Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Macromol Rapid Commun ; : e2400406, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150327

RESUMEN

The swelling and collapse of responsive nanogels on a planar lipid bilayer are studied by means of mesoscopic computer simulations. The effects of molecular weight, cross-linking density, and adhesion strength are examined. The conditions for collapse-mediated engulfing by the bilayer are found. In particular, the results show that at low hydrophobicity level the increase in the nanogel softness decreases the engulfing rate. On the contrary, for stronger hydrophobicity level the trend changes to the opposite one. At the same time, when the cross-linking density is too low or the adhesion strength is too high the nanogel deformation at the membrane suppresses the engulfing regardless of the network swelling ratio. Finally, for comparative reasons, the behavior of the nanogels is also studied at the solid surface. These results may be useful in the design of soft particles capable of tuning of their elasticity and porosity for successful intracellular drug delivery.

2.
Angew Chem Int Ed Engl ; 63(44): e202409182, 2024 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-39086017

RESUMEN

Dynamic covalent bonds endow liquid crystal elastomers (LCEs) with network rearrangeability, facilitating the fixation of mesogen alignment induced by external forces and enabling reversible actuation. In comparison, the bond exchange of supramolecular interactions is typically too significant to stably maintain the programmed alignment, particularly under intensified external stimuli. Nevertheless, remaking and recycling of supramolecular interaction-based polymer networks are more accessible than those based on dynamic covalent bonds, as the latter are difficult to completely dissociate. Thus, preparing an LCE that possesses both supramolecular-like exchangeability and covalent bond-level stability remains a significant challenge. In this work, we addressed this issue by employing metal-ligand bonds as the crosslinking points of LCE networks. As such, mesogen alignment can be repeatedly encoded through metal-ligand bond exchange and stably maintained after programming, since the bond exchange rate is sufficiently slow when the programming and actuation temperatures are below the bond dissociation temperature. More importantly, the metal-ligand bonds can be completely dissociated at high temperatures, allowing the LCE network to be dissolved in a solvent and reshaped into desired geometries via solution casting. Building on these properties, our LCEs can be fabricated into versatile actuators, such as reversible folding origami, artificial muscles, and soft robotics.

3.
Gels ; 10(7)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39057438

RESUMEN

Hydrogels, composed of hydrophilic homopolymer or copolymer networks, have structures similar to natural living tissues, making them ideal for applications in drug delivery, tissue engineering, and biosensors. Since Wichterle and Lim first synthesized hydrogels in 1960, extensive research has led to various types with unique features. Responsive hydrogels, which undergo reversible structural changes when exposed to stimuli like temperature, pH, or specific molecules, are particularly promising. Temperature-sensitive hydrogels, which mimic biological processes, are the most studied, with poly(N-isopropylacrylamide) (PNIPAm) being prominent due to its lower critical solution temperature of around 32 °C. Additionally, pH-responsive hydrogels, composed of polyelectrolytes, change their structure in response to pH variations. Despite their potential, conventional hydrogels often lack mechanical strength. The double-network (DN) hydrogel approach, introduced by Gong in 2003, significantly enhanced mechanical properties, leading to innovations like shape-deformable DN hydrogels, organic/inorganic composites, and flexible display devices. These advancements highlight the potential of hydrogels in diverse fields requiring precise and adaptable material performance. In this review, we focus on advancements in the field of responsive acrylamide-based hydrogels with IPN structures, emphasizing the recent research on DN hydrogels.

4.
Polymers (Basel) ; 16(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38794601

RESUMEN

Polymerization-induced self-assembly (PISA) is a powerful and versatile technique for producing colloidal dispersions of block copolymer particles with desired morphologies. Currently, PISA can be carried out in various media, over a wide range of temperatures, and using different mechanisms. This method enables the production of biodegradable objects and particles with various functionalities and stimuli sensitivity. Consequently, PISA offers a broad spectrum of potential commercial applications. The aim of this review is to provide an overview of the current state of rational synthesis of block copolymer particles with diverse morphologies using various PISA techniques and mechanisms. The discussion begins with an examination of the main thermodynamic, kinetic, and structural aspects of block copolymer micellization, followed by an exploration of the key principles of PISA in the formation of gradient and block copolymers. The review also delves into the main mechanisms of PISA implementation and the principles governing particle morphology. Finally, the potential future developments in PISA are considered.

