Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Microorganisms ; 12(9)2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39338543

RESUMEN

Candida spp. is rarely found in neonatal early-onset sepsis (EOS) etiology. However, candidemia is associated with increased mortality and morbidity, as in late-onset sepsis. Congenital candidiasis may present as a mucocutaneous infection or, more rarely, as a systemic infection in term and preterm infants. This paper presents case reports of two cases of congenital systemic candidiasis (CSC) caused by Candida albicans and a review of the data in the literature. An electronic search of PubMed, Scopus, and Google Scholar was performed to identify publications on congenital candidiasis. Both neonates were male, born vaginally, with risk factors for congenital candidiasis. One of the infants was born at term and presented with an almost generalized maculopapular rash at birth and congenital candidemia; parenteral fluconazole was used successfully. The other infant was born prematurely at 28 weeks of gestation; blood culture, gastric aspirate, and maternal vaginal cultures sampled at birth were positive for C. albicans. Liver and kidney involvement became apparent on the third day of life, while lung involvement was clinically evident on the fourth day. Prolonged parenteral fluconazole was administered due to multiple organ involvement and persistent candidemia. Our experience with the presented cases, similar to data in the literature, suggests that CSC may occur at any gestational age, with various clinical pictures, sometimes mimicking bacterial sepsis, and even in the absence of the rash. Careful anamnesis and a high index of suspicion are important for the prompt recognition and treatment of CSC, optimizing the short- and long-term outcomes. Further research should focus on CSC to improve its diagnosis.

2.
Virulence ; 15(1): 2404256, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39267283

RESUMEN

Candida albicans is an opportunistic fungal pathogen that can cause systemic infections in immunocompromised individuals. Morphological transition and biofilm formation are major virulence factors of C. albicans. Moreover, biofilm enhances resistance to antifungal agents. Therefore, it is urgent to identify new and effective compounds to target the biofilm of C. albicans. In the present study, the antifungal activities of equol against C. albicans were investigated. In vitro, the microdilution analysis and spot assay result showed that equol exhibited potent inhibitory activities against C. albicans. Further investigations confirmed that the antifungal effects of equol involved interference with the transition from yeast to hypha and biofilm formation of C. albicans. In addition, transcriptome sequencing and reverse transcription-quantitative PCR (qRT-PCR) analysis showed that equol significantly downregulated the expression of several genes in the Ras1-cAMP-PKA pathway related to hyphae and biofilm formation and significantly upregulated the expression of the negative transcriptional repressors RFG1 and TUP1. Moreover, equol effectively reduced the production of cAMP, a key messenger in the Ras1-cAMP-PKA pathway, while supplementation with cAMP partly rescued the equol-induced defects in hyphal development. Furthermore, in a mouse model of systemic candidiasis (SC), equol treatment significantly decreased the fungal burden (liver, kidneys, and lung) in mice and local tissue damage, while enhancing the production of interleukin-10 (IL-10). Together, these findings confirm that equol is a potentially effective agent for treatment of SC.


Asunto(s)
Antifúngicos , Biopelículas , Candida albicans , Candidiasis , Equol , Candida albicans/efectos de los fármacos , Candida albicans/genética , Animales , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Ratones , Candidiasis/microbiología , Candidiasis/tratamiento farmacológico , Equol/farmacología , Femenino , Modelos Animales de Enfermedad , Pruebas de Sensibilidad Microbiana , Hifa/efectos de los fármacos , Hifa/crecimiento & desarrollo , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Ratones Endogámicos BALB C , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
3.
mBio ; 15(9): e0116524, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39109867

RESUMEN

T cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain (TIGIT) is an inhibitory receptor expressed by T and natural killer cells. Here, we used TIGIT knockout (KO) mice to demonstrate that mouse TIGIT directly interacts with Candida albicans. Reduced fungal growth and colonization were observed when TIGIT-KO splenocytes were co-cultured with C. albicans compared to the wild type (WT). In a systemic candidiasis model, TIGIT-KO mice exhibited improved survival and reduced body weight loss compared to WT mice. Organ-specific fungal burden assessment revealed significantly lower fungal loads in the kidneys, spleen, and lungs of TIGIT-KO mice. Finally, we show that the agglutinin-like sequence proteins ALS6, ALS7, and ALS9 of C. albicans are ligands for TIGIT and that the absence of these proteins abolishes the TIGIT effect in vivo. Our results identify the significance of TIGIT in modulating host defense against C. albicans and highlight the potential therapeutic implications for C. albicans infections. IMPORTANCE: Our results identify the significance of T cell immunoreceptor with immunoglobulin and ITIM domain in modulating host defense against Candida albicans and highlight the potential therapeutic implications for C. albicans infections.


