Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 375
Filtrar
1.
Int J Pharm ; 666: 124777, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39369766

RESUMEN

Highly viscous drugs cannot be delivered through a needle. Typically, this means that these drugs are formulated at lower concentrations, demanding higher delivery volumes, which often must be delivered intravenously. Jet injection may provide an important solution for viscous drug delivery. Jet injection is a needle-free drug delivery technique whereby a liquid drug is formed into a hair-thin (∼200 µm) high-speed (>100 m/s) jet that penetrates and delivers itself into tissue. While it may seem that it would be just as difficult to form a viscous drug into a high-speed jet as it is to force it down a needle, this is not the case. Recent work has revealed that 'viscous-heating' during jet injection can result in significant temperature increase, and resultant viscosity decrease, in a thin outer-layer of the jet; this phenomenon effectively results in the drug 'self-lubricating' as it passes through a jet injection orifice. Despite the potential for this finding to revolutionise the subcutaneous delivery of high-viscosity drugs, little further work in this area has since been reported on. In this work we develop finite element models of needle-free injection to investigate how viscous heating affects jet production, how heat exchange with the orifice material influences this process, and to what extent jet production is affected by the initial temperature of the fluid. We then conduct novel high-speed measurements of jet and orifice temperature changes due to viscous heating. We find that viscous heating is responsible for approximately doubling the speed of jets that can be produced with very viscous fluid (1 Pa·s) at room temperature. The thermal conductivity of the orifice can transfer heat away from the perimeter of the jet, and thus reduce the lubricating effect of viscous heating. We then show that by preheating 99 % glycerol (1 Pa·s) from 7 °C to 37 °C the jet speed can be increased 6-fold. We also demonstrate the successful delivery of a very viscous glycerol solution using preheated jet injection into ex vivo porcine tissue. Given that 99 % glycerol is 10- to 100-fold more viscous than current protein therapeutics, our findings demonstrate the potential for jet injection, with or without additional drug preheating, to deliver drug formulations, needle-free, that are much more viscous than those currently delivered through needles.

2.
bioRxiv ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39345408

RESUMEN

Single-particle analysis by Cryo-electron microscopy (CryoEM) provides direct access to the conformation of each macromolecule. However, the image's signal-to-noise ratio is low, and some form of classification is usually performed at the image processing level to allow structural modeling. Classical classification methods imply the existence of a discrete number of structural conformations. However, new heterogeneity algorithms introduce a novel reconstruction paradigm, where every state is represented by a lower number of particles, potentially just one, allowing the estimation of conformational landscapes representing the different structural states a biomolecule explores. In this work, we present a novel deep learning-based method called HetSIREN. HetSIREN can fully reconstruct or refine a CryoEM volume in real space based on the structural information summarized in a conformational latent space. The unique characteristics that set HetSIREN apart start with the definition of the approach as a real space-based only method, a fact that allows spatially focused analysis, but also the introduction of a novel network architecture specifically designed to make use of meta-sinusoidal activations, with proven high analytics capacities. Continuing with innovations, HetSIREN can also refine the pose parameters of the images at the same time that it conditions the network with prior information/constraints on the maps, such as Total Variation and L 1 denoising, ultimately yielding cleaner volumes with high-quality structural features. Finally, but very importantly, HetSIREN addresses one of the most confusing issues in heterogeneity analysis, as it is the fact that real structural heterogeneity estimation is entangled with pose estimation (and to a lesser extent with CTF estimation), in this way, HetSIREN introduces a novel encoding architecture able to decouple pose and CTF information from the conformational landscape, resulting in more accurate and interpretable conformational latent spaces. We present results on computer-simulated data, public data from EMPIAR, and data from experimental systems currently being studied in our laboratories. An important finding is the sensitivity of the structure and dynamics of the SARS-CoV-2 Spike protein on the storage temperature.