5.
Sensors (Basel) ; 24(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38733009

RESUMEN

Recent advancements in polymer-assisted layer-by-layer (LbL) fabrication have revolutionized the development of wearable sensors for health monitoring. LbL self-assembly has emerged as a powerful and versatile technique for creating conformal, flexible, and multi-functional films on various substrates, making it particularly suitable for fabricating wearable sensors. The incorporation of polymers, both natural and synthetic, has played a crucial role in enhancing the performance, stability, and biocompatibility of these sensors. This review provides a comprehensive overview of the principles of LbL self-assembly, the role of polymers in sensor fabrication, and the various types of LbL-fabricated wearable sensors for physical, chemical, and biological sensing. The applications of these sensors in continuous health monitoring, disease diagnosis, and management are discussed in detail, highlighting their potential to revolutionize personalized healthcare. Despite significant progress, challenges related to long-term stability, biocompatibility, data acquisition, and large-scale manufacturing are still to be addressed, providing insights into future research directions. With continued advancements in polymer-assisted LbL fabrication and related fields, wearable sensors are poised to improve the quality of life for individuals worldwide.


Asunto(s)
Técnicas Biosensibles , Polímeros , Dispositivos Electrónicos Vestibles , Polímeros/química , Humanos , Monitoreo Fisiológico/instrumentación , Monitoreo Fisiológico/métodos , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos
6.
Adv Sci (Weinh) ; 11(23): e2402358, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38520731

RESUMEN

Self-oscillation phenomena observed in nature serve as extraordinary inspiration for designing synthetic autonomous moving systems. Converting self-oscillation into designable self-sustained locomotion can lead to a new generation of soft robots that require minimal/no external control. However, such locomotion is typically constrained to a single mode dictated by the constant surrounding environment. In this study, a liquid crystal elastomer (LCE) robot capable of achieving self-sustained multimodal locomotion, with the specific motion mode being controlled via substrate adhesion or remote light stimulation is presented. Specifically, the LCE is mechanically trained to undergo repeated snapping actions to ensure its self-sustained rolling motion in a constant gradient thermal field atop a hotplate. By further fine-tuning the substrate adhesion, the LCE robot exhibits reversible transitions between rolling and jumping modes. In addition, the rolling motion can be manipulated in real time through light stimulation to perform other diverse motions including turning, decelerating, stopping, backing up, and steering around complex obstacles. The principle of introducing an on-demand gate control offers a new venue for designing future autonomous soft robots.

7.
ACS Appl Mater Interfaces ; 16(8): 10722-10735, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38350063

RESUMEN

While stimuli-responsive structural colors are commonly found in nature, mimicking these in artificial materials is challenging. Dynamically switchable and tunable coloration, however, is in high demand in widespread fields of applications, including advanced display and monitoring technologies, smart sensing, and anticounterfeiting. This work reports a scalable protocol for the synthesis of tailor-made core-shell particles and subsequent processing to opal films with iridescent, pH-responsive, and mechanochromic structural color. Novel monodisperse core-shell architectures based on hard polystyrene core particles are synthesized via stepwise emulsion polymerization in a starved-feed mode. The incorporation of 4-vinylpyridine and methacrylic acid as functional comonomers in the soft particle shell facilitates pH-responsive swelling and deswelling. Mechanically stable and well-ordered colloidal crystal films are obtained by the self-assembly of the particles during processing with the powerful melt-shear organization technique. Thereby obtained opal films show Bragg-scattering at the colloidal crystalline structure and exhibit brilliant green-turquoise to blue-violet reflection colors, dependent on the angle of view and illumination. Upon changes in the pH value or mechanical deformation, the reflected wavelength shifts by more than 100 nm, leading to intriguing changes in the visible structural color. Excellent reversibility is achieved by the subsequent application of a convenient UV cross-linking strategy, corroborating the high application potential of these advanced functional materials.