Asunto(s)
Candida albicans , Candidiasis , Ratones Noqueados , Receptores Inmunológicos , Animales , Receptores Inmunológicos/genética , Receptores Inmunológicos/inmunología , Receptores Inmunológicos/metabolismo , Candida albicans/inmunología , Candida albicans/genética , Ratones , Candidiasis/inmunología , Candidiasis/microbiología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Femenino , Bazo/inmunología , Bazo/microbiología
4.
Microb Pathog ; 195: 106877, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39173853

RESUMEN

BACKGROUND: Candida albicans is an opportunistic pathogen commonly found in human mucous membranes. In light of the escalating challenge posed by antibiotic resistance of C. albicans strains worldwide, it is an urgently necessary to explore alternative therapeutic options. OBJECTIVE: This study aims to assess the efficacy of two Cinnamaldehyde derivatives, 2-Cl Cinnamaldehyde (2-Cl CA) and 4-Cl Cinnamaldehyde (4-Cl CA), against C. albicans through both in vitro experiments and in vivo murine models and to evaluate their potential as new drug candidates for treating C. albicans. METHODS AND RESULTS: The minimum inhibitory concentrations (MICs) of Cinnamaldehyde 2-Cl and 4-Cl benzene ring derivatives against C. albicans were 25 µg/mL. Time-killing experiments revealed that both Cinnamaldehyde derivatives exhibited fungicidal activity against C. albicans at concentrations of 5 MIC and 10 MIC. In the checkerboard experiment, 4-Cl CA did not show any antagonistic effect when combined with first-line antifungal drugs. Instead, it exhibited additive effects in combination with nystatin. Both 2-Cl and 4-Cl CA demonstrated inhibitory activity against C. albicans biofilm formation, especially at 8 MIC and 16 MIC concentrations. In C. albicans biofilm eradication experiments, although high drug concentrations of 2-Cl and 4-Cl CA were unable to eradicate the biofilm completely, they were still effective in killing C. albicans cells within the biofilm. Moreover, sub-inhibitory concentrations of 4-Cl CA (ranging from 5 to 20 µg/mL) significantly inhibited cell aggregation and hyphal formation. Furthermore, 4-Cl CA effectively inhibited intracellular C. albicans infection in macrophages. Lastly, the effectiveness of 4-Cl CA was evaluated in a mouse model of hematogenous disseminated candidiasis caused by C. albicans, which revealed that 4-Cl CA significantly reduced fungal burden and improved mouse survival compared to the untreated controls. CONCLUSION: The 4-Cl CA exhibited inhibitory effects against C. albicans through both in vivo and in vitro models, demonstrating its therapeutic potential as a promising new drug candidate for treating drug-resistant candidiasis albicans.


Asunto(s)
Acroleína , Antifúngicos , Biopelículas , Candida albicans , Candidiasis , Modelos Animales de Enfermedad , Farmacorresistencia Fúngica , Fluconazol , Pruebas de Sensibilidad Microbiana , Acroleína/análogos & derivados , Acroleína/farmacología , Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Animales , Biopelículas/efectos de los fármacos , Farmacorresistencia Fúngica/efectos de los fármacos , Ratones , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Fluconazol/farmacología , Femenino , Ratones Endogámicos BALB C
5.
mBio ; 15(10): e0122724, 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39207097

