcellular structures and diverse NPs, and can serve as a key strategy for nanomaterial biosafety assessment.


Asunto(s)
Microscopía , Mitocondrias , Microscopía Electrónica de Transmisión de Rastreo , Especies Reactivas de Oxígeno , Compuestos de Sulfhidrilo
9.
Adv Opt Mater ; 11(14)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38107448

RESUMEN

Dyes with aggregation-induced emission (AIE) properties have gained interests due to their bright luminescence in solid-state aggregates. While fluorescence from AIE dyes have been widely exploited, relatively little is known about aggregation-induced stimulated emission. Here, we investigated stimulated emission of tetraphenylethene (TPE)-based organoboron AIE dyes, TPEQBN, in thin films and in microcavity lasers. Using femtosecond pump-probe spectroscopy, gain coefficients up to 230 cm-1 at 500 nm were measured. Using rate equations, we analyzed concentration- and pump-dependent gain dynamics as well as laser build up dynamics. During laser oscillation, radiative stimulated emission allows high instantaneous quantum yield greater than 90% to be achieved. We fabricated solid-state microspheres made of 100% AIE dyes via microfluidic emulsion and solvent evaporation method. Coupled with high gain and high refractive index of 1.76, microspheres as small as 2 µm in diameter showed lasing by nanosecond pumping with a threshold of ~10 pJ µm-2. Polymer coated, but not bare, microspheres were internalized by live cells and generated narrowband cavity mode emission from within the cytoplasm. Our work shows the potential of AIE dyes as laser materials.

10.
Nanomaterials (Basel) ; 13(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37947721

RESUMEN

Weak fluorescence signals, which are important in research and applications, are often masked by the background. Different amplification techniques are actively investigated. Here, a broadband, geometry-independent and flexible feedback scheme based on the random scattering of dielectric nanoparticles allows the amplification of a fluorescence signal by partial trapping of the radiation within the sample volume. Amplification of up to a factor of 40 is experimentally demonstrated in ultrapure water with dispersed TiO2 nanoparticles (30 to 50 nm in diameter) and fluorescein dye at 200 µmol concentration (pumped with 5 ns long, 3 mJ laser pulses at 490 nm). The measurements show a measurable reduction in linewidth at the emission peak, indicating that feedback-induced stimulated emission contributes to the large gain observed.

11.
J Indian Soc Pedod Prev Dent ; 41(3): 253-257, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37861641

RESUMEN

Background: Well articulated by John Knowles - "Everything has to evolve or else it perishes." With the paradigm shift of emphasis toward the prevention of dental caries, it has been proven that laser irradiation protects against both caries initiation and caries progression. Aim: The aim of the study was to evaluate and compare the micromorphology of caries-free extracted premolars using a Scanning electron microscope (SEM) after fissurotomy by conventional fissurotomy bur and erbium, chromium: yttrium, scandium, gallium, and garnet (ER, CR: YSGG) hard-tissue laser. Methodology: Sixty caries-free premolars extracted atraumatically for orthodontic treatment were included in the study. The samples were divided into two groups randomly (Group 1: fissurotomy by bur, n = 30, and Group 2: fissurotomy by hard-tissue laser, n = 30). Each sample was further divided into halves from the occlusal surface wherein one-half of the occlusal surface received fissurotomy procedure and the other half was control. Samples were analyzed by scanning electron microscopy (SEM) for micromorphological changes. Results: Profile image of control samples revealed the disorganization of enamel surface at the junction of fissures forming a heterogeneous tissue and agglomeration of enamel with deep pit and fissure. On the contrary, the image of experimented samples (with laser fissurotomy) showed smooth enamel surface and homogeneous enamel subsurface with wider pit and fissure owing to self-cleansing ability. Conclusion: On the grounds of the present study results, it could be concluded that the intervention of ER, CR: YSGG hard-tissue laser possesses self-cleansable pit and fissures for caries prevention and has the potential to irradicate the smear layer entirely for superior attachment of remineralizing agents.


