Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Proteomics ; 305: 105248, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38964538

RESUMEN

Lysine acetylation is a common post-translational modification of proteins in plants. Rosa roxburghii Tratt. is an economically important fruit tree known for its high nutritional value. However, the characteristics of acetylome-related proteins during fruit development in this crop remain unknown. This study aimed to explore the global acetylproteome of R. roxburghii fruit to identify key lysine-acetylated proteins associated with its quality traits. A total of 4280 acetylated proteins were identified, among them, 981 proteins exhibited differential acetylation (DA) while 19 proteins showed increased acetylation level consistently on individual sites. Functional classification revealed that these DA proteins were primarily associated with central metabolic pathways, carbohydrate metabolism, terpenoids and polyketides metabolism, lipid metabolism, and amino acid metabolism, highlighting the importance of lysine acetylation in fruit quality formation. Notably, the most significant up-regulated acetylation occurred in sucrose synthase (SuS1), a key enzyme in sucrose biosynthesis. Enzyme assays, RNA-seq and proteome analysis indicated that SuS activity, which was independent of its transcriptome and proteome level, may be enhanced by up-acetylation, ultimately increasing sucrose accumulation. Thus, these findings offer a better understanding of the global acetylproteome of R. roxburghii fruit, while also uncover a novel mechanism of acetylated SuS-mediated in sucrose metabolism in plant. SIGNIFICANCE: Rosa roxburghii Tratt. is an important horticultural crop whose commercial value is closely linked to its fruit quality. Acetylation modification is a post-translational mechanism observed in plants, which regulates the physiological functions and metabolic fluxes involved in various biological processes. The regulatory mechanism of lysine acetylation in the fruit quality formation in perennial woody plants has not been fully elucidated, while most of the research has primarily focused on annual crops. Therefore, this study, for the first time, uses Rosaceae fruits as the research material to elucidate the regulatory role of lysine-acetylated proteins in fruit development, identify key metabolic processes influencing fruit quality formation, and provide valuable insights for cultivation strategies.


Asunto(s)
Frutas , Lisina , Proteínas de Plantas , Proteoma , Rosa , Acetilación , Lisina/metabolismo , Frutas/metabolismo , Frutas/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Rosa/metabolismo , Sacarosa/metabolismo , Procesamiento Proteico-Postraduccional , Proteómica/métodos , Regulación de la Expresión Génica de las Plantas
2.
Front Plant Sci ; 15: 1374228, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38803599

RESUMEN

Environmental stresses are the main constraints on agricultural productivity and food security worldwide. This issue is worsened by abrupt and severe changes in global climate. The formation of sugarcane yield and the accumulation of sucrose are significantly influenced by biotic and abiotic stresses. Understanding the biochemical, physiological, and environmental phenomena associated with these stresses is essential to increase crop production. This review explores the effect of environmental factors on sucrose content and sugarcane yield and highlights the negative effects of insufficient water supply, temperature fluctuations, insect pests, and diseases. This article also explains the mechanism of reactive oxygen species (ROS), the role of different metabolites under environmental stresses, and highlights the function of environmental stress-related resistance genes in sugarcane. This review further discusses sugarcane crop improvement approaches, with a focus on endophytic mechanism and consortium endophyte application in sugarcane plants. Endophytes are vital in plant defense; they produce bioactive molecules that act as biocontrol agents to enhance plant immune systems and modify environmental responses through interaction with plants. This review provides an overview of internal mechanisms to enhance sugarcane plant growth and environmental resistance and offers new ideas for improving sugarcane plant fitness and crop productivity.

