Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.537
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39141023

RESUMEN

Taurine, a non-essential amino acid produced from cysteine, is abundant in body tissues and blood plasma. It plays vital roles in growth, osmosis, lipid metabolism, and neurohormonal modulation. Taurine has antioxidant, anti-apoptotic, and anti-inflammatory properties, and its deficiency can lead to various diseases including cardiovascular, diabetic, renal, and liver disorders. This report provides a comprehensive review of the functional properties of taurine in counteracting pharmaceutical-induced side effects. A search across databases such as Scopus, PubMed, MEDLINE, and Web of Science yielded 109 articles, of which 75 were included in the study. These results suggest that the protective effects of taurine involve mechanisms such as influencing pathways of Nrf2/OH-1, PI3-kinase/AKT and ERK2, boosting antioxidants (SOD, GPx and CAT), and suppression of inflammatory cytokines (TNF-α, IL-1ß and IL-6). Overall, supplementation with taurine along with medications with significant side effects may mitigate these effects and enhance their efficacy. Further investigation of the interactions between taurine and other nutrients or compounds may provide insights into synergistic effects and novel therapeutic approaches.

2.
Nutr J ; 23(1): 93, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39148075

RESUMEN

BACKGROUND: Cardiovascular disease (CVD) remains the foremost cause of mortality globally. Taurine, an amino acid, holds promise for cardiovascular health through mechanisms such as calcium regulation, blood pressure reduction, and antioxidant and anti-inflammatory effects. Despite these potential benefits, previous studies have yielded inconsistent results. This meta-analysis of randomized controlled trials (RCTs) aims to evaluate the existing evidence on the quantitative effects of taurine on hemodynamic parameters and cardiac function grading, which are indicative of overall cardiovascular health and performance. METHODS: We conducted an electronic search across multiple databases, including Embase, PubMed, Web of Science, Cochrane CENTRAL, and ClinicalTrials.gov, from their inception to January 2, 2024. Our analysis focused on key cardiovascular outcomes, such as heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), left ventricular ejection fraction (LVEF), and New York Heart Association (NYHA) Functional Classification. Meta-regression was applied to explore dose-dependent relationships based on the total taurine dose administered during the treatment period. A subgroup analysis, stratified according to the baseline disease status of patients, was also conducted. RESULTS: The analysis included a pooled sample of 808 participants from 20 randomized controlled trials. Taurine demonstrated a significant reduction in HR (weighted mean difference [WMD] = -3.579 bpm, 95% confidence interval [CI] = -6.044 to -1.114, p = 0.004), SBP (WMD = -3.999 mm Hg, 95% CI = -7.293 to -0.706, p = 0.017), DBP (WMD: -1.435 mm Hg, 95% CI: -2.484 to -0.386, p = 0.007), NYHA (WMD: -0.403, 95% CI: -0.522 to -0.283, p < 0.001), and a significant increase in LVEF (WMD: 4.981%, 95% CI: 1.556 to 8.407, p = 0.004). Meta-regression indicated a dose-dependent reduction in HR (coefficient = -0.0150 per g, p = 0.333), SBP (coefficient = -0.0239 per g, p = 0.113), DBP (coefficient = -0.0089 per g, p = 0.110), and NYHA (coefficient = -0.0016 per g, p = 0.111), and a positive correlation with LVEF (coefficient = 0.0285 per g, p = 0.308). No significant adverse effects were observed compared to controls. In subgroup analysis, taurine significantly improved HR in heart failure patients and healthy individuals. Taurine significantly reduced SBP in healthy individuals, heart failure patients, and those with other diseases, while significantly lowered DBP in hypertensive patients It notably increased LVEF in heart failure patients and improved NYHA functional class in both heart failure patients and those with other diseases. CONCLUSIONS: Taurine showed noteworthy effects in preventing hypertension and enhancing cardiac function. Individuals prone to CVDs may find it advantageous to include taurine in their daily regimen.