RESUMEN

DNA polymerase ε (Polε) is an essential replicative polymerase consisting of Pol2, Dpb2, Dpb3, and Dpb4 subunits and has not been explored in the pathogenic yeast Candida albicans. C. albicans is accountable for >40% of deaths due to systemic candidiasis per year worldwide. Genome plasticity is one of the adaptive mechanisms associated with virulence, and as it is associated with DNA polymerase function, this study explored the role of Polε in genome stability and pathogenesis of C. albicans. POL2 and DPB2 are haploinsufficient, but DPB3 and DPB4 are dispensable for cell survival in diploid C. albicans. However, unlike in Saccharomyces cerevisiae, loss of any or both of the nonessential subunits or defective interaction between the two resulted in slow growth and temperature-sensitive phenotypes. Knockout strains of C. albicans (dpb3ΔΔ and dpb4ΔΔ and dpb3ΔΔdpb4ΔΔ) also exhibited sensitivity to genotoxic agents and delayed cell cycle progression. Reduced processive DNA synthesis and increased rate of mutagenesis were observed in dpb3 and dpb4 null strains. Whole-genome sequencing further confirmed the accumulation of indels and SNPs majorly in the intergenic repeat regions of the chromosomes of dpb3ΔΔdpb4ΔΔ. Polε-defective strains were constitutively filamentous and non-pathogenic in mice models of systemic candidiasis. Altogether, this study showed that the function of the Dpb3-Dpb4 subcomplex is critical for fungal morphogenesis and virulence besides its role as a structural component of Polε in DNA replication and genome stability; thus, their interacting interface may be targeted to develop antifungal drugs. IMPORTANCE: This study explored the role of DNA polymerase epsilon, especially its non-essential structural subunits in Candida albicans biology. Apart from their role in DNA replication and genome stability, the Dpb3-Dpb4 subcomplex regulates morphological switching and virulence. Since the defective strain is locked in filamentous form and is avirulent, the complex may be targeted for anti-fungal drug development.


Asunto(s)
Candida albicans , Candidiasis , ADN Polimerasa II , Replicación del ADN , Inestabilidad Genómica , Candida albicans/genética , Candida albicans/patogenicidad , Candida albicans/enzimología , ADN Polimerasa II/genética , ADN Polimerasa II/metabolismo , Candidiasis/microbiología , Ratones , Virulencia , Animales , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genoma Fúngico , Femenino , Ratones Endogámicos BALB C
6.
Front Fungal Biol ; 5: 1399546, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38881582

RESUMEN

Candida albicans is the predominant cause of systemic candidiasis, although other non albicans Candida species are progressively becoming more widespread nowadays. Candida auris has emerged as a deadly multidrug-resistant fungal pathogen, posing a significant threat to global public health. In the absence of effective antifungal therapies, the development of a vaccine against C. auris infections is imperative. Enolase, a key glycolytic enzyme, has emerged as a promising vaccine candidate due to its immunogenic properties and essential role in fungal virulence. Herein, full-length Enolase gene sequences from C. albicans and C. auris were cloned into suitable expression vector and transformed into Escherichia coli expression hosts. Recombinant Enolase proteins were successfully expressed and purified using affinity chromatography under native conditions, followed by SDS-PAGE characterization and Western blot analysis. CD spectroscopy verified the existence of expressed proteins in soluble native conformation. Preliminary in silico studies verified the immunogenicity of recombinant Enolase proteins isolated from both C. albicans and C. auris. Furthermore, bioinformatics analysis revealed conserved B-cell and T-cell epitopes across C. albicans and C. auris Enolase proteins, suggesting potential cross-reactivity and broad-spectrum vaccine efficacy. Our findings are anticipated to play a role in advancing therapeutic as well as diagnostic strategies against systemic candidiasis.

7.
Microb Pathog ; 185: 106437, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37913825

RESUMEN

BACKGROUND: Our previous proteomics data obtained from Candida albicans recovered after serial passage in a murine model of systemic infection revealed that Orf19.36.1 expression correlates with the virulence of the fungus. Therefore, the impact of ORF19.36.1 upon virulence was tested in this study. MATERIALS & METHODS: CRISPR-Cas9 technology was used to construct homozygous C. albicans orf19.36.1 null mutants and the phenotypes of these mutants examined in vitro (filamentation, invasion, adhesion, biofilm formation, hydrolase activities) and in vivo assays. RESULTS: The deletion of ORF19.36.1 did not significantly impact the phenotypes examined or the virulence of C. albicans in two infection models. CONCLUSION: These results suggest that, although Orf19.36.1 expression correlates with virulence, this protein is not essential for C. albicans pathobiology.