3.
Heliyon ; 10(5): e27277, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38463882

RESUMEN

Sugars transported from leaves (source) to stems (sink) energize cell growth, elongation, and maintenance. which are regulated by a variety of genes. This review reflects progress and prospects in the regulatory mechanism for maximum sucrose accumulation, including the role of sucrose metabolizing enzymes, sugar transporters and the elucidation of post-transcriptional control of sucrose-induced regulation of translation (SIRT) in the accumulation of sucrose. The current review suggests that SIRT is emerging as a significant mechanism controlling Scbzip44 activities in response to endogenous sugar signals (via the negative feedback mechanism). Sucrose-controlled upstream open reading frame (SC-uORF) exists at the 5' leader region of Scbzip44's main ORF, which inhibits sucrose accumulation through post-transcriptional regulatory mechanisms. Sucrose transporters (SWEET1a/4a/4b/13c, TST, SUT1, SUT4 and SUT5) are crucial for sucrose translocation from source to sink. Particularly, SWEET13c was found to be a major contributor to the efflux in the transportation of stems. Tonoplast sugar transporters (TSTs), which import sucrose into the vacuole, suggest their tissue-specific role from source to sink. Sucrose cleavage has generally been linked with invertase isozymes, whereas sucrose synthase (SuSy)-catalyzed metabolism has been associated with biosynthetic processes such as UDP-Glc, cellulose, hemicellulose and other polymers. However, other two key sucrose-metabolizing enzymes, such as sucrose-6-phosphate phosphohydrolase (S6PP) and sucrose phosphate synthase (SPS) isoforms, have been linked with sucrose biosynthesis. These findings suggest that manipulation of genes, such as overexpression of SPS genes and sucrose transporter genes, silencing of the SC-uORF of Scbzip44 (removing the 5' leader region of the main ORF that is called SIRT-Insensitive) and downregulation of the invertase genes, may lead to maximum sucrose accumulation. This review provides an overview of sugarcane sucrose-regulating systems and baseline information for the development of cultivars with higher sucrose accumulation.

4.
Mol Biotechnol ; 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38102344

RESUMEN

The melon (Cucumis melo L.), a fruit crop of significant economic importance, is prized for its sweet and succulent fruits. Among variations of soluble sugars, sucrose, a disaccharide composed of glucose and fructose, is a key carbohydrate present in melon fruits. The sucrose content also determines the quality and value of melon fruits. However, the accumulation of sucrose is a complex process involving the coordinated actions of multiple enzymes and pathways. In melon species, there are two types of fruit ripening modes including climacteric and non-climacteric. Due to this biological characteristic, melon is emerging as a good model for studying the ripening process. Ethylene is a well-known phytohormone regulating the ripening of climacteric fruits. Recently, a few studies have elucidated a primary ethylene-dependent signaling pathway of sucrose accumulation in melon fruits. This review aims to provide a careful overview of the sucrose biosynthesis pathways in melon. It is essential to understand the molecular mechanisms of sucrose metabolism as well as its regulation mode. The information will be useful for developing molecular marker-assisted breeding as well as genetic engineering strategies aiming to improve the sucrose content and quality of melon fruits. In addition, even though limited, the impacts of genetic background and environmental factors on sucrose accumulation in melon fruits are also discussed. These are useful for practical applications in melon cultivation and quality management.

5.
J Adv Res ; 54: 1-13, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36781019

RESUMEN

INTRODUCTION: Modern sugarcane cultivars (Saccharum spp. hybrids) derived from crosses between S. officinarum and S. spontaneum, with high-sugar traits and excellent stress tolerance inherited respectively. However, the contribution of the S. spontaneum subgenome to sucrose accumulation is still unclear. OBJECTIVE: To compensate for the absence of a high-quality reference genome, a transcriptome analysis method is needed to analyze the molecular basis of differential sucrose accumulation in sugarcane hybrids and to find clues to the contribution of the S. spontaneum subgenome to sucrose accumulation. METHODS: PacBio full-length sequencing was used to complement genome annotation, followed by the identification of differential genes between the high and low sugar groups using differential alternative splicing analysis and differential expression analysis. At the subgenomic level, the factors responsible for differential sucrose accumulation were investigated from the perspective of transcriptional and post-transcriptional regulation. RESULTS: A full-length transcriptome annotated at the subgenomic level was provided, complemented by 263,378 allele-defined transcript isoforms and 139,405 alternative splicing (AS) events. Differential alternative splicing (DA) analysis and differential expression (DE) analysis identified differential genes between high and low sugar groups and explained differential sucrose accumulation factors by the KEGG pathways. In some gene models, different or even opposite expression patterns of alleles from the same gene were observed, reflecting the potential evolution of these alleles toward novel functions in polyploid sugarcane. Among DA and DE genes in the sucrose source-sink complex pathway, we found some alleles encoding sucrose accumulation-related enzymes derived from the S. spontaneum subgenome were differentially expressed or had DA events between the two contrasting sugarcane hybrids. CONCLUSION: Full-length transcriptomes annotated at the subgenomic level could better characterize sugarcane hybrids, and the S. spontaneum subgenome was found to contribute to sucrose accumulation.