Asunto(s)
Presión Sanguínea , Enfermedades Cardiovasculares , Ensayos Clínicos Controlados Aleatorios como Asunto , Taurina , Taurina/farmacología , Taurina/administración & dosificación , Humanos , Presión Sanguínea/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Volumen Sistólico/efectos de los fármacos , Función Ventricular Izquierda/efectos de los fármacos
3.
Toxicol Res (Camb) ; 13(4): tfae120, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39100859

RESUMEN

Pyraclostrobin, a strobilurin-derived fungicide, causes oxidative stress and DNA damage in the organism. Taurine plays an important role in metabolic processes such as osmoregulatory, cytoprotective, and antioxidant effects. The study aimed to investigate the protective effect of taurine in Sprague Dawley male rats exposed to pyraclostrobin. The rats were separated into 6 groups and were found 8 animals in each group. Rats were given 30 mg/kg pyraclostrobin and pyraclostrobin together with three different taurine concentrations (50, 100, and 200 mg/kg) via oral gavage for 28 days. While pyraclostrobin increased biochemical parameters, lipid peroxidation, and DNA damage, it decreased glutathione levels and enzyme activities of catalase and superoxide dismutase. Pyraclostrobin increased apoptotic, proinflammatory, and CYP2E1 mRNA expression levels, whereas antiapoptotic gene Bcl-2 mRNA expression levels decreased in liver tissue. Additionally, pyraclostrobin caused histopathological alterations in tissues. Taurine in a dose-dependent manner reversed the changes caused by pyraclostrobin. As a result, taurine exhibited a cytoprotective effect by showing antioxidant, anti-inflammatory, and antiapoptotic activities against oxidative damage caused by pyraclostrobin.

4.
J Nutr Biochem ; : 109720, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39103106

RESUMEN

OBJECTIVE: Previously, we demonstrated that caloric restriction (CR) stimulates the synthesis, conjugation, secretion, and deconjugation of taurine and bile acids in the intestine, as well as their reuptake. Given taurine's potent anti-obesogenic properties, this study aimed to assess whether the CR-induced shift in taurine homeostasis contributes to adipose tissue loss. METHODS: Male C57Bl/6 mice were subjected to 20% CR or ad libitum feeding, with variations in cage bedding and gut microbiota conditions. Additional groups received taurine supplementation or were fed a low-taurine diet (LTD). RESULTS: In CR animals, taurine derived from the intestine was preferentially trafficked to epididymal white adipose tissue (eWAT) over other tested organs. Besides increased levels of taurine transporter TauT, gene expression of Cysteine dioxygenase (Cdo) involved in taurine synthesis was upregulated in CR eWAT. Taurine concentration in adipocytes was inversely correlated with fat pad weight of CR mice. Different types of cage bedding did not impact eWAT taurine levels; however, the lack of bedding and consumption of a diet high in soluble fiber did. Depleting gut microbiota with antibiotics or inhibiting bile salt hydrolase (BSH) activity reduced WAT taurine concentration in CR mice. Taurine supplementation increased taurine levels in WAT and brown adipose tissue (BAT), promoting fat loss in CR animals. LTD consumption blunted WAT loss in CR animals, with negligible impact on BAT. CONCLUSIONS: This study provides multiple insights into taurine's role in CR-triggered fat loss and describes a novel communication path between the liver, gut, microbiota, and WAT, with taurine acting as a messenger.