Asunto(s)
Caries Dental , Galio , Láseres de Estado Sólido , Humanos , Erbio , Escandio , Itrio , Cromo , Esmalte Dental , Láseres de Estado Sólido/uso terapéutico
12.
Neurophotonics ; 10(4): 044410, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37799760

RESUMEN

Brain and gut barriers have been receiving increasing attention in health and diseases including in psychiatry. Recent studies have highlighted changes in the blood-brain barrier and gut barrier structural properties, notably a loss of tight junctions, leading to hyperpermeability, passage of inflammatory mediators, stress vulnerability, and the development of depressive behaviors. To decipher the cellular processes actively contributing to brain and gut barrier function in health and disease, scientists can take advantage of neurophotonic tools and recent advances in super-resolution microscopy techniques to complement traditional imaging approaches like confocal and electron microscopy. Here, we summarize the challenges, pros, and cons of these innovative approaches, hoping that a growing number of scientists will integrate them in their study design exploring barrier-related properties and mechanisms.

13.
Angew Chem Int Ed Engl ; 62(39): e202307538, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37581373

RESUMEN

Super-resolution techniques like single-molecule localisation microscopy (SMLM) and stimulated emission depletion (STED) microscopy have been extended by the use of non-covalent, weak affinity-based transient labelling systems. DNA-based hybrid systems are a prominent example among these transient labelling systems, offering excellent opportunities for multi-target fluorescence imaging. However, these techniques suffer from higher background relative to covalently bound fluorophores, originating from unbound fluorophore-labelled single-stranded oligonucleotides. Here, we introduce short-distance self-quenching in fluorophore dimers as an efficient mechanism to reduce background fluorescence signal, while at the same time increasing the photon budget in the bound state by almost 2-fold. We characterise the optical and thermodynamic properties of fluorophore-dimer single-stranded DNA, and show super-resolution imaging applications with STED and SMLM with increased spatial resolution and reduced background.


Asunto(s)
ADN , Imagen Individual de Molécula , Microscopía Fluorescente/métodos , Imagen Individual de Molécula/métodos , Oligonucleótidos
14.
Angew Chem Int Ed Engl ; 62(33): e202305817, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37345904

RESUMEN

Photocatalytic water splitting is a promising approach to generating sustainable hydrogen. However, the transport of photoelectrons to the catalyst sites, usually within ps-to-ns timescales, is much faster than proton delivery (∼µs), which limits the activity. Therefore, the acceleration of abstraction of protons from water molecules towards the catalytic sites to keep up with the electron transfer rate can significantly promote hydrogen production. The photobasic effect that is the increase in proton affinity upon excitation offers means to achieve this objective. Herein, we design photobasic carbon dots and identify that internal pyridinic N sites are intrinsically photobasic. This is supported by steady-state and ultrafast spectroscopic measurements that demonstrate proton abstraction within a few picoseconds of excitation. Furthermore, we show that in water, they form a unique four-level lasing scheme with optical gain and stimulated emission. The latter competes with photocatalysis, revealing a rather unique mechanism for efficiency loss, such that the stimulated emission can act as a toggle for photocatalytic activity. This provides additional means of controlling the photocatalytic process and helps the rational design of photocatalytic materials.