Asunto(s)
Saccharum , Transcriptoma , Saccharum/genética , Saccharum/metabolismo , Azúcares/metabolismo , Perfilación de la Expresión Génica , Sacarosa/metabolismo
6.
BMC Genomics ; 23(1): 532, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35869434

RESUMEN

BACKGROUND: Sugarcane is the most important sugar crop, contributing > 80% of global sugar production. High sucrose content is a key target of sugarcane breeding, yet sucrose improvement in sugarcane remains extremely slow for decades. Molecular breeding has the potential to break through the genetic bottleneck of sucrose improvement. Dissecting the molecular mechanism(s) and identifying the key genetic elements controlling sucrose accumulation will accelerate sucrose improvement by molecular breeding. In our previous work, a proteomics dataset based on 12 independent samples from high- and low-sugar genotypes treated with ethephon or water was established. However, in that study, employing conventional analysis, only 25 proteins involved in sugar metabolism were identified . RESULTS: In this work, the proteomics dataset used in our previous study was reanalyzed by three different statistical approaches, which include a logistic marginal regression, a penalized multiple logistic regression named Elastic net, as well as a Bayesian multiple logistic regression method named Stochastic search variable selection (SSVS) to identify more sugar metabolism-associated proteins. A total of 507 differentially abundant proteins (DAPs) were identified from this dataset, with 5 of them were validated by western blot. Among the DAPs, 49 proteins were found to participate in sugar metabolism-related processes including photosynthesis, carbon fixation as well as carbon, amino sugar, nucleotide sugar, starch and sucrose metabolism. Based on our studies, a putative network of key proteins regulating sucrose accumulation in sugarcane is proposed, with glucose-6-phosphate isomerase, 2-phospho-D-glycerate hydrolyase, malate dehydrogenase and phospho-glycerate kinase, as hub proteins. CONCLUSIONS: The sugar metabolism-related proteins identified in this work are potential candidates for sucrose improvement by molecular breeding. Further, this work provides an alternative solution for omics data processing.


Asunto(s)
Saccharum , Teorema de Bayes , Análisis de Datos , Regulación de la Expresión Génica de las Plantas , Fotosíntesis , Fitomejoramiento , Proteómica , Saccharum/metabolismo , Sacarosa/metabolismo , Azúcares/metabolismo
7.
Int J Mol Sci ; 23(9)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35562931

RESUMEN

Plant roots are essential organs for absorbing nutrients from the soil or medium. Sucrose functions as a vital carbon source in root development, and sucrose starvation interferes with the redox state of plant cells. However, the mechanism of root growth at sucrose starvation remains unclear. Here, we report that SHMT1 (serine hydroxymethyltransferase 1) plays a crucial role in primary-root growth. SHMT1 mutation caused decreased sugar levels, excessive H2O2 accumulation, and severe root-growth arrest at sucrose-free conditions, whereas plants with SHMT1 overexpression had increased sugar and decreased H2O2 levels, and longer primary roots. Sucrose supply fully restored root growth of shm1-2, but CO2 alone could not, and SHMT1 is much more stable in roots than shoots at sucrose conditions, suggesting that SHMT1 accumulation in roots is critical for sucrose accumulation and root growth. Further ROS scavenging by GSH application or ROS synthesis inhibition by apocynin application or RBOHD mutation reduced H2O2 levels and partially restored the root-growth arrest phenotype of shm1-2 at low-sucrose conditions, suggesting that SHMT1 modulates root growth via sucrose-mediated ROS accumulation. Our findings demonstrated the role of SHMT1 in primary-root growth by regulating sucrose accumulation and ROS homeostasis in roots.