8.
Macromol Rapid Commun ; 45(3): e2300500, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37870940

RESUMEN

A facile method based on recyclable nanoscale zero-valent iron (nZVI)-mediated photoinduced reversible deactivation radical polymerization in ionic liquid (IL) leads to the synthesis of narrow disperse poly(tert-butyl methacrylate) (PTBMA), amphiphilic PTBMA-block-poly(poly(ethylene glycol)methacrylate) diblock copolymer and double hydrophilic poly(methacrylic acid)-block-poly(poly(ethylene glycol)methacrylate) (PMAA-b-PPEGMA) diblock copolymers thereof. Stimuli response of the synthesized PMAA-b-PPEGMA diblock copolymer against variation in pH and temperature is assessed. Recyclability of the nZVI (catalyst) and IL (solvent) is established. Polymerization may be switched ON or OFF, simply by turning the UVA light irradiation ON or OFF, offering temporal control. The diblock copolymer self-aggregates into spherical nanoaggregates which are employed for encapsulation of coumarin 102 (C102, a typical hydrophobic dye), describing their potential application in drug delivery applications. The facile synthesis strategy may open up new avenues for the preparation of intelligent functional polymers for engineering and biomedical applications.


Asunto(s)
Líquidos Iónicos , Polímeros , Polímeros/química , Ácidos Polimetacrílicos/química
9.
Adv Mater ; 35(47): e2306402, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37867200

RESUMEN

Polymer materials that show macroscopic deformation in response to external stimuli are feasible for novel soft actuators including microactuators. Incorporation of photochromic moieties, such as azobenzenes, into polymer networks enables macroscopic deformation under irradiation with light through photoisomerization. Under cryogenic conditions, however, it has been difficult to induce macroscopic deformation as polymers lose their soft nature due to the severe restrictions of molecular motions. Here, activation of molecular motions and macroscopic deformation in liquid nitrogen only with light for polymers containing photochromic moieties is reported. Photoinduced bending of polymer networks with normal azobenzenes in liquid nitrogen is enabled by preliminary UV irradiation at room temperature to produce cis-isomers. To realize photoinduced deformation directly in liquid nitrogen, polymer networks are functionalized with bridged azobenzenes, which exist as cis-isomers in thermodynamic equilibrium. The films with bridged azobenzenes exhibit reversible photoisomerization and bending upon irradiation with light in liquid nitrogen without the need of preliminary irradiation, implying that the change in conformation of polymer chains can be isothermally induced even under cryogenic conditions. Achievement of flexible motions under cryogenic conditions through isothermal processes will greatly expand the operating temperature range of soft actuators.

10.
Pharmaceutics ; 15(7)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37514163

RESUMEN

Poly(ε-Caprolactone)s are biodegradable and biocompatible polyesters that have gained considerable attention for drug delivery applications due to their slow degradation and ease of functionalization. One of the significant advantages of polycaprolactone is its ability to attach various functionalities to its backbone, which is commonly accomplished through ring-opening polymerization (ROP) of functionalized caprolactone monomer. In this review, we aim to summarize some of the most recent advances in polycaprolactones and their potential application in drug delivery. We will discuss different types of polycaprolactone-based drug delivery systems and their behavior in response to different stimuli, their ability to target specific locations, morphology, as well as their drug loading and release capabilities.

11.
Small ; 19(41): e2302774, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37291979

RESUMEN

Materials that undergo reversible changes in form typically require top-down processing to program the microstructure of the material. As a result, it is difficult to program microscale, 3D shape-morphing materials that undergo non-uniaxial deformations. Here, a simple bottom-up fabrication approach to prepare bending microactuators is described. Spontaneous self-assembly of liquid crystal (LC) monomers with controlled chirality within 3D micromold results in a change in molecular orientation across thickness of the microstructure. As a result, heating induces bending in these microactuators. The concentration of chiral dopant is varied to adjust the chirality of the monomer mixture. Liquid crystal elastomer (LCE) microactuators doped with 0.05 wt% of chiral dopant produce needle-shaped actuators that bend from flat to an angle of 27.2 ± 11.3° at 180 °C. Higher concentrations of chiral dopant lead to actuators with reduced bending, and lower concentrations of chiral dopant lead to actuators with poorly controlled bending. Asymmetric molecular alignment inside 3D structure is confirmed by sectioning actuators. Arrays of microactuators that all bend in the same direction can be fabricated if symmetry of geometry of the microstructure is broken. It is envisioned that the new platform to synthesize microstructures can further be applied in soft robotics and biomedical devices.