15.
Int J Mol Sci ; 24(12)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37373120

RESUMEN

Though microscopy is most often intended as a technique for providing qualitative assessment of cellular and subcellular properties, when coupled with other instruments such as wavelength selectors, lasers, photoelectric devices and computers, it can perform a wide variety of quantitative measurements, which are demanding in establishing relationships between the properties and structures of biological material in all their spatial and temporal complexities. These combinations of instruments are a powerful approach to improve non-destructive investigations of cellular and subcellular properties (both physical and chemical) at a macromolecular scale resolution. Since many subcellular compartments in living cells are characterized by structurally organized molecules, this review deals with three advanced microscopy techniques well-suited for these kind of investigations, i.e., microspectrophotometry (MSP), super-resolution localization microscopy (SRLM) and holotomographic microscopy (HTM). These techniques can achieve an insight view into the role intracellular molecular organizations such as photoreceptive and photosynthetic structures and lipid bodies play in many cellular processes as well as their biophysical properties. Microspectrophotometry uses a set-up based on the combination of a wide-field microscope and a polychromator, which allows the measurement of spectroscopic features such as absorption spectra. Super resolution localization microscopy combines dedicated optics and sophisticated software algorithms to overcome the diffraction limit of light and allow the visualization of subcellular structures and dynamics in greater detail with respect to conventional optical microscopy. Holotomographic microscopy combines holography and tomography techniques into a single microscopy set-up, and allows 3D reconstruction by means of the phase separation of biomolecule condensates. This review is organized in sections, which for each technique describe some general aspects, a peculiar theoretical aspect, a specific experimental configuration and examples of applications (fish and algae photoreceptors, single labeled proteins and endocellular aggregates of lipids).


Asunto(s)
Holografía , Proteínas , Animales , Microscopía Fluorescente/métodos , Óptica y Fotónica , Biofisica
16.
Nano Lett ; 23(8): 3224-3230, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37125440

RESUMEN

The application of CdSe nanoplatelets (NPLs) in the ultraviolet/blue region remains an open challenge due to charge trapping typically leading to limited photoluminescence quantum efficiency (PL QE) and sub-bandgap emission in core-only NPLs. Here, we synthesized 3.5 monolayer core/crown CdSe/CdS NPLs with various crown dimensions, exhibiting saturated blue emission and PL QE up to 55%. Compared to core-only NPLs, the PL intensity decays monoexponentially over two decades due to suppressed deep trapping and delayed emission. In both core-only and core/crown NPLs we observe biexciton-mediated optical gain between 470 and 510 nm, with material gain coefficients up to 7900 cm-1 and consistently lower gain thresholds in crowned NPLs. Gain lifetimes are limited to 40 ps, due to residual ultrafast trapping and higher exciton densities at threshold. Our results provide guidelines for rational optimization of thin CdSe NPLs toward lighting and light-amplification applications.

17.
Neurophotonics ; 10(4): 044402, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37215638

RESUMEN

Significance: Stimulated emission depletion (STED) microscopy has been used to address a wide range of neurobiological questions in optically well-accessible samples, such as cell culture or brain slices. However, the application of STED to deeply embedded structures in the brain of living animals remains technically challenging. Aim: In previous work, we established chronic STED imaging in the hippocampus in vivo but the gain in spatial resolution was restricted to the lateral plane. In our study, we report on extending the gain in STED resolution into the optical axis to visualize dendritic spines in the hippocampus in vivo. Approach: Our approach is based on a spatial light modulator to shape the focal STED light intensity in all three dimensions and a conically shaped window that is compatible with an objective that has a long working distance and a high numerical aperture. We corrected distortions of the laser wavefront to optimize the shape of the bottle beam of the STED laser. Results: We show how the new window design improves the STED point spread function and the spatial resolution using nanobeads. We then demonstrate the beneficial effects for 3D-STED microscopy of dendritic spines, visualized with an unprecedented level of detail in the hippocampus of a living mouse. Conclusions: We present a methodology to improve the axial resolution for STED microscopy in the deeply embedded hippocampus in vivo, facilitating longitudinal studies of neuroanatomical plasticity at the nanoscale in a wide range of (patho-)physiological contexts.