Asunto(s)
Glicina Hidroximetiltransferasa , Sacarosa , Glicina Hidroximetiltransferasa/genética , Peróxido de Hidrógeno , Fenotipo , Raíces de Plantas/genética , Especies Reactivas de Oxígeno
8.
Int J Mol Sci ; 23(8)2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35457184

RESUMEN

Functional lilies are a group of edible lily cultivars with great potential for landscape application. Low-temperature storage can significantly improve their taste, but the knowledge of this process is largely unknown. In this study, we used the functional lilies 'Fly Shaohua' and 'Fly Tiancheng' as materials. Through physiological observation and transcriptome analysis during the bulbs' cold storage, it was found that the starch degradation and sucrose accumulation in bulbs contributed to taste improvement. After 60 d of cold storage, the sucrose accumulation was highest and the starch content was lower in the bulbs, suggesting this time-point was optimal for consumption. Accompanying the fluctuation of sucrose content during cold storage, the enzyme activities of sucrose phosphate synthase and sucrose synthase for sucrose synthesis were increased. Transcriptome analysis showed that many differentially expressed genes (DEGs) were involved in the starch and sucrose metabolism pathway, which might promote the conversion of starch to sucrose in bulbs. In addition, the DEGs involved in dormancy and stress response were also determined during cold storage, which might explain the decreased sucrose accumulation with extended storage time over 60 d due to the energy consumption for dormancy release. Taken together, our results indicated sucrose accumulation was a main factor in the taste improvement of lily bulbs after cold storage, which is attributable to the different gene expression of starch and sucrose metabolism pathways in this process.


Asunto(s)
Lilium , Frío , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Lilium/genética , Almidón/metabolismo , Sacarosa/metabolismo
9.
Front Plant Sci ; 12: 716964, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34659289

RESUMEN

Sugarcane is an economically important crop contributing to the sugar and ethanol production of the world with 80 and 40%, respectively. Despite its importance as the main crop for sugar production, the mechanisms involved in the regulation of sucrose accumulation in sugarcane culms are still poorly understood. The aim of this work was to compare the quantitative changes of proteins in juvenile and maturing internodes at three stages of plant development. Label-free shotgun proteomics was used for protein profiling and quantification in internodes 5 (I5) and 9 (I9) of 4-, 7-, and 10-month-old-plants (4M, 7M, and 10M, respectively). The I9/I5 ratio was used to assess the differences in the abundance of common proteins at each stage of internode development. I9 of 4M plants showed statistically significant increases in the abundance of several enzymes of the glycolytic pathway and proteoforms of alcohol dehydrogenase (ADH) and pyruvate decarboxylase (PDC). The changes in content of the enzymes were followed by major increases of proteins related to O2 transport like hemoglobin 2, ROS scavenging enzymes, and enzymes involved in the ascorbate/glutatione system. Besides, intermediates from tricarboxylic acid cycle (TCA) were reduced in I9-4M, indicating that the increase in abundance of several enzymes involved in glycolysis, pentose phosphate cycle, and TCA, might be responsible for higher metabolic flux, reducing its metabolites content. The results observed in I9-4M indicate that hypoxia might be the main cause of the increased flux of glycolysis and ethanolic fermentation to supply ATP and reducing power for plant growth, mitigating the reduction in mitochondrial respiration due to the low oxygen availability inside the culm. As the plant matured and sucrose accumulated to high levels in the culms, the proteins involved in glycolysis, ethanolic fermentation, and primary carbon metabolism were significantly reduced.