3.
bioRxiv ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39229031

RESUMEN

Alphaviruses are enveloped, single-stranded, positive-sense RNA viruses that often require transmission between arthropod and vertebrate hosts for their sustained propagation. Most alphaviruses encode an opal (UGA) termination codon in nonstructural protein 3 (nsP3) upstream of the viral polymerase, nsP4. The selective constraints underlying the conservation of the opal codon are poorly understood. Using primate and mosquito cells, we explored the role and selective pressure on the nsP3 opal codon through extensive mutational analysis in the prototype alphavirus, Sindbis virus (SINV). We found that the opal codon is highly favored over all other codons in primate cells under native 37°C growth conditions. However, this preference is diminished in mosquito and primate cells grown at a lower temperature. Thus, the primary determinant driving the selection of the opal stop codon is not host genetics but the passaging temperature. We show that the opal codon is preferred over amber and ochre termination codons because it results in the highest translational readthrough and polymerase production. However, substituting the opal codon with sense codons leads to excessive full-length polyprotein (P1234) production, which disrupts optimal nsP polyprotein processing, delays the switch from minus-strand to positive-strand RNA production, and significantly reduces SINV fitness at 37°C; this fitness defect is relieved at lower temperatures. A naturally occurring suppressor mutation unexpectedly compensates for a delayed transition from minus to genomic RNA production by also delaying the subsequent transition between genomic and sub-genomic RNA production. Our study reveals that the opal stop codon is the best solution for alphavirus replication at 37°C, producing enough nsP4 protein to maximize replication without disrupting nsP processing and RNA replication transitions needed for optimal fitness. Our study uncovers the intricate strategy dual-host alphaviruses use at a single codon to optimize fitness.

4.
J Mol Graph Model ; 133: 108867, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39321610

RESUMEN

The behavior of metal ions is commonly studied in pure solvent although, in our daily life, these metals are involved in mixtures of solvents. In the present study, we investigated structures, relative stabilities and temperature dependance of solvated ferrous ion in water-ammonia mixture solvent at 0K and at various temperatures ranging from 25K to 400K. All the calculations are performed at the MN15 level of theory associated with the aug-cc-pVDZ basis set. For deep understanding of binding patterns in solvated ferrous ion in water-ammonia mixture solvent, noncovalent interactions are presented based on the QTAIM analysis using AIMAll. Our results prove that the ferrous ion is more stable when it is solvated by ammonia instead of water. In addition, hydrogen bonds are weakened by the presence of ammonia molecules. The temperature dependence of the different obtained geometries indicates that from s=6 (s is the sum of water and ammonia molecules around the ferrous ion), when the number of water molecules is almost equal to that of ammonia, the structures with coordination number 5 are dominant. However, the coordination number is six when there are a maximum water molecules (rich water solution) or maximum ammonia molecules (rich ammonia solution) around the ferrous ion (for s≥6). The QTAIM analysis shows that there are two coordination bondings and four hydrogen bondings. Furthermore, it is found that the Fe2+⋯N coordination bondings are stronger than the Fe2+⋯O confirming that the ferrous ion prefers to be solvated by ammonia instead of water.

5.
Adv Colloid Interface Sci ; 332: 103275, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39142063

RESUMEN

The Hungarian baron Roland Eötvös (Eötvös Loránd, 1848-1919) lived in the difficult period between two revolutions in Hungary, but nevertheless he achieved revolutionary results in two fields of science: capillarity (1875-1886) and gravity (after 1886). This paper describes his famous capillary equation published in 1886 in the world-language of the time (German) and in one of the most famous scientific journals of the time (Annalen der Physik und Chemie). In his paper he showed a simple equation for the temperature dependence of surface tension of one-component liquids and more importantly he showed that this quantity approaches zero as temperature tends towards the critical temperature. This result was achieved by measuring the surface tension of 160 (!) different liquids along their boiling lines as function of temperature, in a home-made high-pressure high-temperature equipment, probably the first one of this kind. In this way he extended the meaning of the critical point previously introduced by van der Waals. In this paper, also a modern model of surface tension of one-component liquids is discussed, simplified and compared to the Eötvös equation. It is also shown, how the Avogadro number and the molecular sizes can be determined from the experimental results of Eötvös (note: the Avogadro number was estimated with reasonable accuracy for the first time by Einstein in 1905 from the kinetic theory of liquids). Apparently, it was not that easy to do back in 1886: this becomes obvious from the 1911-paper by Einstein, who gave a wrong estimate for the diameter of Hg atoms (5.19 nm) using the data of Eötvös (the correct value is around 0.3 nm). The Appendix to this paper contains the summary of 1543 handwritten pages on surface tension by Eötvös, including the on-line availability of all pdf files. Note also, that Eötvös used g = 10.0 m/s2 for acceleration due gravity and so he over-estimated his surface tension values and also his Eötvös constant by about 2.0%. The corrected Eötvös constant using his measured values but the correct g-value would be "0.222" vs his published value of "0.227". Probably this uncertainty in the value of g was one of the motives that pushed Eötvös to study gravity after 1886.

