Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(32): e202407898, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38739536

RESUMEN

The quest for smart electronics with higher energy densities has intensified the development of high-voltage LiCoO2 (LCO). Despite their potential, LCO materials operating at 4.7 V faces critical challenges, including interface degradation and structural collapse. Herein, we propose a collective surface architecture through precise nanofilm coating and doping that combines an ultra-thin LiAlO2 coating layer and gradient doping of Al. This architecture not only mitigates side reactions, but also improves the Li+ migration kinetics on the LCO surface. Meanwhile, gradient doping of Al inhibited the severe lattice distortion caused by the irreversible phase transition of O3-H1-3-O1, thereby enhanced the electrochemical stability of LCO during 4.7 V cycling. DFT calculations further revealed that our approach significantly boosts the electronic conductivity. As a result, the modified LCO exhibited an outstanding reversible capacity of 230 mAh g-1 at 4.7 V, which is approximately 28 % higher than the conventional capacity at 4.5 V. To demonstrate their practical application, our cathode structure shows improved stability in full pouch cell configuration under high operating voltage. LCO exhibited an excellent cycling stability, retaining 82.33 % after 1000 cycles at 4.5 V. This multifunctional surface modification strategy offers a viable pathway for the practical application of LCO materials, setting a new standard for the development of high-energy-density and long-lasting electrode materials.

2.
ACS Appl Mater Interfaces ; 15(39): 46388-46399, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37738306

RESUMEN

Recently, smart hydrogels have garnered considerable attention as biomedical devices, and several approaches have been introduced for their fabrication, including the incorporation of stimulus-responsive additives, utilization of molecular imprinting techniques, and application of multilayered hydrogels. However, the nonuniform properties resulting from these approaches limit the practical applications of hydrogels by causing inconsistent performance and behavior. In this study, we propose a novel approach to manipulating the swelling kinetics of hydrogels by engineering their diffusion-path architecture. By simply adjusting the diffusion path length within the hydrogel, we achieved a significant change in swelling kinetics. This approach enables precise control over the diffusion and transport processes within the hydrogel, resulting in enhanced swelling kinetics when reducing the diffusion path length. Furthermore, by strategically designing the diffusion-path architecture of a 3D-printed hydrogel specimen, we can fabricate smart hydrogel actuators that exhibit reversible shape transformations during swelling and deswelling through a nonequilibrium differential swelling. The proposed approach eliminates the need to modify the spatial properties of hydrogel structures such as cross-linking density, polymer, or additive compositions, thereby achieving uniform properties throughout the hydrogel and creating new possibilities for the development of advanced 4D-printed biomedical devices.

3.
Materials (Basel) ; 16(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37569941

RESUMEN

This paper aims to investigate the impact of beam deflection geometry on the structure, surface architecture, and friction coefficient of electron-beam-modified TC4 titanium alloys. During the experiments, the electron beam was deflected in the form of different scanning geometries, namely linear, circular, and matrix. The structure of the treated specimens was investigated in terms of their phase composition by employing X-ray diffraction experiments. The microstructure was studied by scanning electron microscopy (SEM). The surface architecture was examined by atomic force microscopy (AFM). The friction coefficient was studied by a mechanical wear test. It was found that the linear and circular deflection geometries lead to a transformation of the phase composition, from double-phase α + ß to α' martensitic structure. The application of a linear manner of scanning leads to a residual amount of beta phase. The use of a matrix does not tend to structural changes on the surface of the TC4 alloy. In the case of linear geometry, the thickness of the modified zone is more than 800 µm while, in the case of EBSM using circular scanning, the thickness is about 160 µm. The electron-beam surface modification leads to a decrease in the surface roughness to about 27 nm in EBSM with linear deflection geometry and 31 nm in circular deflection geometry, compared to that of the pure TC4 substrate (about 160 nm). The electron-beam surface modification of the TC4 alloy leads to a decrease in the coefficient of friction (COF), with the lowest COF values obtained in the case of linear deflection geometry (0.32). The results obtained in this study show that beam deflection geometry has a significant effect on the surface roughness and friction coefficient of the treated surfaces. It was found that the application of a linear manner of scanning leads to the formation of a surface with the lowest roughness and friction coefficient.