Asunto(s)
Candida albicans , Candidiasis , Proteínas Fúngicas , Animales , Ratones , Candidiasis/microbiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Virulencia/genética
8.
J Mycol Med ; 33(4): 101437, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37804566

RESUMEN

BACKGROUND: Antifungal resistance is the main health concern in the control of invasive fungal infections. This research was designed to further assess the antifungal activity of aryl-1,2,4-triazole-3-ylthio analogs of fluconazole (ATTAFs) against Candida albicans systemic candidiasis in the murine model. MATERIALS & METHODS: The murine model of systemic candidiasis was designed via the inoculation of 1 × 106 CFU of Candida albicans. The treatment dosages of 3.5 and 35 mg/kg per day were selected for ATTAFs and fluconazole, respectively. The median survival time (MST) was assayed for 30 days post-infection. The quantitative and qualitative (via histopathology staining) fungal burden was also assessed. Furthermore, immunohistochemistry and biochemistry assays were performed to monitor anti-inflammatory activity using the Cyclooxygenase-2 (Cox-2) marker and changes in serum protein levels. RESULTS: ATTAFs considerably improved the survival of the murine model (P < 0.003). Compared with fluconazole, the antifungal activity of ATTAFs and their MST showed no difference (P > 0.05). However, these compounds decreased the fungal burden in the kidneys, spleen, and liver. CONCLUSION: Our research indicates that ATTAF-1 and ATTAF-2 are effective therapeutic agents due to their fungal clearing and increasing the MST in the murine model of systemic candidiasis. Although we concluded that these components are novel and promising candidates for the management of invasive candidiasis, further studies are warranted to correlate these findings with clinical outcomes.


Asunto(s)
Candidiasis Invasiva , Fluconazol , Humanos , Animales , Ratones , Fluconazol/farmacología , Fluconazol/uso terapéutico , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Antifúngicos/química , Azoles/farmacología , Azoles/uso terapéutico , Modelos Animales de Enfermedad , Pruebas de Sensibilidad Microbiana , Candida albicans , Candidiasis Invasiva/tratamiento farmacológico , Farmacorresistencia Fúngica
9.
J Int Med Res ; 51(4): 3000605231158015, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37062969

RESUMEN

Congenital systemic candidiasis is a rare disease observed in both full-term and preterm infants. It can occur with or without congenital cutaneous candidiasis (CCC) and to date, only a few cases have been reported in the literature. We report here, a case of a full-term newborn who presented with diffuse skin eruptions at birth. Blood, urine, and skin scraping cultures were positive and the aetiological agent was Candida albicans. After six weeks of anti-fungal treatment with fluconazole, the newborn was cured. Early diagnosis is crucial in preventing complications caused by candidiasis in newborns.


Asunto(s)
Candidiasis Cutánea , Candidiasis , Recién Nacido , Humanos , Lactante , Recien Nacido Prematuro , Candidiasis/diagnóstico , Candidiasis/tratamiento farmacológico , Candidiasis/etiología , Candidiasis Cutánea/diagnóstico , Candidiasis Cutánea/tratamiento farmacológico , Candidiasis Cutánea/complicaciones , Fluconazol/uso terapéutico , Piel , Antifúngicos/uso terapéutico
10.
J Mycol Med ; 33(2): 101362, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36867970

RESUMEN

BACKGROUND: Systemic candidiasis is caused by Candida invading the bloodstream. The efficacy and safety of echinocandins in monotherapy and combination therapy regimes have not been adequately compared in immunocompromised patients with Candidiasis, and thus this systematic review aims to do so. METHODS: A protocol was prepared a priori. PubMed, Embase and Cochrane Library databases were searched systematically (from inception of each database to September 2022) to identify randomized controlled trials. Two reviewers performed screening, quality assessment of trials, and extracted data independently. Pairwise meta-analysis was performed using random-effects model to compare echinocandin monotherapy versus other antifungals. The primary outcomes of interest were treatment success and treatment-related adverse events. RESULTS: 547 records (PubMed=310, EMBASE=210 and Cochrane Library=27) were reviewed. Following our screening criteria, six trials involving 177 patients were included. Risk of bias of four included studies had some concerns due to lack of a pre-specified analysis plan. Meta-analysis shows that echinocandin monotherapy does not have significantly higher rates of "treatment success" compared to other classes of antifungals (RR 1.12, 95%CI 0.80-1.56). However, echinocandins appeared to be significantly safer than other forms of antifungal therapy (RR 0.79, 95%CI 0.73-0.86). CONCLUSION: Our findings have shown that echinocandin monotherapy (micafungin, caspofungin) given intravenously are just as effective as other antifungals (amphotericin B, itraconazole) in the treatment of systemic candidiasis in immunocompromised patients. There appears to be similar benefits when using echinocandins compared to amphotericin B which has also been used as a broad-spectrum antifungal, while avoiding the severe adverse effects that amphotericin B causes, such as nephrotoxicity.


