Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38712253

RESUMEN

Our understanding of region-specific microbial function within the gut is limited due to reliance on stool. Using a recently developed capsule device, we exploit regional sampling from the human intestines to develop models for interrogating small intestine (SI) microbiota composition and function. In vitro culturing of human intestinal contents produced stable, representative communities that robustly colonize the SI of germ-free mice. During mouse colonization, the combination of SI and stool microbes altered gut microbiota composition, functional capacity, and response to diet, resulting in increased diversity and reproducibility of SI colonization relative to stool microbes alone. Using a diverse strain library representative of the human SI microbiota, we constructed defined communities with taxa that largely exhibited the expected regional preferences. Response to a fiber-deficient diet was region-specific and reflected strain-specific fiber-processing and host mucus-degrading capabilities, suggesting that dietary fiber is critical for maintaining SI microbiota homeostasis. These tools should advance mechanistic modeling of the human SI microbiota and its role in disease and dietary responses.

2.
mSystems ; 9(6): e0006524, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38687030

RESUMEN

The topology of the transcription factor network (TFN) of Escherichia coli is far from uniform, with 22 global regulator (GR) proteins controlling one-third of all genes. So far, their production rates cannot be tracked by comparable fluorescent proteins. We developed a library of fluorescent reporters for 16 GRs for this purpose. Each consists of a single-copy plasmid coding for green fluorescent protein (GFP) fused to the full-length copy of the native promoter. We tracked their activity in exponential and stationary growth, as well as under weak and strong stresses. We show that the reporters have high sensitivity and specificity to all stresses tested and detect single-cell variability in transcription rates. Given the influence of GRs on the TFN, we expect that the new library will contribute to dissecting global transcriptional stress-response programs of E. coli. Moreover, the library can be invaluable in bioindustrial applications that tune those programs to, instead of cell growth, favor productivity while reducing energy consumption.IMPORTANCECells contain thousands of genes. Many genes are involved in the control of cellular activities. Some activities require a few hundred genes to run largely synchronous transcriptional programs. To achieve this, cells have evolved global regulator (GR) proteins that can influence hundreds of genes simultaneously. We have engineered a library of Escherichia coli strains to track the levels over time of these, phenotypically critical, GRs. Each strain has a single-copy plasmid coding for a fast-maturing green fluorescent protein whose transcription is controlled by a copy of the natural GR promoter. By allowing the tracking of GR levels, with sensitivity and specificity, this library should become of wide use in scientific research on bacterial gene expression (from molecular to synthetic biology) and, later, be used in applications in therapeutics and bioindustries.


Asunto(s)
Escherichia coli , Regulación Bacteriana de la Expresión Génica , Biblioteca de Genes , Genes Reporteros , Proteínas Fluorescentes Verdes , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Plásmidos/genética , Regiones Promotoras Genéticas/genética
3.
J Biosci Bioeng ; 137(1): 16-23, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38042754

RESUMEN

Terpenoids are used in various industries, and Saccharomyces cerevisiae is a promising microorganism for terpenoid production. Introducing the mevalonate (MVA) pathway into the mitochondria of a strain with an augmented inherent cytosolic MVA pathway increased terpenoid production but also led to the accumulation of toxic pyrophosphate intermediates that negatively affected terpenoid production. We first engineered the inherent MVA pathway in the cytosol and then introduced the MVA pathway into the mitochondria using several promoter combinations, considering the toxicity of pyrophosphate intermediates. However, the highest titer, 183 mg/L, tends to be only 5% higher than that of the strain that only augmented the inherent MVA pathway (SYCM1; 174 mg/L). Next, we hypothesized that, in addition to the toxicity of pyrophosphate, other compounds in the MVA pathway could affect the squalene titer. Thus, we constructed a combinatorial strain library expressing MVA pathway enzymes in the mitochondria with various promoter combinations. The highest squalene titer (230 mg/L) was 32% higher than that of SYCM1. The promoter set revealed that mitigation of mono- and pyrophosphate compound accumulation was important for mitochondrial usage. This study demonstrated that a combinatorial strain library is useful for discovering the optimal gene expression balance in engineering yeast.