4.
Beilstein J Nanotechnol ; 13: 1201-1219, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36348938

RESUMEN

Quartz crystal microbalance (QCM) has been widely used for various sensing applications, including chirality detection due to the high sensitivity to nanogram or picogram mass changes, fast response, real-time detection, easy operation, suitability in different media, and low experimental cost. The sensing performance of QCM is dependent on the surface design of the recognition layers. Various strategies have been employed for studying the relationship between the structural features and the specific detection of chiral isomers. This review provides an overview of the construction of chiral sensing layers by various nanostructures and materials in the QCM system, which include organic molecules, supermolecular assemblies, inorganic nanostructures, and metal surfaces. The sensing mechanisms based on these surface nanostructures and the related potentials for chiral detection by the QCM system are also summarized.

5.
ACS Appl Mater Interfaces ; 14(13): 15678-15686, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35321545

RESUMEN

Elastomer fiber mat sensors, which are capable of perceiving mechanical stimuli, temperature, and vapor of chemicals, are highly desirable for designing wearable electronics and human-robot interfacing devices due to good wearability, skin affinity, and durability, and so on. However, it is still challenging to fabricate multiresponsive flexible wearable sensors with three-dimensional (3D) architecture using simple material and structure design. Herein, we report an all-in-one multiresponsive thermoplastic polyurethane (TPU) nanofiber mat sensors composed of crimped elastomer fibers with deposited platinum nanoparticles (PtNPs) on the fiber surface. The 1D TPU nanofibers could be transferred to nanofibers with different 3D nanofiber architectures by controllable macromolecular chain relaxation of aligned elastomer polymers upon poor solvent annealing. The conductive networks of PtNPs on wavy TPU fibers enable the sensor susceptible to multiple stimuli like strain/pressure, humidity, and organic vapors. Besides, the 3D nanofiber architectures allow the strain sensor to detect wider tensile strain and pressure with higher sensitivity due to delicate fiber morphology and structure control. Therefore, this work provides new insights into the fabrication of multifunctional flexible sensors with 3D architecture in an easy way, advancing the establishment of a multiple signal monitoring platform for the health care and human-machine interfacing.


Asunto(s)
Nanopartículas del Metal , Nanofibras , Dispositivos Electrónicos Vestibles , Conductividad Eléctrica , Humanos , Nanofibras/química , Platino (Metal)
6.
Nanomaterials (Basel) ; 12(3)2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35159912

RESUMEN

Atomic force microscopy (AFM) was used to investigate the morphology and rigidity of the opportunistic pathogenic yeast, Candida albicans ATCC 10231, during its attachment to surfaces of three levels of nanoscale surface roughness. Non-polished titanium (npTi), polished titanium (pTi), and glass with respective average surface roughness (Sa) values of 389 nm, 14 nm, and 2 nm, kurtosis (Skur) values of 4, 16, and 4, and skewness (Sskw) values of 1, 4, and 1 were used as representative examples of each type of nanoarchitecture. Thus, npTi and glass surfaces exhibited similar Sskw and Skur values but highly disparate Sa. C. albicans cells that had attached to the pTi surfaces exhibited a twofold increase in rigidity of 364 kPa compared to those yeast cells attached to the surfaces of npTi (164 kPa) and glass (185 kPa). The increased rigidity of the C. albicans cells on pTi was accompanied by a distinct round morphology, condensed F-actin distribution, lack of cortical actin patches, and the negligible production of cell-associated polymeric substances; however, an elevated production of loose extracellular polymeric substances (EPS) was observed. The differences in the physical response of C. albicans cells attached to the three surfaces suggested that the surface nanoarchitecture (characterized by skewness and kurtosis), rather than average surface roughness, could directly influence the rigidity of the C. albicans cells. This work contributes to the next-generation design of antifungal surfaces by exploiting surface architecture to control the extent of biofilm formation undertaken by yeast pathogens and highlights the importance of performing a detailed surface roughness characterization in order to identify and discriminate between the surface characteristics that may influence the extent of cell attachment and the subsequent behavior of the attached cells.