Asunto(s)
Antifúngicos , Candidiasis , Humanos , Antifúngicos/efectos adversos , Equinocandinas/efectos adversos , Anfotericina B/efectos adversos , Candidiasis/tratamiento farmacológico , Huésped Inmunocomprometido , Lipopéptidos
11.
Ann Lab Med ; 43(4): 381-385, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36843407

RESUMEN

The sensitivity of the (1-3)-ß-D-glucan (BDG) diagnostic test for candidemia varies in different clinical settings, and its usefulness in early diagnosis of candidemia is suboptimal. We evaluated the sensitivity of the test for early candidemia prediction. All adult patients with culture-proven candidemia who underwent a serum Goldstream Fungus (1-3)-ß-D-Glucan Test within seven days prior to candidemia onset at a tertiary referral hospital between January 2017 and May 2021 were included. Any-positive BDG results within seven days prior to candidemia onset were obtained in 38 out of 93 (40.9%) patients. The positive rate increased when the test was performed near the day of candidemia onset (P=0.04) but reached only 52% on the day of candidemia onset. We observed no significant differences between BDG-positive and -negative groups in terms of underlying disease, risk factors for candidemia, clinical presentation, origin of candidemia, and 30-day mortality. Candida albicans was significantly associated with positive BDG results than with all-negative BDG results (P=0.04). The Goldstream BDG test is unreliable for candidemia prediction because of its low sensitivity. Negative BDG results in patients with a high risk of invasive candidiasis should be interpreted with caution.


Asunto(s)
Candidemia , Candidiasis , beta-Glucanos , Adulto , Humanos , Candidemia/diagnóstico , Candidemia/microbiología , Candida , Sensibilidad y Especificidad , Candidiasis/diagnóstico
12.
Curr Issues Mol Biol ; 45(2): 1306-1313, 2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36826030

RESUMEN

Oral mucositis is highly prevalent among the elderly, for whom oral care is often difficult. Oral mucositis, such as candidiasis, can induce systemic fungemia. Antifungal prophylaxis may be useful in such cases to prevent systemic fungemia; however, studies on this are limited. The objective of this study was to demonstrate the effectiveness of antifungal prophylaxis to prevent systemic Candida dissemination compared to oral care using a mice model. Oral candidiasis was induced using chemotherapy and inoculation with C. albicans in 8-week-old male mice. Group A was given oral care, Group B was orally administered an antifungal drug, Group C was intravenously administered an antifungal drug, and Group D was used as the negative control group. Macroscopic features of the tongue surface, colony forming units (CFU) on the tongue, and blood culture for C. albicans were evaluated. CFU was significantly higher in Group A than in Groups B and C. The oral care group, but not the groups administered antifungal agents, showed significantly higher positive numbers of animals with C. albicans in the blood as compared to the control group, indicating the effectiveness of antifungal prophylaxis over oral care. Antifungal prophylaxis may be an option for the prevention of systemic fungemia in individuals with difficulty in oral care.

13.
Mycoses ; 66(5): 378-386, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36680371

RESUMEN

BACKGROUND: Candidiasis is the most common cause of fungal sepsis, and new agents are of interest to ameliorate current deficiencies in therapy. Nikkomycin Z (NIKZ) is an inhibitor of chitin synthase, interfering with fungal cell wall development. OBJECTIVES/METHODS: We studied NIKZ therapy of disseminated murine candidiasis, via continuous drug exposure, in drinking water, to compensate for rapid clearance of the drug. RESULTS: Drinking, and thus drug intake in the NIKZ groups, as well as body weight, was affected by the degree of illness. NIKZ effect on survival, despite reduced drinking initially after infection, was highly efficacious and dose-related, and comparable to fluconazole, though neither were curative with the regimens employed. The challenge was rapidly lethal to all untreated animals, whereas NIKZ groups achieved >50% survival. Assays of residual fungal infection were consistent with impressions of efficacy based on survival. Although NIKZ MIC for Candida albicans appeared unpromising, mycelial formation assays more closely correlated with in vivo observations. CONCLUSIONS: In vitro-in vivo disparity may be explained by NIKZ tissue concentration in the target tissue and/or by enhanced NIKZ action on mycelial formation, a morphological change in vivo wherein chitin synthesis is more critical, compared to NIKZ activity in inhibiting planktonic growth. A sustained release oral form of NIKZ in drug development for humans could hold promise, possibly also in future exploring previously demonstrated synergy in vitro with other antifungals.