5.
J Adv Res ; 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39103048

RESUMEN

INTRODUCTION: Mitophagy, a selective form of autophagy responsible for maintaining mitochondrial homeostasis, regulates the antiviral immune response and acts as viral replication platforms to facilitate infection with various viruses. However, its precise role in herpes simplex virus 1 (HSV-1) infection and herpes simplex encephalitis (HSE) remains largely unknown. OBJECTIVES: We aimed to investigate the regulation of mitophagy by HSV-1 neurotropic infection and its role in viral encephalitis, and to identify small compounds that regulate mitophagy to affect HSV-1 infection. METHODS: The antiviral effects of compounds were investigated by Western blot, RT-PCR and plaque assay. The changes of Parkin (PRKN)-mediated mitophagy and Nuclear Factor kappa B (NFKB)-mediated neuroinflammation were examined by TEM, RT-qPCR, Western blot and ELISA. The therapeutic effect of taurine or PRKN-overexpression was confirmed in the HSE mouse model by evaluating survival rate, eye damage, neurodegenerative symptoms, immunohistochemistry analysis and histopathology. RESULTS: HSV-1 infection caused the accumulation of damaged mitochondria in neuronal cells and in the brain tissue of HSE mice. Early HSV-1 infection led to mitophagy activation, followed by inhibition in the later viral infection. The HSV-1 proteins ICP34.5 or US11 deregulated the EIF2S1-ATF4 axis to suppress PRKN/Parkin mRNA expression, thereby impeding PRKN-dependent mitophagy. Consequently, inhibition of mitophagy by specific inhibitor midiv-1 promoted HSV-1 infection, whereas mitophagy activation by PRKN overexpression or agonists (CCCP and rotenone) attenuated HSV-1 infection and reduced the NF-κB-mediated neuroinflammation. Moreover, PRKN-overexpressing mice showed enhanced resistance to HSV-1 infection and ameliorated HSE pathogenesis. Furthermore, taurine, a differentially regulated gut microbial metabolite upon HSV-1 infection, acted as a mitophagy activator that transcriptionally promotes PRKN expression to stimulate mitophagy and to limit HSV-1 infection both in vitro and in vivo. CONCLUSION: These results reveal the protective function of mitophagy in HSE pathogenesis and highlight mitophagy activation as a potential antiviral therapeutic strategy for HSV-1-related diseases.

6.
Ageing Res Rev ; : 102460, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39173917

RESUMEN

Enigmatic sarcopenic obesity is still a challenge for science and adds to the global public health burden. The progressive accumulation of body fat combined with a dysfunctional skeletal muscle structure and composition, oxidative stress, mitochondrial dysfunction, and anabolic resistance, among other aggravating factors, together represent the seriousness and complexity of treating the metabolic disorder of sarcobesity in aging. For this reason, further studies are needed that encourage the support of therapeutic management. It is along these lines that we direct the reader to therapeutic approaches that demonstrate important, but still obscure, outcomes in the physiological conditions of sarcobesity, such as the role of taurine in modulating inflammatory and antioxidant mechanisms in muscle and adipose tissue, as well as the management of gut microbiota, able to systemically re-establish the structure and function of the gut-muscle axis, in addition to the merits of physical exercise as an instrument to improve muscular health and lifestyle quality.

7.
Heliyon ; 10(15): e35685, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170107

RESUMEN

Functional herbal beverages are gaining popularity in the beverage industry due to their natural antioxidants. However, the high concentration of antioxidants in these beverages can lead to increased toxicity, limiting their use. Moreover, the composition of tap water, including mineral salts and hydrogen carbonate ions, hampers the extraction process of polyphenolic compounds, thereby reducing the antioxidant properties. This study aims to address these challenges by enhancing antioxidant properties, reducing toxic effects, and improving the extraction process. Low-dose herbal extracts of green tea, rosemary, milk thistle, and sage were extracted using 100 ml of boiling water as a solvent, with ultrasonication employed for 20 min. Taurine, vit. C, and their combination were added to the extracts. The antioxidant properties, polyphenol, and flavonoid content were evaluated. The results demonstrated that the low-dose herbal tea combined with taurine and vit. C exhibited higher antioxidant activity compared to high-dose tea. Notably, the combination of taurine and vit. C showed the strongest synergistic effect. The addition of vit. C to these combinations eliminated any antagonism and resulted in a robust synergistic effect. The optimal conditions for enhancing antioxidant properties were determined as follows: an herbal type of 0.030 ≈ 0 (sage), vit. C concentration of 0.045 g/100 ml, and taurine concentration of 0.179 g/100 ml. The measured responses for reducing power, DPPH, and ABTS were 0.152 µg vit. C equivalent/ml, 67.778 %, and 87.630 %, respectively. This study provides valuable insights into optimizing the antioxidant properties of herbal beverages through the synergistic combinations of taurine and vit. C. By employing proper preparation techniques and including taurine and vit. C, the antioxidant capacity of these beverages can be significantly improved, potentially offering health benefits against degenerative diseases.