7.
ACS Appl Bio Mater ; 4(6): 4684-4705, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35007020

RESUMEN

The integration of surface plasmon resonance and fluorescence yields a multiaspect improvement in surface fluorescence sensing and imaging, leading to a paradigm shift of surface plasmon-assisted fluorescence techniques, for example, surface plasmon enhanced field fluorescence spectroscopy, surface plasmon coupled emission (SPCE), and SPCE imaging. This Review aims to characterize the unique optical property with a common physical interpretation and diverse surface architecture-based measurements. The fundamental electromagnetic theory is employed to comprehensively unveil the fluorophore-surface plasmon interaction, and the associated surface-modification design is liberally highlighted to balance the surface plasmon-induced fluorescence-enhancement efforts and the surface plasmon-caused fluorescence-quenching effects. In particular, all types of surface structures, for example, silicon, carbon, protein, DNA, polymer, and multilayer, are systematically interrogated in terms of component, thickness, stiffness, and functionality. As a highly interdisciplinary and expanding field in physics, optics, chemistry, and surface chemistry, this Review could be of great interest to a broad readership, in particular, among physical chemists, analytical chemists, and in surface-based sensing and imaging studies.


Asunto(s)
Resonancia por Plasmón de Superficie , Fluorescencia , Colorantes Fluorescentes/química , Metales/química , Espectrometría de Fluorescencia , Propiedades de Superficie
8.
Materials (Basel) ; 13(20)2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-33086525

RESUMEN

This work is focused on photocatalytic properties of titanium dioxide thin coatings modified with silver nanostructures (AgNSs) and graphene oxide (GO) sheets which were analyzed in processes of chemical transformations of rhodamine B (RhB) under ultraviolet (UV) or visible light (Vis) irradiation, respectively. UV-Vis spectroscopy was applied to analyze the changes in the RhB spectrum during photocatalytic processes, revealing decolorization of RhB solution under UV irradiation while the same process coexisting with the transformation of RhB to rhodamine 110 was observed under Vis irradiation. The novelty of this study is the elaboration of a methodology for determining the parameters characterizing the processes occurring under the Vis irradiation, which enables the comparison of photocatalysts' activity. For the first time, the method for quantification of rhodamine B transformation into rhodamine 110 in the presence of a semiconductor under visible light irradiation was proposed. Photocatalysts with various surface architectures were designed. TiO2 thin coatings were obtained by the sol-gel method. GO sheets were deposited on their surface using the dip-coating method. AgNSs were photogenerated on TiO2 or grown spontaneously on GO flakes. For characterization of obtained photocatalysts, scanning electron microscopy (SEM), X-ray diffraction (XRD) and diffuse-reflectance spectroscopy (DRS) techniques were applied. The results indicate that the surface architecture of prepared coatings does not affect the main reaction path but have an influence on the reaction rates and yields of observed processes.

9.
Tissue Cell ; 62: 101317, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32433019

RESUMEN

Present study reports significant modifications in surface ultrastructure, histological organization, and histochemical localization of glycoproteins (GPs) in the gills of a hill stream catfish, Hara hara. Punctate microridges on free surface of epithelial cells covering gill arches, gill rakers, gill filaments and secondary lamellae are considered to provide adaptive plasticity to gills in relation to the environment inhabited by fish. Short and stout gill rakers are considered to prevent food particles to pass in opercular chamber along with respiratory current that could damage delicate gill filaments. Mucous goblet cells show presence of different classes of glycoproteins. GPs with oxidizable vicinal diols are considered to control acidity of acidic GPs. GPs with carboxyl groups have been implicated with defensive mechanism against microorganisms. GPs with O-sulphate esters are associated to trap and to lubricate food particles for easy swallowing. Taste buds on gill arches and gill rakers function to select palatable food particles. Occurrence of taste buds on the gill filaments is regarded significant adaptation to analyse the chemical nature of water. This study could play a significant role to understand adjustment of gills in the hill stream fish.


