Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Data Brief ; 39: 107580, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34841022

RESUMEN

The article presents a dataset on ionic composition of pore water and grain size properties of 105 samples of bottom sediments and subsea permafrost from three sediment cores obtained during polar expeditions in the Buor-Khaya Bay in 2014-2015. Collection sites are located southeast of the Lena Delta near the Bykovsky Peninsula at the Buor-Khaya Bay. In this data article, the concentration of sodium, potassium, calcium, and magnesium cations, chlorides and sulphates in water extracts from sediments, as well as grain size characteristics, are presented. Based on these measurements a difference in salinisation dynamics of thawed strata within the Buor-Khaya Bay is shown.

2.
Sci Total Environ ; 777: 146100, 2021 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-33684745

RESUMEN

Arctic subsea permafrost contains more organic carbon than the terrestrial counterpart (~1400 Pg C vs. ~1000 Pg C) and is undergoing fast degradation (at rates of ~10 to 30 cm yr-1 over the past 3 decades) in response to climate warming. Yet the flux of organic carbon sequestered in the sediments of subsea permafrost to overlying water column, which can trigger enormous positive carbon-climate feedbacks, remain unclear. In this study, we examined the dissolved organic matter (DOM) diffusion to bottom seawaters from East Siberian Sea (ESS) sediments, which was estimated at about 943-2240 g C m-2 yr-1 and 10-55 g C m-2 yr-1 at the continuous-discontinuous transition zone of subsea permafrost and the remainder shelf and slope sites, respectively. The released DOM is characterized by prevailing dominance (≥ 98%) of low molecular weight (Mn < 350 Da) fractions. A red-shifted (emission wavelength >500 nm) fluorescence fingerprint, a typical feature of sediment/soil DOM, accounts for 4-6% and 7-8% in the fluorescence distributions of seawaters and pore waters, respectively, on ESS shelf. Statistical analysis revealed that seawaters and pore waters possessed similar DOM composition. The estimated total benthic efflux of dissolved organic carbon (DOC) was ~0.7-1.0 Pg C yr-1 when the estimate was scaled up to the entire Arctic shelf underlain with subsea permafrost assuming the width of continuous-discontinuous transition zone is 1 to 10 m. This estimation is consistent with the established ~10-30 cm yr-1 degradation rates of subsea permafrost by estimating its thaw-out time. Compiled observation data suggested that subsea permafrost might be a major DOM source to the Arctic Ocean, which could release tremendous carbon upon remineralization via its degradation to CO2 and CH4 in the water column.

3.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33649226

RESUMEN

The East Siberian Arctic Shelf holds large amounts of inundated carbon and methane (CH4). Holocene warming by overlying seawater, recently fortified by anthropogenic warming, has caused thawing of the underlying subsea permafrost. Despite extensive observations of elevated seawater CH4 in the past decades, relative contributions from different subsea compartments such as early diagenesis, subsea permafrost, methane hydrates, and underlying thermogenic/ free gas to these methane releases remain elusive. Dissolved methane concentrations observed in the Laptev Sea ranged from 3 to 1,500 nM (median 151 nM; oversaturation by ∼3,800%). Methane stable isotopic composition showed strong vertical and horizontal gradients with source signatures for two seepage areas of δ13C-CH4 = (-42.6 ± 0.5)/(-55.0 ± 0.5) ‰ and δD-CH4 = (-136.8 ± 8.0)/(-158.1 ± 5.5) ‰, suggesting a thermogenic/natural gas source. Increasingly enriched δ13C-CH4 and δD-CH4 at distance from the seeps indicated methane oxidation. The Δ14C-CH4 signal was strongly depleted (i.e., old) near the seeps (-993 ± 19/-1050 ± 89‰). Hence, all three isotope systems are consistent with methane release from an old, deep, and likely thermogenic pool to the outer Laptev Sea. This knowledge of what subsea sources are contributing to the observed methane release is a prerequisite to predictions on how these emissions will increase over coming decades and centuries.

4.
J Geophys Res Earth Surf ; 124(4): 920-937, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31423408

RESUMEN

Thawing of subsea permafrost can impact offshore infrastructure, affect coastal erosion, and release permafrost organic matter. Thawing is usually modeled as the result of heat transfer, although salt diffusion may play an important role in marine settings. To better quantify nearshore subsea permafrost thawing, we applied the CryoGRID2 heat diffusion model and coupled it to a salt diffusion model. We simulated coastline retreat and subsea permafrost evolution as it develops through successive stages of a thawing sequence at the Bykovsky Peninsula, Siberia. Sensitivity analyses for seawater salinity were performed to compare the results for the Bykovsky Peninsula with those of typical Arctic seawater. For the Bykovsky Peninsula, the modeled ice-bearing permafrost table (IBPT) for ice-rich sand and an erosion rate of 0.25 m/year was 16.7 m below the seabed 350 m offshore. The model outputs were compared to the IBPT depth estimated from coastline retreat and electrical resistivity surveys perpendicular to and crossing the shoreline of the Bykovsky Peninsula. The interpreted geoelectric data suggest that the IBPT dipped to 15-20 m below the seabed at 350 m offshore. Both results suggest that cold saline water forms beneath grounded ice and floating sea ice in shallow water, causing cryotic benthic temperatures. The freezing point depression produced by salt diffusion can delay or prevent ice formation in the sediment and enhance the IBPT degradation rate. Therefore, salt diffusion may facilitate the release of greenhouse gasses to the atmosphere and considerably affect the design of offshore and coastal infrastructure in subsea permafrost areas.

5.
Philos Trans A Math Phys Eng Sci ; 373(2052)2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26347539

RESUMEN

Sustained release of methane (CH(4)) to the atmosphere from thawing Arctic permafrost may be a positive and significant feedback to climate warming. Atmospheric venting of CH(4) from the East Siberian Arctic Shelf (ESAS) was recently reported to be on par with flux from the Arctic tundra; however, the future scale of these releases remains unclear. Here, based on results of our latest observations, we show that CH(4) emissions from this shelf are likely to be determined by the state of subsea permafrost degradation. We observed CH(4) emissions from two previously understudied areas of the ESAS: the outer shelf, where subsea permafrost is predicted to be discontinuous or mostly degraded due to long submergence by seawater, and the near shore area, where deep/open taliks presumably form due to combined heating effects of seawater, river run-off, geothermal flux and pre-existing thermokarst. CH(4) emissions from these areas emerge from largely thawed sediments via strong flare-like ebullition, producing fluxes that are orders of magnitude greater than fluxes observed in background areas underlain by largely frozen sediments. We suggest that progression of subsea permafrost thawing and decrease in ice extent could result in a significant increase in CH(4) emissions from the ESAS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...