8.
Front Vet Sci ; 11: 1436282, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39170630

RESUMEN

Oxidative damage resulting from weaning stress significantly impacts the growth performance and health status of piglets. Taurine, a dietary antioxidant with diverse functions, was investigated in this study for its protective role against weaning stress-induced oxidative damage and its underlying mechanism. Forty 28-day-old male castrated weaned piglets were randomly assigned to four groups. The control group received the basal diet, while the experimental groups were fed the basal diet supplemented with 0.1, 0.2%, or 0.3% taurine over a 28-day period. In vitro, H2O2 was utilized to induce oxidative damage to the jejunal mucosa of piglets via IPEC-J2 cells. The results demonstrated that taurine supplementation reduced the incidence of diarrhea in piglets compared to that in the control group (p < 0.05); the addition of 0.2 and 0.3% taurine led to increased average daily gain and improved feed conversion efficiency in weaned piglets, showing a linear dose-response correlation (p < 0.05). Taurine supplementation at 0.2 and 0.3% enhanced the activities of serum CAT and GSH-Px while decreasing the levels of serum NO, XOD, GSSG, and MDA (p < 0.05). Moreover, it significantly elevated the levels of GSS, Trx, POD, complex I, mt-nd5, and mt-nd6, enhancing superoxide anion scavenging capacity and the hydroxyl-free scavenging rate in the livers of weaned piglets while reducing NO levels in the liver (p < 0.05). Additionally, 0.2 and 0.3% taurine supplementation decreased serum IL-6 levels and elevated the concentrations of IgA, IgG, and IL-10 in weaned piglets (p < 0.05). The levels of occludin, claudin, and ZO-1 in the jejunum mucosa of weaned piglets increased with 0.2 and 0.3% taurine supplementation (p < 0.05). In IPEC-J2 cells, pretreatment with 25 mM taurine for 24 h enhanced the activities of SOD and CAT; reduced the MDA content; upregulated the mRNA expression of various genes, including ZO-1, occludin, claudin-1, Nrf2, and HO-1; and reversed the oxidative damage induced by H2O2 exposure (p < 0.05). Overall, the findings suggest that the inclusion of 2 and 3% taurine in the diet can enhance growth performance, reduce diarrhea rates, ameliorate oxidative stress and inflammation, and promote intestinal barrier function in weaned piglets.

9.
World J Diabetes ; 15(8): 1778-1792, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39192867

RESUMEN

BACKGROUND: Type 2 diabetes is one of the most prevalent chronic diseases worldwide, significantly impacting patients' quality of life. Current treatment options like metformin (MET) effectively counteract hyperglycemia but fail to alleviate diabetes-associated complications such as retinopathy, neuropathy, nephropathy, hepatopathy, and cardiovascular diseases. AIM: To propose the supplementation of cholecalciferol (CHO) and taurine (TAU) to enhance MET efficacy in controlling diabetes while minimizing the risk of associated complications. METHODS: The study involved sixty rats, including ten non-diabetic control rats and fifty experimental rats with type 2 diabetes induced by streptozotocin. The experimental rats were further subdivided into positive control and treatment subgroups. The four treatment groups were randomly allocated to a single MET treatment or MET combined with supplements either CHO, TAU, or both. RESULTS: Diabetic rats exhibited elevated levels of glucose, insulin, Homeostasis Model Assessment of Insulin Resistance (HOMA-IR), glycated hemoglobin%, lipid markers, aspartate aminotransferase, and malondialdehyde, along with reduced levels of antioxidant enzymes (catalase and superoxide dismutase). The administration of CHO and TAU supplements alongside MET in diabetic rats led to a noticeable recovery of islet mass. The antioxidative, anti-inflammatory, and anti-apoptotic properties of the proposed combination therapy significantly ameliorated the aforementioned abnormalities. CONCLUSION: The supplementation of CHO and TAU with MET showed the potential to significantly improve metabolic parameters and protect against diabetic complications through its antioxidative, anti-inflammatory, and anti-apoptotic effects.