12.
Polymers (Basel) ; 15(11)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37299263

RESUMEN

Camptothecin (CPT) has been shown to exhibit anticancer activity against several cancers. Nevertheless, CPT is very hydrophobic with poor stability, and thus its medical application is limited. Therefore, various drug carriers have been exploited for effectively delivering CPT to the targeted cancer site. In this study, a dual pH/thermo-responsive block copolymer of poly(acrylic acid-b-N-isopropylacrylamide) (PAA-b-PNP) was synthesized and applied to encapsulate CPT. At temperatures above its cloud point, the block copolymer self-assembled to form nanoparticles (NPs) and in situ encapsulate CPT, owing to their hydrophobic interaction as evidenced by fluorescence spectrometry. Chitosan (CS) was further applied on the surface through the formation of a polyelectrolyte complex with PAA for improving biocompatibility. The average particle size and zeta potential of the developed PAA-b-PNP/CPT/CS NPs in a buffer solution were 168 nm and -30.6 mV, respectively. These NPs were still stable at least for 1 month. The PAA-b-PNP/CS NPs exhibited good biocompatibility toward NIH 3T3 cells. Moreover, they could protect the CPT at pH 2.0 with a very slow-release rate. At pH 6.0, these NPs could be internalized by Caco-2 cells, followed by intracellular release of the CPT. They became highly swollen at pH 7.4, and the released CPT was able to diffuse into the cells at higher intensity. Among several cancer cell lines, the highest cytotoxicity was observed for H460 cells. As a result, these environmentally-responsive NPs have the potential to be applied in oral administration.

13.
Membranes (Basel) ; 13(5)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37233585

RESUMEN

In this work, we have developed a method for the preparation of pH-responsive track-etched membranes (TeMs) based on poly(ethylene terephthalate) (PET) with pore diameters of 2.0 ± 0.1 µm of cylindrical shape by RAFT block copolymerization of styrene (ST) and 4-vinylpyridine (4-VP) to be used in the separation of water-oil emulsions. The influence of the monomer concentration (1-4 vol%), the molar ratio of RAFT agent: initiator (1:2-1:100) and the grafting time (30-120 min) on the contact angle (CA) was studied. The optimal conditions for ST and 4-VP grafting were found. The obtained membranes showed pH-responsive properties: at pH 7-9, the membrane was hydrophobic with a CA of 95°; at pH 2, the CA decreased to 52°, which was due to the protonated grafted layer of poly-4-vinylpyridine (P4VP), which had an isoelectric point of pI = 3.2. The obtained membranes with controlled hydrophobic-hydrophilic properties were tested by separating the direct and reverse "oil-water" emulsions. The stability of the hydrophobic membrane was studied for 8 cycles. The degree of purification was in the range of 95-100%.

14.
Macromol Rapid Commun ; 44(14): e2300124, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37151108

RESUMEN

Stimuli-responsive aggregation of polymer chains in water has found a variety of applications in polymer science, biology, and chemical engineering. To date, the majority of the phase transitions between the aggregated and dissolved forms has been observed by changing the solution temperature, and an active and precise control on the phase transition with a high time resolution has been challenging. Herein, a reversible phase transition of poly(allylamine-co-allylurea) (PAU) in an aqueous electrolyte is achieved by electrochemical redox cycling of hexacyanoferrate(II/III) ([Fe(CN)6 ]4-/3- ) ion pair. The aggregation and dissolution cycle can be completed in a high-resolution time frame of as short as 5 s. The strong electrostatic interaction between the protonated primary amino group of PAU and the tetravalent [Fe(CN)6 ]4- anion induces the aggregation, while the oxidation to the trivalent [Fe(CN)6 ]3- anion reduces the attractive force, and the polymer chain redissolves in solution. The ureido group of PAU helps the chain-folding process through the formation of inter/intrachain hydrogen-bonding networks, resulting in the sharp phase transition. By using [Fe(CN)6 ]4-/3- as the electron mediator, the electrochemical control on the large transparency change of polymer aqueous solution is realized for the first time.