Asunto(s)
Bagres/anatomía & histología , Branquias/citología , Branquias/ultraestructura , Microscopía Electrónica de Rastreo , Animales , Células Epiteliales/citología , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Epitelio/ultraestructura , Proteínas de Peces/metabolismo , Glicoproteínas/metabolismo , Células Caliciformes/citología , Células Caliciformes/metabolismo , Células Caliciformes/ultraestructura , Ríos
10.
ACS Appl Bio Mater ; 3(12): 8581-8591, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35019629

RESUMEN

The microbial contamination of surfaces presents a significant challenge due to the adverse effects associated with biofilm formation, particularly on implantable devices. Here, the attachment and biofilm formation of the opportunistic human pathogen, Candida albicans ATCC 10231, were studied on surfaces with decreasing magnitudes of nanoscale roughness. The nanoscale surface roughness of nonpolished titanium, polished titanium, and glass was characterized according to average surface roughness, skewness, and kurtosis. Nonpolished titanium, polished titanium, and glass possessed average surface roughness (Sa) values of 350, 20, and 2.5 nm; skewness (Sskw) values of 1.0, 4.0, and 1.0; and (Skur) values of 3.5, 16, and 4, respectively. These unique characteristics of the surface nanoarchitecture were found to play a key role in limiting C. albicans attachment and modulating the functional phenotypic changes associated with biofilm formation. Our results suggest that surfaces with a specific combination of surface topographical parameters could prevent the attachment and biofilm formation of C. albicans. After 7 days, the density of attached C. albicans cells was recorded to be 230, 70, and 220 cells mm-2 on nonpolished titanium, polished titanium, and glass surfaces, respectively. Despite achieving a very low attachment density, C. albicanscells were only observed to produce hyphae associated with biofilm formation on nonpolished titanium surfaces, possessing the highest degree of surface roughness (Sa = 350 nm). This study provides a more comprehensive picture of the impact of surface architectures on C. albicans attachment, which is beneficial for the design of antifungal surfaces.

11.
ACS Nano ; 12(10): 9660-9668, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30125084

RESUMEN

It has been shown that material surface topography greatly affects cell attachment, growth, proliferation, and differentiation. However, the underlying molecular mechanisms for cell-material interactions are still not understood well. Here, two kinds of butterfly wings with different surface architectures were employed for addressing such an issue. Papilio ulysses telegonus (P.u.t.) butterfly wing surface is composed of micro/nanoconcaves, whereas Morpho menelaus (M.m.) butterfly wings are decorated with grooves. RSC96 cells grown on M.m. wings showed a regular sorting pattern along with the grooves. On the contrary, the cells seeded on P.u.t. wings exhibited random arrangement. Transcriptome sequencing and bioinformatics analysis revealed that huntingtin (Htt)-regulated lysosome activity is a potential key factor for determining cell growth behavior on M.m. butterfly wings. Gene silence further confirmed this notion. In vivo experiments showed that the silicone tubes fabricated with M.m. wings markedly facilitate rat sciatic nerve regeneration after injury. Lysosome activity and Htt expression were greatly increased in the M.m. wing-fabricated graft-bridged nerves. Collectively, our data provide a theoretical basis for employing butterfly wings to construct biomimetic nerve grafts and establish Htt lysosome as a crucial regulator for cell-material interactions.