10.
J Cosmet Dermatol ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39161299

RESUMEN

BACKGROUND: Aging skin, exacerbated by external factors like UV radiation and pollutants, is a major cosmetic concern. Taurine, renowned for its antioxidant and anti-inflammatory properties, may combat skin aging. We performed mendelian randomization (MR) analysis to investigate the causal link between taurine and immune cells linked to skin aging. OBJECTIVES: To investigate the association between taurine and immune cells using mendelian randomization, to thereby explore the mechanism through which taurine exerts anti-aging effects on the skin via immune modulation. METHODS: A MR approach was employed using taurine-level data from the Ieu Open GWAS Project and immunocyte traits from a large European cohort. MR-Egger regression, weighted median estimation, and inverse variance weighting all provided statistical insights into causality. Sensitivity analyses assessed the heterogeneity and pleiotropy among the genetic instruments used. RESULTS: MR analysis identified a causal relationship between taurine levels and 10 immunocyte phenotypes, with taurine found to be negatively and positively associated with three and seven phenotypes, respectively. Sensitivity analysis revealed no significant heterogeneity or pleiotropy, suggesting reliable MR findings. CONCLUSION: This study provides insights into the immunological pathways by which taurine contributes to skin anti-aging effects, suggesting that increasing taurine levels could offer a novel strategy for anti-aging skincare.

11.
Biochem Biophys Res Commun ; 739: 150587, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39182353

RESUMEN

Intervertebral disc degeneration (IDD) is a common cause of low back pain and disability. Recent studies have highlighted the critical role of mitochondrial dysfunction in the progression of IDD. In this study, we investigated the therapeutic potential of taurine in delaying IDD through the activation of mitophagy via the PINK1/Parkin pathway. Our in vitro and in vivo experiments demonstrate that taurine treatment significantly enhances mitophagy, reduces oxidative stress, delays cell senescence, and promotes the removal of damaged mitochondria in nucleus pulposus cells (NPC). Additionally, taurine-mediated activation of the PINK1/Parkin pathway leads to improved mitochondrial homeostasis and slows the progression of disc degeneration. These findings provide new insights into the protective effects of taurine and highlight its potential as a therapeutic agent for IDD.

12.
Curr Issues Mol Biol ; 46(8): 8685-8698, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39194729

RESUMEN

The healing process after acne lesion extraction provides a miniature model to study skin wound repair mechanisms. In this study, we aimed to identify solutions for acne scars that frequently occur on our faces. We performed acne scar cytokine profiling and found that Interleukin 8 (IL8) and Tissue inhibitor of metalloproteinases 2 (TIMP2) were significant factors at the wounded site. The effect of chlorogenic acid and taurine on human epidermal cells and irritated human skin was investigated. Chlorogenic acid and taurine regulated IL8 and TIMP2 expression and accelerated keratinocyte proliferation. Moreover, tight junction protein expression was upregulated by chlorogenic acid and taurine synergistically. Further, these compounds modulated the expression of several inflammatory cytokines (IL1α, IL1ß, and IL6) and skin hydration related factor (hyaluronan synthase 3; HAS3). Thus, chlorogenic acid and taurine may exert their effects during the late stages of wound healing rather than the initial phase. In vivo experiments using SLS-induced wounds demonstrated the efficacy of chlorogenic acid and taurine treatment compared to natural healing, reduced erythema, and restored barrier function. Skin ultrasound analysis revealed their potential to promote denser skin recovery. Therefore, the wound-restoring effect of chlorogenic acid and taurine was exerted by suppression of inflammatory cytokines, and induction of cell proliferation, tight junction expression, and remodeling factors.