6.
Materials (Basel) ; 17(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38998137

RESUMEN

The purpose of this study was to formulate a mathematical expression for the temperature dependence of adhesive strength using various parameters. Adhesive structures are typically exposed to a broad temperature range, spanning from low to high temperatures; therefore, understanding how their strength depends on temperature is crucial. The strength was measured through tensile, fatigue, and creep tests at temperatures ranging from -60 °C to 135 °C. The properties of these test types were thoroughly investigated by analyzing the strength of the test results from a thermal activity perspective. The results demonstrate that there is a clear relationship between temperature and strength. The intensity decreased with temperature according to the exponential function and could be accurately represented using the parameters of thermal activity. The temperature at which the strength begins to decrease in the fatigue test was higher than in the static tests. Consequently, we were able to accurately express the relationship between the temperature and intensity using certain parameters. Few studies successfully developed a precise nonlinear relationship between temperature and intensity using approximate expressions.

7.
Molecules ; 29(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38998901

RESUMEN

Long-range HNCO NMR spectra for proteins show crosspeaks due to 1JNC', 2JNC', 3JNCγ, and h3JNC' couplings. The h3JNC' couplings are transmitted through hydrogen bonds and their sizes are correlated to hydrogen bond lengths. We collected long-range HNCO data at a series of temperatures for four protein structures. P22i and CUS-3i are six-stranded beta-barrel I-domains from phages P22 and CUS-3 that share less than 40% sequence identity. The cis and trans states of the C-terminal domain from pore-forming toxin hemolysin ΙΙ (HlyIIC) arise from the isomerization of a single G404-P405 peptide bond. For P22i and CUS-3i, hydrogen bonds detected by NMR agree with those observed in the corresponding domains from cryoEM structures of the two phages. Hydrogen bond lengths derived from the h3JNC' couplings, however, are poorly conserved between the distantly related CUS-3i and P22i domains and show differences even between the closely related cis and trans state structures of HlyIIC. This is consistent with hydrogen bond lengths being determined by local differences in structure rather than the overall folding topology. With increasing temperature, hydrogen bonds typically show an apparent increase in length that has been attributed to protein thermal expansion. Some hydrogen bonds are invariant with temperature, however, while others show apparent decreases in length, suggesting they become stabilized with increasing temperature. Considering the data for the three proteins in this study and previously published data for ubiquitin and GB3, lowered protein folding stability and cooperativity corresponds with a larger range of temperature responses for hydrogen bonds. This suggests a partial uncoupling of hydrogen bond energetics from global unfolding cooperativity as protein stability decreases.


Asunto(s)
Enlace de Hidrógeno , Temperatura , Resonancia Magnética Nuclear Biomolecular , Modelos Moleculares , Estabilidad Proteica , Conformación Proteica , Proteínas/química , Espectroscopía de Resonancia Magnética/métodos , Proteínas Hemolisinas/química
8.
Macromol Rapid Commun ; 45(19): e2400327, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38837533