18.
Chromosoma ; 132(3): 191-209, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37000292

RESUMEN

Super-resolution microscopy (SRM) is a prime tool to study chromatin organisation at near biomolecular resolution in the native cellular environment. With fluorescent labels DNA, chromatin-associated proteins and specific epigenetic states can be identified with high molecular specificity. The aim of this review is to introduce the field of diffraction-unlimited SRM to enable an informed selection of the most suitable SRM method for a specific chromatin-related research question. We will explain both diffraction-unlimited approaches (coordinate-targeted and stochastic-localisation-based) and list their characteristic spatio-temporal resolutions, live-cell compatibility, image-processing, and ability for multi-colour imaging. As the increase in resolution, compared to, e.g. confocal microscopy, leads to a central role of the sample quality, important considerations for sample preparation and concrete examples of labelling strategies applicable to chromatin research are discussed. To illustrate how SRM-based methods can significantly improve our understanding of chromatin functioning, and to serve as an inspiring starting point for future work, we conclude with examples of recent applications of SRM in chromatin research.


Asunto(s)
Cromatina , Procesamiento de Imagen Asistido por Computador , Microscopía Fluorescente , Microscopía Confocal
19.
Methods Mol Biol ; 2643: 65-84, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36952178

RESUMEN

Peroxisomes are crucial organelles that occur in almost all eukaryotes. Well known are their roles in various metabolic processes, such as hydrogen peroxide detoxification and lipid metabolism. Recent studies indicated that peroxisomes also have several non-metabolic functions, for instance, in stress response, signaling, and cellular ageing. In mammalian cells, the small size of peroxisomes (~200 nm, near the diffraction limit) hinders unveiling peroxisomal structures by conventional light microscopy. However, in the yeast Hansenula polymorpha, they can reach up to 1.5 µm in diameter, depending on the carbon source. To study the localization of peroxisomal proteins in cells in more detail, super-resolution imaging techniques such as stimulated emission depletion (STED) microscopy can be used. STED enables fast (live-cell) imaging well beyond the diffraction limit of light (30-40 nm in cells), without further data processing. Here, we present optimized protocols for the fluorescent labeling of specific peroxisomal proteins in fixed and living cells. Moreover, detailed measurement protocols for successful STED imaging of human and yeast peroxisomes (using antibodies or genetic tags labeled with dyes) are described, extended with suggestions for individual optimizations.


Asunto(s)
Proteínas , Saccharomyces cerevisiae , Animales , Humanos , Microscopía , Peroxisomas , Anticuerpos , Colorantes Fluorescentes/química , Mamíferos
20.
Life (Basel) ; 13(2)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36836897

RESUMEN

Pulmonary artery hypertension causes right ventricular hypertrophy which rapidly progresses to heart failure with underlying cardiac mitochondrial dysfunction. Prior to failure, there are alterations in cytosolic Ca2+ handling that might impact mitochondrial function in the compensatory phase of RV hypertrophy. Our aims, therefore, were (i) to measure beat-to-beat mitochondrial Ca2+ fluxes, and (ii) to determine mitochondrial abundance and function in non-failing, hypertrophic cardiomyocytes. Male Wistar rats were injected with either saline (CON) or monocrotaline (MCT) to induce pulmonary artery hypertension and RV hypertrophy after four weeks. Cytosolic Ca2+ ([Ca2+]cyto) transients were obtained in isolated right ventricular (RV) cardiomyocytes, and mitochondrial Ca2+ ([Ca2+]mito) was recorded in separate RV cardiomyocytes. The distribution and abundance of key proteins was determined using confocal and stimulated emission depletion (STED) microscopy. The RV mitochondrial function was also assessed in RV homogenates using oxygraphy. The MCT cardiomyocytes had increased area, larger [Ca2+]cyto transients, increased Ca2+ store content, and faster trans-sarcolemmal Ca2+ extrusion relative to CON. The MCT cardiomyocytes also had larger [Ca2+]mito transients. STED images detected increased mitochondrial protein abundance (TOM20 clusters per µm2) in MCT, yet no difference was found when comparing mitochondrial respiration and membrane potential between the groups. We suggest that the larger [Ca2+]mito transients compensate to match ATP supply to the increased energy demands of hypertrophic cardiomyocytes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...