Asunto(s)
Antifúngicos , Candidiasis , Humanos , Ratones , Animales , Antifúngicos/farmacología , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Aminoglicósidos/uso terapéutico , Aminoglicósidos/farmacología , Candida albicans , Pruebas de Sensibilidad Microbiana , Fluconazol/farmacología , Fluconazol/uso terapéutico
14.
J Microbiol ; 60(4): 438-443, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35286605

RESUMEN

Systemic candidiasis, which is mainly caused by Candida albicans, is a serious acute fungal infection in the clinical setting. In a previous study, we reported that compound 22h (designated as AB-22 in this study), a vinyl sulfate compound, is a fast-acting fungicidal agent against a broad spectrum of fungal pathogens. In this study, we aimed to further analyze the in vitro and in vivo efficacy of AB-22 against filamentation, biofilm formation, and virulence of C. albicans. Under in vitro hyphal growth-inducing condition, AB-22 effectively inhibited germ tube formation and hyphal growth, which are required for the initiation of biofilm formation. Indeed, AB-22 significantly suppressed C. albicans biofilm formation in a dose-dependent manner. Moreover, AB-22 treatment inhibited the normal induction of ALS3, HWP1, and ECE1, which are all required for hyphal transition in C. albicans. Furthermore, AB-22 treatment increased the survival of mice systemically infected with C. albicans. In conclusion, in addition to its fungicidal activity, AB-22 inhibits filamentation and biofilm formation in C. albicans, which could collectively contribute to its potent in vivo efficacy against systemic candidiasis.


Asunto(s)
Candida albicans , Candidiasis , Animales , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Biopelículas , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Hifa , Ratones
15.
J Fungi (Basel) ; 7(12)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34946982

RESUMEN

Systemic candidiasis is the fourth most common bloodstream infection in ICU patients worldwide. Although C. albicans is a predominant species causing systemic candidiasis, infections caused by non-albicans Candida (NAC) species are increasingly becoming more prevalent globally along with the emergence of drug resistance. The diagnosis of systemic candidiasis is difficult due to the absence of significant clinical symptoms in patients. We investigated the diagnostic potential of recombinant secreted aspartyl proteinase 2 (rSap2) from C. parapsilosis for the detection of Candida infection. The rSap2 protein was successfully cloned, expressed and purified using Ni-NTA chromatography under denaturing conditions using an E. coli-based prokaryotic expression system, and refolded using a multi-step dialysis procedure. Structural analysis by CD and FTIR spectroscopy revealed the refolded protein to be in its near native conformation. Immunogenicity analysis demonstrated the rSap2 protein to be highly immunogenic as evident from significantly high titers of Sap2-specific antibodies in antigen immunized Balb/c mice, compared to sham-immunized controls. The diagnostic potential of rSap2 protein was evaluated using immunoblotting and ELISA assays using proven candidiasis patient serum and controls. Immunoblotting results indicate that reactivity to rSap2 was specific to candidiasis patient sera with no cross reactivity observed in healthy controls. Increased levels of anti-Sap2-specific Ig, IgG and IgM antibodies were observed in candidiasis patients compared to controls and was similar in sensitivity obtained when whole Candida was used as coating antigen. In summary, the rSap2 protein from C. parapsilosis has the potential to be used in the diagnosis of systemic candidiasis, providing a rapid, convenient, accurate and cost-effective strategy.