10.
Planta ; 254(4): 80, 2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34546416

RESUMEN

MAIN CONCLUSION: A greater rate of phloem unloading and storage in the stem, not a higher rate of sugar production by photosynthesis or sugar export from leaves, is the main factor that results in sugar accumulation in sweet dwarf sorghum compared to grain sorghum. At maturity, the stem internodes of sweet sorghum varieties accumulate high concentrations of fermentable sugars and represent an efficient feedstock for bioethanol production. Although stem sugar accumulation is a heritable trait, additional factors that drive sugar accumulation in sorghum have not been identified. To identify the constraints on stem sugar accumulation in sweet sorghum, we used a combination of carbon-11 (11C) radiotracer, physiological and biochemical approaches, and compared a grain sorghum and sweet dwarf sorghum line that have similar growth characteristics including height. Photosynthesis did not increase during development or differ between the sorghum lines. During the developmental transition to the reproductive stage, export of 11C from leaves approximately doubled in both sorghum lines, but 11C export in the sweet dwarf line did not exceed that of the grain sorghum. Defoliation to manipulate relative sink demand did not result in increased photosynthetic rates, indicating that the combined accumulation of C by all sink tissues was limited by the maximum photosynthetic capacity of source leaves. Nearly 3/4 of the 11C exported from leaves was transported to the lower stem in sweet sorghum within 2 h, whereas in grain sorghum nearly 3/4 of the 11C was in the panicle. Accordingly, the transcripts of several sucrose transporter (SUT) genes were more abundant in the stem internodes of the sweet dwarf line compared to the grain sorghum. Overall, these results indicate that sugar accumulation in sweet sorghum stems is influenced by the interplay of different sink tissues for the same sugars, but is likely driven by elevated sugar phloem unloading and uptake capacity in mature stem internodes.


Asunto(s)
Sorghum , Carbono , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Sorghum/metabolismo , Azúcares
11.
Plant Direct ; 4(7): e00221, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32766510

RESUMEN

Despite the agronomic importance of sugar beet (Beta vulgaris L.), the early-stage development of its taproot has only been poorly investigated. Thus, the mechanisms that determine growth and sugar accumulation in sugar beet are largely unknown. In the presented study, a physiological characterization of early-stage sugar beet taproot development was conducted. Activities were analyzed for fourteen key enzymes of carbohydrate metabolism in developing taproots over the first 80 days after sowing. In addition, we performed in situ localizations of selected carbohydrate-metabolic enzyme activities, anatomical investigations, and quantifications of soluble carbohydrates, hexose phosphates, and phytohormones. Based on the accumulation dynamics of biomass and sucrose, as well as on anatomical parameters, the early phase of taproot development could be subdivided into three stages-prestorage, transition, secondary growth and sucrose accumulation stage-each of which was characterized by distinct metabolic and phytohormonal signatures. The enzyme activity signatures corresponding to these stages were also shown to be robustly reproducible in experiments conducted in two additional locations. The results from this physiological phenotyping approach contribute to the identification of the key regulators of sugar beet taproot development and open up new perspectives for sugar beet crop improvement concerning both physiological marker-based breeding and biotechnological approaches.