Asunto(s)
Proteína Huntingtina/genética , Lisosomas/genética , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Alas de Animales/metabolismo , Animales , Mariposas Diurnas , Movimiento Celular , Proliferación Celular , Células Cultivadas , Biología Computacional , Perfilación de la Expresión Génica , Proteína Huntingtina/metabolismo , Lisosomas/metabolismo , Masculino , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Ratas , Ratas Sprague-Dawley , Células de Schwann , Propiedades de Superficie
12.
J Biol Chem ; 290(14): 9002-19, 2015 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-25666624

RESUMEN

P1 (antigen I/II) is a sucrose-independent adhesin of Streptococcus mutans whose functional architecture on the cell surface is not fully understood. S. mutans cells subjected to mechanical extraction were significantly diminished in adherence to immobilized salivary agglutinin but remained immunoreactive and were readily aggregated by fluid-phase salivary agglutinin. Bacterial adherence was restored by incubation of postextracted cells with P1 fragments that contain each of the two known adhesive domains. In contrast to untreated cells, glutaraldehyde-treated bacteria gained reactivity with anti-C-terminal monoclonal antibodies (mAbs), whereas epitopes recognized by mAbs against other portions of the molecule were masked. Surface plasmon resonance experiments demonstrated the ability of apical and C-terminal fragments of P1 to interact. Binding of several different anti-P1 mAbs to unfixed cells triggered release of a C-terminal fragment from the bacterial surface, suggesting a novel mechanism of action of certain adherence-inhibiting antibodies. We also used atomic force microscopy-based single molecule force spectroscopy with tips bearing various mAbs to elucidate the spatial organization and orientation of P1 on living bacteria. The similar rupture lengths detected using mAbs against the head and C-terminal regions, which are widely separated in the tertiary structure, suggest a higher order architecture in which these domains are in close proximity on the cell surface. Taken together, our results suggest a supramolecular organization in which additional P1 polypeptides, including the C-terminal segment originally identified as antigen II, associate with covalently attached P1 to form the functional adhesive layer.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Streptococcus mutans/metabolismo , Adhesión Bacteriana , Secuencia de Bases , Western Blotting , Cartilla de ADN , Electroforesis en Gel de Poliacrilamida , Microscopía de Fuerza Atómica , Reacción en Cadena de la Polimerasa , Streptococcus mutans/fisiología , Resonancia por Plasmón de Superficie
13.
J Biomed Mater Res A ; 103(3): 1188-99, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25044678

RESUMEN

The presence of micropores in calcium phosphate (CaP) ceramics has shown its important role in initiating inductive bone formation in ectopic sites. To investigate how microporous CaP ceramics trigger osteoinduction, we optimized two biphasic CaP ceramics (i.e., BCP-R and BCP-S) to have the same chemical composition, equivalent surface area per volume, comparable protein adsorption, similar ion (i.e., calcium and phosphate) exchange and the same surface mineralization potential, but different surface architecture. In particular, BCP-R had a surface roughness (Ra) of 325.4 ± 58.9 nm while for BCP-S it was 231.6 ± 35.7 nm. Ceramic blocks with crossing or noncrossing channels of 250, 500, 1000, and 2000 µm were implanted in paraspinal muscle of dogs for 12 weeks. The percentage of bone volume in the channels was not affected by the type of pores (i.e., crossing vs. closed) or their size, but it was greatly influenced by the ceramic type (i.e., BCP-R vs. BCP-S). Significantly, more bone was formed in the channels of BCP-R than in those of BCP-S. Since the two CaP ceramics differed only in their surface architecture, the results hereby demonstrate that microporous CaP ceramics may induce ectopic osteogenesis through surface architecture.


Asunto(s)
Sustitutos de Huesos , Fosfatos de Calcio , Cerámica , Ensayo de Materiales , Osteogénesis/efectos de los fármacos , Animales , Sustitutos de Huesos/química , Sustitutos de Huesos/farmacología , Fosfatos de Calcio/química , Fosfatos de Calcio/farmacología , Cerámica/química , Cerámica/farmacología , Perros , Humanos , Masculino , Porosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...