16.
Vaccines (Basel) ; 9(10)2021 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-34696267

RESUMEN

Systemic candidiasis is an invasive fungal infection caused by members of the genus Candida. The recent emergence of antifungal drug resistance and increased incidences of infections caused by non-albicans Candida species merit the need for developing immune therapies against Candida infections. Although the role of cellular immune responses in anti-Candida immunity is well established, less is known about the role of humoral immunity against systemic candidiasis. This review summarizes currently available information on humoral immune responses induced by several promising Candida vaccine candidates, which have been identified in the past few decades. The protective antibody and B-cell responses generated by polysaccharide antigens such as mannan, ß-glucan, and laminarin, as well as protein antigens like agglutinin-like sequence gene (Als3), secreted aspartyl proteinase (Sap2), heat shock protein (Hsp90), hyphally-regulated protein (Hyr1), hyphal wall protein (Hwp1), enolase (Eno), phospholipase (PLB), pyruvate kinase (Pk), fructose bisphosphate aldolase (Fba1), superoxide dismutase gene (Sod5) and malate dehydrogenase (Mdh1), are outlined. As per studies reviewed, antibodies induced in response to leading Candida vaccine candidates contribute to protection against systemic candidiasis by utilizing a variety of mechanisms such as opsonization, complement fixation, neutralization, biofilm inhibition, direct candidacidal activity, etc. The contributions of B-cells in controlling fungal infections are also discussed. Promising results using anti-Candida monoclonal antibodies for passive antibody therapy reinforces the need for developing antibody-based therapeutics including anti-idiotypic antibodies, single-chain variable fragments, peptide mimotopes, and antibody-derived peptides. Future research involving combinatorial immunotherapies using humanized monoclonal antibodies along with antifungal drugs/cytokines may prove beneficial for treating invasive fungal infections.

17.
Respir Med ; 188: 106619, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34555702

RESUMEN

BACKGROUND: Invasive fungal infections (IFI) are increasing in prevalence in recent years. In the last few months, the rise of COVID-19 patients has generated a new escalation in patients presenting opportunistic mycoses, mainly by Aspergillus. Candida infections are not being reported yet. OBJECTIVES: We aimed to determine the prevalence of systemic candidiasis in patients admitted to ICUs due to severe pneumonia secondary to SARS-CoV-2 infection and the existence of possible associated risk factors that led these patients to develop candidiasis. PATIENTS/METHODS: We designed a study including patients with a confirmed diagnosis of COVID-19. RESULTS: The prevalence of systemic candidiasis was 14.4%, and the main isolated species were C. albicans and C. parapsilosis. All patients that were tested positive for Candida spp. stayed longer in the ICU in comparison to patients who tested negative. Patients with candidiasis had higher MuLBSTA score and mortality rates and a worse radiological involvement. In our study, Candida spp. isolates were found in patients that were submitted to: tocilizumab, tocilizumab plus systemic steroids, interferon type 1ß and Lopinavir-Ritonavir. CONCLUSIONS: Results suggested a high prevalence of systemic candidiasis in severe COVID-19-associated pneumonia patients. Patients with Candidiasis had the worst clinical outcomes. Treatment with tocilizumab could potentialize the risk to develop systemic candidiasis.


Asunto(s)
COVID-19/complicaciones , Candidiasis/epidemiología , Coinfección/epidemiología , Neumonía/epidemiología , Anciano , COVID-19/diagnóstico , Candida albicans , Candida parapsilosis , Candidiasis/complicaciones , Candidiasis/diagnóstico , Coinfección/diagnóstico , Cuidados Críticos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neumonía/microbiología , Neumonía/virología , Prevalencia , Estudios Prospectivos , Factores de Riesgo
18.
Int J Biol Macromol ; 173: 327-340, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33482211

RESUMEN

We reported previously a recombinant protein (rP-HSP90C) containing epitope C from heat shock protein 90 of Candida albicans mediates protective immune responses against systemic candidiasis. However, it exhibits weak immunogenicity. Therefore, we evaluated the potential and mechanisms of thermosensitive chitosan hydrogel (CH-HG) as an adjuvant in rP-HSP90C vaccine. CH-HG synthesized by ionic cross-linking showed buffering capacity and control-released rP-HSP90C in vitro. In comparison to naked rP-HSP90C, CH-HG-loaded rP-HSP90C (CH-HG/rP-HSP90C) not only evoked a long-lasting rP-HSP90C-specific IgG, but also enhanced Th1, Th2, Th17 responses and the ratio of Th1/Th2 in vivo; Meanwhile, CH-HG/rP-HSP90C provoked a stronger CTL response than rP-HSP90C. Notably, CH-HG increased the protective immune responses against systemic candidiasis in rP-HSP90C-immunized mice since CH-HG/rP-HSP90C enhanced the survival rate of infected mice, and diminished the CFUs in kidneys compared to rP-HSP90C, which were similar to that of QuilA. Further in vitro investigation displayed CH-HG upgraded the expressions of costimulators, MHCs and cytokines in BMDCs compared to rP-HSP90C;CH-HG also promoted cellular uptake, endosomal escape and "cross-presentation" of rP-HSP90C. In addition, it recruited immune cells at the injection site. Our study demonstrated that CH-HG can be an efficient adjuvant in fungal vaccines.