RESUMEN

Tough and self-healing hydrogels are typically sensitive to loading rates or temperatures due to the dynamic nature of noncovalent bonds. Understanding the structure evolution under varying loading conditions can provide valuable insights for developing new tough soft materials. In this study, polyampholyte (PA) hydrogel with a hierarchical structure is used as a model system. The evolution of the microscopic structure during loading is investigated under varied loading temperatures. By combining ultra-small angle X-ray scattering (USAXS) and Mooney-Rivlin analysis, it is elucidated that the deformation of bicontinuous hard/soft phase networks is closely correlated with the relaxation dynamics or strength of noncovalent bonds. At high loading temperatures, the gel is soft and ductile, and large affine deformation of the phase-separated networks is observed, correlated with the fast relaxation dynamics of noncovalent bonds. At low loading temperatures, the gel is stiff, and nonaffine deformation occurs from the onset of loading due to the substantial breaking of noncovalent bonds and limited chain mobility as well as weak adaptation of phase deformation to external stretch. This work provides an in-depth understanding of the relationship between structure and performance of tough and self-healing hydrogels.


Asunto(s)
Hidrogeles , Temperatura , Hidrogeles/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Polímeros/química
9.
Sci Rep ; 14(1): 13486, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866902

RESUMEN

Monolayer materials typically display intriguing temperature-dependent dielectric and optical properties, which are crucial for improving the structure and functionality of associated devices. Due to its unique photoelectric capabilities, monolayer WSe2 has recently received a lot of attention in the fields of atomically thin electronics and optoelectronics. In this work, we focus on the evolution of the temperature-dependent dielectric function (ε = ε1 + i ε2) of monolayer WSe2 over energies from 0.74 to 6.40 eV and temperatures from 40 to 350 K. We analyze the second derivatives of ε with respect to energy to accurately locate the critical points (CP). The dependence of the observed CP energies on temperature is consistent with the alternative domination of the declining exciton binding energy as the temperature increases.

10.
ACS Appl Mater Interfaces ; 16(26): 33993-34000, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38910293

RESUMEN

Graphene is widely used in excellent thermal interface materials (TIMs), thanks to its remarkably high in-plane thermal conductivity (k∥). However, the poor through-plane thermal conductivity (k⊥) limits its further application. Here, we developed a simple in situ growth method to prepare graphene-based thermal interface composites with positively temperature-dependent thermal conductivity, which loaded aluminum (Al) nanoparticles onto graphene nanoplatelets (GNPs). To evaluate the variations in thermal performance, we determined the thermal diffusivity and specific heat capacity of the composites using a laser-flash analyzer and a differential scanning calorimeter, respectively. The Al nanoparticles act as bridges between the nanoplatelets, enhancing the k⊥ of the 1.3-Al/GNPs composite to 11.70 W·m-1·K-1 at 25 °C. Even more remarkably, those nanoparticles led to a unique increase in k⊥ with temperature, reaching 20.93 W·m-1·K-1 at 100 °C. Additionally, we conducted an in-depth investigation of the thermal conductivity mechanism of the Al/GNPs composites. The exceptional heat transport property enabled the composites to exhibit a superior heat dissipation performance in simulated practical applications. This work provides valuable insights into utilizing graphene in composites with Al nanoparticles, which have special thermal conductivity properties, and offers a promising pathway to enhance the k⊥ of graphene-based TIMs.