Asunto(s)
Electrones , Polímeros , Solubilidad , Oxidación-Reducción , Cationes , Aniones
15.
Small ; 19(30): e2302051, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37189212

RESUMEN

While dynamic surface topographies are fabricated using liquid crystal (LC) polymers, switching between two distinct 3D topographies remains challenging. In this work, two switchable 3D surface topographies are created in LC elastomer (LCE) coatings using a two-step imprint lithography process. A first imprinting creates a surface microstructure on the LCE coating which is polymerized by a base catalyzed partial thiol-acrylate crosslinking step. The structured coating is then imprinted with a second mold to program the second topography, which is subsequently fully polymerized by light. The resulting LCE coatings display reversible surface switching between the two programmed 3D states. By varying the molds used during the two imprinting steps, diverse dynamic topographies can be achieved. For example, by using grating and rough molds sequentially, switchable surface topographies between a random scatterer and an ordered diffractor are achieved. Additionally, by using negative and positive triangular prism molds consecutively, dynamic surface topographies switching between two 3D structural states are achieved, driven by differential order/disorder transitions in the different areas of the film. It is anticipated that this platform of dynamic 3D topological switching can be used for many applications, including antifouling and biomedical surfaces, switchable friction elements, tunable optics, and beyond.

16.
J Hazard Mater ; 445: 130610, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-37056001

RESUMEN

The development of materials with highly selective recognition towards Hg2+ is of great significance in environmental monitoring. Herein, a novel thermo-responsive copolymer with Hg2+ recognition property is prepared via thermally-initiated copolymerization of 5'-O-Acryloyl 5-methyl-uridine (APU) and N-isopropylacrylamide (NIPAM). The chemical structure and stimuli-sensitive properties of poly(N-isopropylacrylamide-co-5-methyl-uridine) (P(NIPAM-co-APU)) linear polymers and hydrogel are thoroughly investigated. At the supramolecular level, P(NIPAM-co-APU) linear polymers could respond to both temperature and Hg2+ stimuli with highly selective recognition towards Hg2+ over other 18 metal ion species (at least 5 fold difference) and common anions. Upon capturing Hg2+ by APU units as host metal receptors, the lower critical solution temperature (LCST) of P(NIPAM-co-APU, PNU-7 and PNU-11) linear polymers are significantly shifted more than 10 °C due to the formation of stable APU-Hg2+-APU directed host-guest complexes. Accordingly, at the macroscopic level, P(NIPAM-co-APU) hydrogel display selective and robust recognition of Hg2+ under optimum conditions, and its maximum Hg2+ uptake capacity was 33.1 mg g-1. This work provides a new option for Hg2+ recognition with high selectivity, which could be facilely integrated with other smart systems to achieve satisfactory detection of environmental Hg2+.

17.
Adv Mater ; 35(13): e2209152, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36683324

RESUMEN

Tunable metal-insulator-metal (MIM) Fabry-Pérot (FP) cavities that can dynamically control light enable novel sensing, imaging and display applications. However, the realization of dynamic cavities incorporating stimuli-responsive materials poses a significant engineering challenge. Current approaches rely on refractive index modulation and suffer from low dynamic tunability, high losses, and limited spectral ranges, and require liquid and hazardous materials for operation. To overcome these challenges, a new tuning mechanism employing reversible mechanical adaptations of a polymer network is proposed, and dynamic tuning of optical resonances is demonstrated. Solid-state temperature-responsive optical coatings are developed by preparing a monodomain nematic liquid crystalline network (LCN) and are incorporated between metallic mirrors to form active optical microcavities. LCN microcavities offer large, reversible and highly linear spectral tuning of FP resonances reaching wavelength-shifts up to 40 nm via thermomechanical actuation while featuring outstanding repeatability and precision over more than 100 heating-cooling cycles. This degree of tunability allows for reversible switching between the reflective and the absorbing states of the device over the entire visible and near-infrared spectral regions, reaching large changes in reflectance with modulation efficiency ΔR = 79%.