Asunto(s)
Saccharomyces cerevisiae , Terpenos , Saccharomyces cerevisiae/metabolismo , Ácido Mevalónico/metabolismo , Difosfatos , Escualeno/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Ingeniería Metabólica
4.
Exp Gerontol ; 86: 113-123, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27125759

RESUMEN

PURPOSE: Research into the genetic mechanisms of aging has expanded rapidly over the past two decades. This has in part been the result of the use of model organisms (particularly yeast, worms and flies) and high-throughput technologies, combined with a growing interest in aging research. Despite this progress, widespread consensus regarding the pathways that are fundamental to the modulation of cellular aging and lifespan for all organisms has been limited due to discrepancies between different studies. We have compared results from published genome-wide, chronological lifespan (CLS) screens of individual gene deletion strains in Saccharomyces cerevisiae in order to identify gene deletion strains with consistent influences on longevity as possible indicators of fundamental aging processes from this single-celled, eukaryotic model organism. METHODS: Three previous reports have described genetic modifiers of chronological aging in the budding yeast (S. cerevisiae) using the yeast gene deletion strain collection. We performed a comparison among the data sets using correlation and decile distribution analysis to describe concordance between screens and identify strains that consistently increased or decreased CLS. We used gene enrichment analysis in an effort to understand the biology underlying genes identified in multiple studies. We attempted to replicate the different experimental conditions employed by the screens to identify potential sources of variability in CLS worth further investigating. RESULTS: Among 3209 strains present in all three screens, nine deletions strains were in common in the longest-lived decile (2.80%) and thirteen were in common in the shortest-lived decile (4.05%) of all three screens. Similarly, pairwise overlap between screens was low. When the same comparison was extended to three deciles to include more mutants studied in common between the three screens, enrichment of cellular processes based on gene ontology analysis in the long-lived strains remained very limited. To test the hypothesis that different parental strain auxotrophic requirements or media formulations employed by the respective genome-wide screens might contribute to the lack of concordance, different CLS assay conditions were assessed in combination with strains having different ploidy and auxotrophic requirements (all relevant to differences in the way the three genome-wide CLS screens were performed). This limited but systematic analysis of CLS with respect to auxotrophy, ploidy, and media revealed several instances of gene-nutrient interaction. CONCLUSIONS: There is surprisingly little overlap between the results of three independently performed genome-wide screens of CLS in S. cerevisiae. However, differences in strain genetic background (ploidy and specific auxotrophic requirements) were present, as well as different media and experimental conditions (e.g., aeration and pooled vs. individual culturing), which, along with stochastic effects such as genetic drift or selection of secondary mutations that suppress the loss of function from gene deletion, could in theory account for some of the lack of consensus between results. Considering the lack of overlap in CLS phenotypes among the set of genes reported by all three screens, and the results of a CLS experiment that systematically tested (incorporating extensive controls) for interactions between variables existing between the screens, we propose that discrepancies can be reconciled through deeper understanding of the influence of cell intrinsic factors such as auxotrophic requirements ploidy status, extrinsic factors such as media composition and aeration, as well as interactions that may occur between them, for example as a result of different pooling vs. individually aging cultures. Such factors may have a more significant impact on CLS outcomes than previously realized. Future studies that systematically account for these contextual factors, and can thus clarify the interactions between genetic and nutrient factors that alter CLS phenotypes, should aid more complete understanding of the underlying biology so that genetic principles of CLS in yeast can be extrapolated to differential cellular aging observed in animal models.


Asunto(s)
Envejecimiento/genética , Eliminación de Gen , Longevidad/genética , Medios de Cultivo , Regulación Fúngica de la Expresión Génica/genética , Interacción Gen-Ambiente , Estudio de Asociación del Genoma Completo , Fenotipo , Saccharomyces cerevisiae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...