11.
J Mol Model ; 30(7): 196, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837088

RESUMEN

CONTEXT: To determine the miscibility of liquids at high temperatures using the concept of Hildebrand solubility parameter δ , the current practice is to examine the difference in δ between two liquids at room temperature, assuming that δ is not sensitive to temperature. However, such an assumption may not be valid for certain polymer blends and solutions. Therefore, a knowledge of the δ values of the liquids of interest at high temperatures is desirable. The determination of δ at high temperatures, especially for high-molecular-weight polymers, is impossible, as polymers have vapor pressures of zero. To this end, molecular dynamics (MD) simulations provide a practical means for determining δ over a wide range of temperatures. In this work, we study the temperature dependence of δ of five hydrocarbon polymers: polyethylene (PE), isotactic and atactic polypropylene (i-PP and a-PP), polyisobutylene (PIB), and polyisoprene (PI) in five hydrocarbon solvents: n-pentane, n-hexane, n-dodecane, isobutene, and cyclohexane. The polymers are modeled as monodisperse chains with 100 repeat units. The average δ values of PE, i-PP, a-PP, PIB, and PI at 300 K are determined as 18.6, 14.9, 14.6, 14.3, and 16.4 MPa1/2, respectively, in a good agreement with experimental data. The δ values of these polymers at various temperatures are also determined. The temperature dependence of δ is fitted to two linear equations, one above and the other below the polymer's glass transition temperature Tg. The δ values are more sensitive to temperature at T ≥ Tg. The Tg values of the polymers, determined based upon their specific volumes and δ values agree with the experiment qualitatively. The determination of the temperature dependence of δ has a great potential for industrial applications, such as determining miscibility, developing polymeric organogelators as flocculants and oil spill treating agents, and identifying potential solvents and ideal processing temperatures. METHODS: The MD simulations are performed using the GROMACS 2022.3 package with optimized potential for liquid simulations-all atom (OPLS-AA) force field parameters. All polymers are built as extended chains using CHARMM-GUI Polymer Builder.

12.
Environ Sci Technol ; 58(24): 10786-10795, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38838217

RESUMEN

Storage lipids are an important compartment in the bioaccumulation of neutral organic compounds. Reliable models for predicting storage lipid-water and storage lipid-air partition coefficients (Kislip/w and Kislip/a), as well as their temperature dependence, are considered useful. Polyparameter linear free energy relationships (PP-LFERs) are accurate, general, and mechanistically clear models for predicting partitioning-related physicochemical quantities. About a decade ago, PP-LFERs were calibrated for Kislip/w at the physiological temperature of 37 °C. However, to date, a comprehensive collection and sufficiently reliable PP-LFERs for Kislip/w and Kislip/a at the most common standard temperature of 25 °C are still lacking. In this study, experimentally based Kislip/w and/or Kislip/a values at 25 °C for 278 compounds were extensively collected or converted from the literature. Subsequently, PP-LFERs were calibrated for Kislip/w and Kislip/a at 25 °C, performing well over 10 orders of magnitude with root-mean-square errors of 0.17-0.21 log units for compounds with reliable descriptors. Furthermore, standard internal energy changes of transfer from water or air to storage lipids for 158 compounds were derived and used to calibrate PP-LFERs for estimating the temperature dependence of Kislip/w or Kislip/a. Additionally, using PP-LFERs, low-density polyethylene was confirmed to be a better storage lipid analogue than silicone and polyoxymethylene in the equilibrium passive sampling of nonpolar and H-bond acceptor polar compounds.


Asunto(s)
Lípidos , Compuestos Orgánicos , Compuestos Orgánicos/química , Lípidos/química , Temperatura , Termodinámica , Agua/química
13.
Artículo en Inglés | MEDLINE | ID: mdl-38877837

RESUMEN

Enzyme kinetics and inhibition studies are crucial in biochemistry education and research. Conventional methods often require expensive equipment and reagents, potentially limiting their accessibility in limited resource settings. Our approach sought to develop a cost-effective experimental design for studying enzyme kinetics and inhibition. Lactase was chosen as a protein model and its activity was investigated by measuring glucose production from lactose hydrolysis. In the study, commercially available lactase pills were used as an enzyme source, while milk was used as a substrate. Instead of scientific equipment, glucometers were used to measure lactase activity. Enzyme kinetics were evaluated using Michaelis-Menten and Lineweaver-Burk plots. In the study, the effects of temperature, pH, and inhibitors were also investigated. The results of our study aligned with established enzyme kinetics theories and previous studies. Lactase showed temperature and pH-dependent activity, with decreased activity observed at both low and high extremes. Results also showed that galactose acts as a competitive inhibitor of lactase. The approach presented here offers a cost-effective procedure for studying enzyme kinetics and inhibition. It can act as a valuable tool for educational purposes and for preliminary research in settings with limited resources.