12.
Plant Physiol Biochem ; 151: 369-377, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32276220

RESUMEN

In strawberry, sucrose is the major form of carbohydrate translocated from the leaves to the fruits and plays an important role in fruit ripening. As a conserved energy sensor, sucrose nonfermenting-1 (SNF1)-related kinase 1 (SnRK1) plays an important role in plant carbon metabolism. However, evidence that SnRK1 regulates sucrose accumulation in fruits is lacking. In this study, we transiently expressed FaSnRK1α in strawberry fruits and found that overexpression (OE) of the FaSnRK1α gene significantly increased the sucrose content, whereas repression of FaSnRK1α by RNA interference (RNAi) decreased the sucrose content. Further analysis revealed that FaSnRK1α increased the expression of FaSUS1 and FaSUS3 as well as the activity of sucrose synthase (SUS; EC 2.4.1.13) and that FaSPS1 expression and sucrose phosphate synthase (SPS; EC 2.4.1.14) activity were strongly downregulated, which decreased the accumulation of sucrose. However, the expression of FaSPS3, which is reported to contribute to sucrose accumulation, was induced by FaSnRK1α, and FaNI expression and invertase (INV; EC 3.2.1.26) activity were upregulated by FaSnRK1α. In addition, FaSnRK1α positively upregulated the expression of the sucrose transporter (SUT) genes FaSUT1 and FaSUT5 and interacted with FaSUS1, FaSPS1 and FaSPS3 proteins but not with FaSUS3, FaNI, FaSUT1 or FaSUT5 proteins. Overall, FaSnRK1α systematically regulates the expression of the genes and activities of key enzymes involved in the sucrose metabolic pathway and promotes the long-distance transport of sucrose, thereby increasing sucrose accumulation and ultimately promoting fruit ripening. However, the mechanisms by which sucrose transport and degradation are regulated by SnRK1 warrant additional research.


Asunto(s)
Fragaria , Frutas , Proteínas Serina-Treonina Quinasas , Sacarosa , Fragaria/enzimología , Frutas/enzimología , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Sacarosa/metabolismo , beta-Fructofuranosidasa/metabolismo
13.
Plant Physiol Biochem ; 144: 455-465, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31655344

RESUMEN

Sugarcane is an important sugar and energy crop worldwide. It utilises highly efficient C4 photosynthesis and accumulates sucrose in its culms. The sucrose content in sugarcane culms is a quantitative trait controlled by multiple genes. The regulatory mechanism underlying the maximum sucrose level in sugarcane culms remains unclear. We used transcriptome sequences to identify the potential regulatory genes involved in sucrose accumulation in Saccarum officinarum L. cv. Badila. The sucrose accumulating internodes at the elongation and mature growth stage and the immature internodes with low sucrose content at the mature stage were used for RNA sequencing. The obtained differentially expressed genes (DEGs) related to sucrose accumulation were analysed. Results showed that the transcripts encoding invertase (beta-fructofuranosidase, EC: 3.2.1.26) which catalyses sucrose hydrolysis and 6-phosphofructokinase (PFK, EC: 2.7.1.11), a key glycolysis regulatory enzyme, were downregulated in the high sucrose accumulation internodes. The transcripts encoding key enzymes for ABA, gibberellin and ethylene synthesis were also downregulated during sucrose accumulation. Furthermore, regulated protein kinase, transcription factor and sugar transporter genes were also obtained. This research can clarify the molecular regulation network of sucrose accumulation in sugarcane.


Asunto(s)
Saccharum/metabolismo , Sacarosa/metabolismo , Transcriptoma/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Saccharum/genética
14.
BMC Plant Biol ; 19(1): 285, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31253103