13.
Sci Rep ; 14(1): 17937, 2024 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095405

RESUMEN

Advanced glycation end products (AGEs) are the final products of the Maillard reaction, formed through the interaction of carbohydrates and proteins. Reactive dicarbonyl compounds such as methylglyoxal (MGO) serve as precursors for AGEs formation. Elevated levels of MGO/AGEs are observed in conditions like obesity, polycystic ovarian syndrome (PCOS), and diabetes, negatively impacting oocyte development. Previous studies have shown that hydrogen sulfide, a gasotransmitter with anti-AGEs effects, is produced in a process influenced by vitamin B6. R-α-lipoic acid (ALA) inhibits protein glycation and AGEs formation while stimulating glutathione (GSH) production. Taurine mitigates oxidative stress and acts as an anti-glycation compound, preventing in vitro glycation and AGEs accumulation. This study aimed to explore the ameliorative effects of a micronutrient support (Taurine, ALA and B6: TAB) on mouse oocytes challenged with MGO. Our results indicate that MGO reduces oocyte developmental competence, while TAB supplementation improves maturation, fertilization, and blastocyst formation rates. TAB also restores cell lineage allocation, redox balance and mitigates mitochondrial dysfunction in MGO-challenged oocytes. Furthermore, cumulus cells express key enzymes in the transsulfuration pathway, and TAB enhances their mRNA expression. However, TAB does not rescue MGO-induced damage in denuded oocytes, emphasizing the supportive role of cumulus cells. Overall, these findings suggest that TAB interventions may have significant implications for addressing reproductive dysfunctions associated with elevated MGO/AGEs levels. This study highlights the potential of TAB supplementation in preserving the developmental competence of COCs exposed to MGO stress, providing insights into mitigating the impact of dicarbonyl stress on oocyte quality and reproductive outcomes.


Asunto(s)
Oocitos , Piruvaldehído , Taurina , Ácido Tióctico , Vitamina B 6 , Animales , Taurina/farmacología , Piruvaldehído/farmacología , Piruvaldehído/metabolismo , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Ratones , Ácido Tióctico/farmacología , Femenino , Vitamina B 6/farmacología , Vitamina B 6/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Estrés Oxidativo/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos
14.
J Vet Intern Med ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136304

RESUMEN

BACKGROUND: Occurrence of low blood taurine concentrations (B-TauC) and predisposing factors to taurine deficiency in English Cocker Spaniels (ECS) are incompletely understood. OBJECTIVES: Investigate the occurrence of low B-TauC in a Swedish population of ECS and evaluate the association between B-TauC and dog characteristics, clinical variables, and diet composition. ANIMALS: One-hundred eighty privately owned ECS. METHODS: Dogs were prospectively recruited and underwent physical examination, blood analyses, and echocardiographic and ophthalmic examinations. Dogs with clinical signs of congestive heart failure (CHF) also underwent thoracic radiography. Taurine concentrations were analyzed in plasma (EDTA and heparin) and whole blood. Diets consumed by the dogs at the time of the examination were analyzed for dietary taurine- (D-TauC), cysteine- (D-CysC), and methionine concentrations (D-MetC). RESULTS: Fifty-three of 180 dogs (29%) had low B-TauC, of which 13 (25%) dogs had clinical and radiographic signs of CHF, increased echocardiographic left ventricular (LV) dimensions and volumes, and impaired LV systolic function. Five (9%) dogs with low B-TauC had retinal abnormalities. Dietary MetC, dietary animal protein source (red/white meat), and age were associated with B-TauC in the final multivariable regression model (P < .001, R2 adj = .39). CONCLUSIONS AND CLINICAL IMPORTANCE: Low B-TauC suggests that taurine deficiency may play a role in the development of myocardial failure and CHF in ECS. Low D-MetC and diets with red meat as the animal protein source were associated with low B-TauC. Dogs with B-TauC below the normal reference range were older than dogs with normal concentrations.