Asunto(s)
Candida albicans/inmunología , Candidiasis/prevención & control , Quitosano/química , Epítopos/administración & dosificación , Proteínas HSP90 de Choque Térmico/química , Animales , Anticuerpos Antifúngicos/sangre , Candidiasis/inmunología , Epítopos/química , Epítopos/inmunología , Proteínas Fúngicas/química , Proteínas Fúngicas/inmunología , Proteínas HSP90 de Choque Térmico/inmunología , Hidrogeles , Inmunización , Masculino , Ratones , Células RAW 264.7 , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/química , Proteínas Recombinantes/inmunología
19.
Biomed Pharmacother ; 133: 111043, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33378951

RESUMEN

Nosocomial Candida colonization causes Systemic candidiasis in human with invasive infections in immunocompromised patients. Of all Candida spp., C. albicans is dominant in morbidity of all systemic candidiasis but C. tropicalis is phenomenal in mortality, virulence aspects and resistance development against antifungal drugs. The present study investigated the synergistic anti-virulent activity of myristic acid (MA) and palmitic acid (PA) against insidious dimorphic Candida spp. (C. albicans and C. tropicalis). In vitro and qPCR results revealed the mechanisms of MA-PA combination effectively inhibiting various virulence aspects such as biofilm, hyphal formation, secreted aspartyl proteases, lipases, ergosterol biosynthesis and drug effluxes. Further, in Danio rerio (Zebrafish), the MA-PA treatment increased the survival of animals and also the treated groups showed decreased level of fungal burden compared to the infected controls, after 3rd day of post infection. Histopathology of vital organs and SEM analysis of skin revealed a drastic recovery and reduced the inflammation of both Candida spp. infections in MA-PA treated animals. In addition, MA-PA treatment reduced the haemolysin and increased the susceptibility of Candida spp. in human blood model. Hence, this study suggested the therapeutic utilization of MA-PA as synergistic combination for their anti-inflammatory potency against systemic candidiasis and candidemia.


Asunto(s)
Antiinflamatorios/farmacología , Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Candida tropicalis/efectos de los fármacos , Candidiasis/tratamiento farmacológico , Ácido Mirístico/farmacología , Ácido Palmítico/farmacología , Animales , Candida albicans/crecimiento & desarrollo , Candida albicans/patogenicidad , Candida tropicalis/crecimiento & desarrollo , Candida tropicalis/patogenicidad , Candidiasis/microbiología , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Quimioterapia Combinada , Humanos , Viabilidad Microbiana , Virulencia , Pez Cebra
20.
J Drug Target ; 29(1): 78-87, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32723117

RESUMEN

In this study, we investigated the therapeutic efficacy of a combination of liposomal amphotericin B (Lip-Amp B) and Methylglyoxal (Lip-MG) against Candida albicans in the leukopoenic mice. The antifungal efficacy of Lip-Amp B or Lip-MG or a combination of Lip-Amp B and Lip-MG was evaluated by the analysis of the survival rate and the fungal load in the treated mice. The immune-stimulatory effect of Lip-MG on macrophages was evaluated by analysing the secretion of proinflammatory cytokines. C. albicans infected mice treated at the doses of 1 and 2 mg/kg of Lip-Amp B showed 20% and 50% survival rates, respectively. Whereas the mice treated with free Amp B at the same doses died within 40 days of treatment. Interestingly, C. albicans infected mice treated with a combination of Lip-Amp B and Lip-MG had 70% survival rate on day 40 postinfection. Moreover, treatment of macrophages with Lip-MG increased their fungicidal activity and the secretion of proinflammatory cytokines, including TNF-α and IL-1ß. These findings suggested that co-treatment with Lip-Amp B and Lip-MG had a synergistic effect and could be effective against C. albicans in immunocompromised subjects.


Asunto(s)
Anfotericina B/administración & dosificación , Antifúngicos/administración & dosificación , Candida albicans/efectos de los fármacos , Leucopenia/tratamiento farmacológico , Piruvaldehído/administración & dosificación , Animales , Candida albicans/fisiología , Quimioterapia Combinada , Femenino , Leucopenia/inmunología , Leucopenia/patología , Liposomas , Ratones , Ratones Endogámicos BALB C
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...