RESUMEN

BACKGROUND: Sugarcane is a major crop producing about 80% of sugar globally. Increasing sugar content is a top priority for sugarcane breeding programs worldwide, however, the progress is extremely slow. Owing to its commercial significance, the physiology of sucrose accumulation has been studied extensively but it did not lead to any significant practical outcomes. Recent molecular studies are beginning to recognize genes and gene networks associated with this phenomenon. To further advance our molecular understanding of sucrose accumulation, we altered sucrose content of sugarcane genotypes with inherently large variation for sucrose accumulation using a sugarcane ripener, ethylene, and studied their transcriptomes to identify genes associated with the phenomenon. RESULTS: Sucrose content variation in the experimental genotypes was substantial, with the top-performing clone producing almost 60% more sucrose than the poorest performer. Ethylene treatment increased stem sucrose content but that occurred only in low-sugar genotype. Transcriptomic analyses have identified about 160,000 unigenes of which 86,000 annotated genes were classified into functional groups associated with carbohydrate metabolism, signaling, localization, transport, hydrolysis, growth, catalytic activity, membrane and storage, suggesting the structural and functional specification, including sucrose accumulation, occurring in maturing internodes. About 25,000 genes were differentially expressed between all genotypes and treatments combined. Genotype had a dominant effect on differential gene expression than ethylene treatment. Sucrose and starch metabolism genes were more responsive to ethylene treatment in low-sugar genotype. Ethylene caused differential gene expression of many stress-related transcription factors, carbohydrate metabolism, hormone metabolism and epigenetic modification. Ethylene-induced expression of ethylene-responsive transcription factors, cytosolic acid- and cell wall-bound invertases, and ATPase was more pronounced in low- than in high-sugar genotype, suggesting an ethylene-stimulated sink activity and consequent increased sucrose accumulation in low-sugar genotype. CONCLUSION: Ethylene-induced sucrose accumulation is more pronounced in low-sugar sugarcane genotype, and this is possibly achieved by the preferential activation of genes such as invertases that increase sink strength in the stem. The relatively high enrichment of differentially expressed genes associated with hormone metabolism and signaling and stress suggests a strong hormonal regulation of source-sink activity, growth and sucrose accumulation in sugarcane.


Asunto(s)
Etilenos/farmacología , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/farmacología , Saccharum/fisiología , Sacarosa/metabolismo , Genotipo , Saccharum/crecimiento & desarrollo , Transcriptoma
15.
J Exp Bot ; 70(19): 5157-5171, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31128071

RESUMEN

In subtropical environments where sugarcane (Saccharum spp.) crops are frequently limited by the duration of the growth cycle, earliness in maturity is a key genotypic trait. Using the concept of source-sink relationships, we hypothesised that earliness is controlled by the dynamics of tillering (DT), which define sink strength early in the growth cycle. Five modern commercial sugarcane genotypes with similar sucrose yields and varying degrees of earliness in ripening were grown in the field over three years and their DT, dynamics of sucrose accumulation (DS), and source-sink relationships over time were characterised. Canonical correlations and principal components analysis revealed that DT explained 68% of the total variance in DS. Early ripening genotypes exhibited the shortest thermal time to the end of tiller mortality (θTilmort), the lowest tiller survival and millable tiller number, and greatest sugar content at θTilmort (Sconc,Tilmort). The rate and duration of the sucrose accumulation phase did not explain the genotypic variation either in final sugar content or in earliness when considered in isolation without taking into account the effect of Sconc,Tilmort. In the set of genotypes examined, the variation in final sucrose yield was most explained by the variation in stalk number. We conclude that the dynamics of tiller appearance and senescence modified the early source-sink relationships and thus determined the differential sucrose contents around θTilmort and the earliness of maximal sugar accumulation. θTilmort, which was closely associated with the 14-leaf phenological stage, emerged as a candidate trait to screen for genotypic variation in early ripening, crop cycle duration, and yield.


Asunto(s)
Genotipo , Saccharum/metabolismo , Sacarosa/metabolismo , Saccharum/genética , Saccharum/crecimiento & desarrollo , Factores de Tiempo
16.
Physiol Mol Biol Plants ; 25(1): 207-220, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30804643