16.
FEBS Open Bio ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030877

RESUMEN

Epithelial-to-mesenchymal transition (EMT) contributes to the poor prognosis of patients with cancer by promoting distant metastasis and anti-cancer drug resistance. Several distinct metabolic alterations have been identified as key EMT phenotypes. In the present study, we further characterize the role of transforming growth factor-ß (TGF-ß)-induced EMT in non-small-cell lung cancer. Our study revealed that TGF-ß plays a role in EMT functions by upregulation of cytidine 5'-triphosphate synthetase 1 (CTPS), a vital enzyme for CTP biosynthesis in the pyrimidine metabolic pathway. Both knockdown and enzymatic inhibition of CTPS reduced TGF-ß-induced changes in EMT marker expression, chemoresistance and migration in vitro. Moreover, CTPS knockdown counteracted the TGF-ß-mediated downregulation of UDP-glucuronate, glutarate, creatine, taurine and nicotinamide. These findings indicate that CTPS plays a multifaceted role in EMT metabolism, which is crucial for the malignant transformation of cancer through EMT, and underline its potential as a promising therapeutic target for preventing drug resistance and metastasis in non-small-cell lung cancer.

17.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39000444

RESUMEN

The taurine transporter (TauT, SLC6A6) is a member of the solute carrier 6 (SLC6) family, which plays multiple physiological roles. The SLC6 family is divided into four subfamilies: GABA (γ-aminobutyric acid), monoamine, glycine and neutral amino acid transporters. Proteins from the GABA group, including the taurine transporter, are primarily considered therapeutic targets for treating central nervous system disorders. However, recent studies have suggested that inhibitors of SLC6A6 could also serve as anticancer agents. Overexpression of TauT has been associated with the progression of colon and gastric cancer. The pool of known ligands of this transporter is limited and the exact spatial structure of taurine transporter remains unsolved. Understanding its structure could aid in the development of novel inhibitors. Therefore, we utilized homology modelling techniques to create models of TauT. Docking studies and molecular dynamics simulations were conducted to describe protein-ligand interactions. We compared the obtained information for TauT with literature data on other members of the GABA transporter group. Our in silico analysis allowed us to characterize the transporter structure and point out amino acids crucial for ligand binding: Glu406, Gly62 and Tyr138. The significance of selected residues was confirmed through structural studies of mutants. These results will aid in the development of novel taurine transporter inhibitors, which can be explored as anticancer agents.


Asunto(s)
Proteínas Transportadoras de GABA en la Membrana Plasmática , Proteínas de Transporte de Membrana , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Humanos , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Proteínas Transportadoras de GABA en la Membrana Plasmática/química , Proteínas Transportadoras de GABA en la Membrana Plasmática/genética , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/antagonistas & inhibidores , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Ligandos , Secuencia de Aminoácidos , Unión Proteica
18.
J Proteome Res ; 23(8): 3444-3459, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39024330

RESUMEN

Ferroptosis adversely affects the viability, differentiation, and metabolic integrity of C2C12 myoblasts, contributing to the decline in skeletal muscle health. The intricate mechanisms behind this process are not fully understood. In this study, we induced ferroptosis in myoblasts using targeted inducers and found a marked decrease in specific redox metabolites, particularly taurine. Taurine supplementation effectively reversed the deleterious effects of ferroptosis, significantly increased cellular glutathione levels, reduced MDA and ROS levels, and rejuvenated impaired myogenic differentiation. Furthermore, taurine downregulated HO-1 expression and decreased intracellular Fe2+ levels, thereby stabilizing the labile iron pool. Using NMR metabolomic analysis, we observed that taurine profoundly promoted glycerophospholipid metabolism, which is critical for cell membrane repair, and enhanced mitochondrial bioenergetics, thereby increasing the energy reserves essential for muscle satellite cell regeneration. These results suggest that taurine is a potent ferroptosis inhibitor that attenuates key drivers of this process, strengthens oxidative defenses, and improves redox homeostasis. This combined effect protects cells from ferroptosis-induced damage. This study highlights the potential of taurine as a valuable ferroptosis inhibitor that protects skeletal muscle from ferroptosis-induced damage and provides a basis for therapeutic strategies to rejuvenate and facilitate the regeneration of aging skeletal muscle.