18.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36614322

RESUMEN

For the first time, double stimuli-responsive properties of poly(N-isopropylacrylamide) (PNIPA) and poly(1-vinylimidazole) (PVIM) block copolymers in aqueous solutions were studied. The synthesis of PNIPA60-b-PVIM90 and PNIPA28-b-PVIM62-b-PNIPA29 was performed using reversible addition-fragmentation chain transfer (RAFT) polymerization. The polymers were characterized by size exclusion chromatography and 1H NMR spectroscopy. The conformational behavior of the polymers was studied using dynamic light scattering (DLS) and fluorescence spectroscopy (FS). It was found that PNIPA and block copolymers conformation and ability for self-assembly in aqueous medium below and above cloud point temperature depend on the locus of hydrophobic groups derived from the RAFT agent within the chain. Additionally, the length of PVIM block, its locus in the chain and charge perform an important role in the stabilization of macromolecular micelles and aggregates below and above cloud point temperature. At 25 °C the average hydrodynamic radius (Rh) of the block copolymer particles at pH 3 is lower than at pH 9 implying the self-assembling of macromolecules in the latter case. Cloud points of PNIPA60-b-PVIM90 are ~43 °C and ~37 °C at a pH of 3 and 9 and of PNIPA28-b-PVIM62-b-PNIPA29 they are ~35 °C and 31 °C at a pH of 3 and 9. Around cloud point independently of pH, the Rh value for triblock copolymer rises sharply, achieves the maximum value, then falls and reaches the constant value, while for diblock copolymer, it steadily grows after reaching cloud point. The information about polarity of microenvironment around polymer obtained by FS accords with DLS data.


Asunto(s)
Resinas Acrílicas , Polímeros , Polímeros/química , Resinas Acrílicas/química , Imidazoles
19.
Adv Drug Deliv Rev ; 193: 114673, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36574920

RESUMEN

Injectable nanocarriers and hydrogels have found widespread use in a variety of biomedical applications such as local and sustained biotherapeutic cargo delivery, and as cell-instructive matrices for tissue engineering. Recent advances in the development and application of recombinant protein-based materials as injectable platforms under physiological conditions have made them useful platforms for the development of nanoparticles and tissue engineering matrices, which are reviewed in this work. Protein-engineered biomaterials are highly customizable, and they provide distinctly tunable rheological properties, encapsulation efficiencies, and delivery profiles. In particular, the key advantages of emerging technologies which harness the stimuli-responsive properties of recombinant polypeptide-based materials are highlighted in this review.


Asunto(s)
Materiales Biocompatibles , Ingeniería de Tejidos , Humanos , Hidrogeles , Proteínas Recombinantes , Péptidos
20.
Mol Pharm ; 20(3): 1490-1499, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36490379

RESUMEN

A deep understanding of the interactions between micelle-like aggregates and antineoplastic drugs is paramount to control their adequate delivery. Herein, Poly(NIPAM-co-SPMA) copolymer nanocarriers were synthesized according to our previous published methodology, and the loading and release of poorly and highly water-soluble doxorubicin forms (Dox and Dox-HCl, respectively) were evaluated upon UV light irradiation and pH-variation stimuli. Capillary electrophoresis (CE) coupled to a fluorescence detector (LIF) allowed us to specifically characterize these systems and deeply study the loading and release processes. For this purpose, varying concentrations of doxorubicin were tested, and the loading/release rates were indirectly quantified thanks to the "free" doxorubicin concentration in solution. This study highlighted that Dox loading (9.4 µg/mg) was more effective than Dox-HCl loading (5.5 µg/mg). In contrast, 68 and 74% of Dox-HCl were respectively released after 2 min upon pH variation (from 7.4 to 6.0) and combined UV + pH 6.0 stimuli, while only 27% of Dox was invariably released upon application of the same stimuli. These results are coherent with the characteristics of both DoxHCl and Dox: Electrostatic interactions between Dox-HCl and the micelle-membrane structure (NIPAM) seemed predominant, while hydrophobic interactions were expected between Dox and the SP moieties at the inner part of the micelle-like aggregate, leading to different behaviors in both loading and release of the two doxorubicin forms. For doxorubicin loading concentrations higher than 3 µM, the electrophoretic profiles presented an additional peak. Thanks to CE characterizations, this peak was attributed to the formation of a complex formed between the nonaggregated copolymer and the doxorubicin molecules. This report therefore undergoes deep characterization of the dynamic formation of different micelle/drug complexes involved in the global drug-delivery behavior and therefore contributes to the development of more effective stimuli-responsive nanocarriers.


Asunto(s)
Antineoplásicos , Micelas , Rayos Ultravioleta , Doxorrubicina/química , Sistemas de Liberación de Medicamentos/métodos , Polímeros/química , Concentración de Iones de Hidrógeno , Portadores de Fármacos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...