RESUMEN

Sucrose synthesis/accumulation in sugarcane depends on the source-sink communication wherein source responds to sink demand for photoassimilate supply. Sucrose in stalk (sink) acts as signal, and sends feedback to restrain further synthesis of sucrose by regulating photosynthetic efficiency of leaves (source). Hence sucrose synthesis/accumulation is controlled by many genes and regulatory sequences including 3 invertases (SAI, CWI, NI), sucrose synthase (SuSy) and sucrose phosphate synthase (SPS). SPS and invertase play key role in enhancing sink strength which ultimately promotes greater sucrose accumulation in the sink tissues. In present study, a significant positive correlation was found between sucrose% of source and sink tissues which was greater in the top (R 2 = 0.679) than middle (R 2 = 0.580) and bottom (R 2 = 0.518) internodes, depicting that sucrose accumulation in the stalk bears a direct relation with sucrose translocation efficiency from source. Results indicated an increased sucrose% with maturity, while reducing sugar content decreased with crop growth. qRT-PCR results exhibited an elevated expression of invertase in immature sink tissues depicting increased sink requirement, which declined with maturity. Similarly, increased PEP carboxylase gene expression as observed supported the fact that higher sink demand results in enhanced photosynthetic rate and thus influences the source activity. SPS was found active at initial stage of cane development indicating its role in sucrose synthesis. Thus by studying expression patterns of the different genes both, in source and sink tissues, a better understanding of the sucrose accumulation pathway in sugarcane is possible, which in turn can help in elucidating ways to enhance sucrose concentration in sink.

17.
Front Plant Sci ; 9: 598, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29774044

RESUMEN

In sugarcane, invertase enzymes play a key role in sucrose accumulation and are also involved in futile reactions where sucrose is continuously degraded during the pre- and post-harvest period, thereby reducing sugar yield and recovery. Invertase inhibitor (INVINH) proteins play a key role in post-translation regulation of plant invertases through which sucrose hydrolysis is controlled. INVINH proteins are small (18 kDa) members of the pectin methylesterase inhibitor superfamily and they are moderately conserved across plants. In the present study, we identified two INVINH genes from sugarcane, ShINH1 and ShINH2. In silico characterization of the encoded proteins revealed 43% sequence identity at the amino acid level, confirming the non-allelic nature of the proteins. The presence of putative signal peptide and subcellular targeting sequences revealed that ShINH1 and ShINH2 likely have apoplasmic and vacuolar localization, respectively. Experimental visualization of ShINH1-GFP revealed that ShINHI is indeed exported to the apoplast. Differential tissue-specific and developmental expression of ShINH1 between leaf, stalk, flower and root suggest that it plays a role in controlling source-sink metabolic regulation during sucrose accumulation in sugarcane. ShINH1 is expressed at relatively high levels in leaves and stalk compared to flowers and roots, and expression decreases significantly toward internodal maturity during stalk development. ShINH1 is expressed at variable levels in flowers with no specific association to floral maturity. Production of recombinant ShINH1 enabled experimental validation of protein function under in vitro conditions. Recombinant ShINH1 potently inhibited acid invertase (IC50 22.5 nM), making it a candidate for controlling pre- and post-harvest deterioration of sucrose in sugarcane. Our results indicate that ShINH1 and ShINH2 are likely to play a regulatory role in sucrose accumulation and contribute to the improvement of sugar yield and recovery in sugarcane.

18.
Mol Breed ; 35(3): 100, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25798049

RESUMEN

Sugarcane is one of the most important crops cultivated for the production of sugar and ethanol. In our previous studies, an innovative positive selection system for obtaining transgenic sugarcane, which utilized the E. coli-derived manA gene as the selectable marker and mannose as the selective agent, was developed and patented in China. In this paper, the influence of phosphomannose isomerase (PMI) overexpression on the key enzymes of both glycolysis and sucrose metabolism was investigated in transgenic sugarcane through the manA gene. Overexpressed PMI increased hexokinase activity by approximately 24 % compared with non-transgenic control plants, but pyruvate kinase (PK) activity was reduced by approximately 14 %. In comparison with the non-transgenic control plants, the activities of sucrose synthase, sucrose-phosphate synthase, and acid invertase were also modestly affected in the PMI-overexpressing transgenic plants, but no significant differences were observed at the stalk elongation and maturity stages. However, agronomic and technical traits were not affected by manA gene overexpression in the transgenic sugarcane. In conclusion, PMI overexpression significantly affected the hexokinase and PK activities by catalyzing the reversible interconversion between mannose-6-phosphate and fructose-6-phosphate, which is an intermediate of glycolysis. However, it had no significant effects on sucrose accumulation in sugarcane.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...