Asunto(s)
Ferroptosis , Homeostasis , Hierro , Mioblastos , Oxidación-Reducción , Taurina , Taurina/farmacología , Ferroptosis/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Mioblastos/citología , Hierro/metabolismo , Animales , Ratones , Homeostasis/efectos de los fármacos , Línea Celular , Especies Reactivas de Oxígeno/metabolismo , Diferenciación Celular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Glutatión/metabolismo , Estrés Oxidativo/efectos de los fármacos , Glicerofosfolípidos/metabolismo
19.
J Biomed Phys Eng ; 14(3): 287-298, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39027706

RESUMEN

Background: Radiotherapy, a highly effective method of radiation-based treating cancers, can reduce the size of tumors and affect healthy tissues. Radiation-induced lymphopenia as a side effect of radiation therapy can reduce the effectiveness of the treatment. Objective: This study aimed to examine how taurine can protect peripheral blood lymphocytes from radiation-based apoptosis. Material and Methods: In this experimental study, the effects of the taurine on lymphocytes were studied, and blood samples were divided into three groups: a negative control group that was not treated, a positive control group that was treated with cysteine (100 µg/ml), and a group that was treated with taurine (100 µg. mL-1) in three different doses (4, 8 & 12 Gy) before irradiation. The percentage of apoptotic and necrotic lymphocytes was measured using flow cytometry 48 and 72 hours after the irradiation, respectively. Results: According to the groups treated with taurine, the number of lymphocytes undergoing apoptosis was lower and higher compared to the negative and positive control groups, respectively. The decrease in this value was more pronounced 48 hours after radiation compared to 72 hours. Furthermore, there was a slight increase in the number of apoptotic lymphocytes with increasing radiation dose. Conclusion: Taurine effectively protects human peripheral blood lymphocytes from radiation-based apoptosis.

20.
Animals (Basel) ; 14(14)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39061501

RESUMEN

In order to understand the intervention effect of taurine on liver fat deposition induced by high fat intake in the orange-spotted grouper (Epinephelus coioides), we performed proteomic analysis and association analysis with previously obtained transcriptomic data. Three isoproteic (47% crude protein) diets were designed to contain two levels of fat and were named as the 10% fat diet (10F), 15% fat diet (15F), and 15% fat with 1% taurine (15FT). The 10F diet was used as the control diet. After 8 weeks of feeding, the 15F diet exhibited comparable weight gain, feed conversion ratio, and hepatosomatic index as the 10F diet, but the former increased liver fat content vs. the latter. Feeding with the 15FT diet resulted in an improvement in weight gain and a reduction in feed conversion ratio, hepatosomatic index, and liver fat content compared with feeding the 15F diet. When comparing liver proteomic data between the 15F and 15FT groups, a total of 133 differentially expressed proteins (DEPs) were identified, of which 51 were upregulated DEPs and 82 were downregulated DEPs. Among these DEPs, cholesterol 27-hydroxylase, phosphatidate phosphatase LPIN, phosphatidylinositol phospholipase C, and 6-phosphofructo-2-kinase were further screened out and were involved in primary bile acid biosynthesis, glycerolipid metabolism, the phosphatidylinositol signaling system, and the AMPK signaling pathway as key DEPs in terms of alleviating liver fat deposition of taurine in high-fat fed fish. With the association analysis of transcriptomic and proteomic data through KEGG, three differentially expressed genes (atp1a, arf1_2, and plcd) and four DEPs (CYP27α1, LPIN, PLCD, and PTK2B) were co-enriched into five pathways related to fat metabolism including primary bile acid synthesis, bile secretion, glycerolipid metabolism, phospholipid D signaling, or/and phosphatidylinositol signaling. The results showed that dietary taurine intervention could trigger activation of bile acid biosynthesis and inhibition of triglyceride biosynthesis, thereby mediating the liver fat-lowering effects in high-fat fed orange-spotted grouper. The present study contributes some novel insight into the liver fat-lowering effects of dietary taurine in high-fat fed groupers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...