14.
Ann Bot ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38808688

RESUMEN

BACKGROUND AND AIMS: Pollen germination and tube growth are essential processes for successful fertilization. They are among the most temperature-vulnerable stages and subsequently affect seed production and determine population persistence and species distribution under climate change. Our study aims to investigate intra- and inter-specific variations in the temperature dependence of pollen germination and tube length growth and to explore how these variations differ for pollen from elevational gradients. METHODS: We focused on three conifer species, Pinus contorta, Picea engelmannii, and Pinus ponderosa, with pollen collected from 350 to 2200m elevation in Washington State, USA. We conducted pollen viability tests at temperatures from 5 to 40°C in 5°C intervals. After testing for four days, we took images of these samples under a microscope to monitor pollen germination percentage (GP) and tube length (TL). We applied the Gamma function to describe the temperature dependence of GP and TL and estimated key parameters, including the optimal temperature for GP (Topt_GP) and TL (Topt_TL). KEY RESULTS: Results showed that pollen from three species and different elevations within a species have different GP, TL, Topt_GP, and Topt_TL. The population with a higher Topt_GP would also have a higher Topt_TL, while Topt_TL was generally higher than Topt_GP, i.e., a positive but not one-to-one relationship. However, only Pinus contorta showed that populations from higher elevations have lower Topt_GP and Topt_TL and vice versa. The variability in GP increased at extreme temperatures, whereas the variability in TL was greatest near Topt_TL. CONCLUSIONS: Our study demonstrates the temperature dependences of three conifers across a wide range of temperatures. Pollen germination and tube growth are highly sensitive to temperature conditions and vary among species and elevations, affecting their reproduction success during warming. Our findings can provide valuable insights to advance our understanding of how conifer pollen responds to rising temperatures.

15.
J Phys Condens Matter ; 36(34)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38744297

RESUMEN

Transition metal silicides represented by MoSi2have excellent oxidation resistance and are widely used as high-temperature anti-oxidation coatings in hot end components of power equipment. However, the mechanism of temperature-dependent growth of MoSi2oxidation products has not been revealed. Therefore, this study investigated the formation characteristics of oxide film and silicide-poor compound on MoSi2at temperatures of 1000 °C-1550 °C through high-temperature oxidation experiments, combined with microscopic Raman spectroscopy, scanning electron microscope, and x-ray diffraction (XRD) characterizations. The result showed that MoSi2underwent high-temperature selective oxidation reactions at 1000 °C-1200 °C, forming MoO2and SiO2oxide film on the substrate. As the oxidation temperature increased to 1550 °C, after 100 h of oxidation, along with the disappearance of MoO2and the phase transformation of SiO2, a continuous Mo5Si3layer with a thickness of approximately 47µm was formed at the SiO2-MoSi2interface. Thermodynamics and kinetic calculations further revealed the mechanism of temperature-dependent growth of oxidation products (MoO2and Mo5Si3) during high-temperature oxidation process of MoSi2. As the temperature increased, the diffusion flux ratio of O and Si decreased, leading to a decrease in oxygen concentration at the interface and promoting the growth of the Mo5Si3layer. Its thickness is an important indicator for evaluating the oxidation resistance of MoSi2coatings during service. This study provides experimental and mechanistic insights into the temperature-dependent growth behavior of Mo5Si3during the high-temperature oxidation of MoSi2coating, and provides guidance for predicting the service life and improving the oxidation resistance of silicide coatings.

16.
Artículo en Inglés | MEDLINE | ID: mdl-38679867

RESUMEN

Ion channels play a crucial role in the transmembrane transport and signal transmission of substances. In animals, transient receptor potential vanilloid 1 (TRPV1) and transient receptor potential melastatin 8 (TRPM8) serve as temperature-sensing units in sensory nerve endings. TRPV1 allows cells to sense heat, while TRPM8 enables them to detect cold, both serving to protect living organisms from harmful substances and environments. However, almost all studies on artificial nanochannels have mainly focused on TRPV1-like "forward nanochannels" thus far, which are incapable of "backward" responding to heat. So, we constructed an innovational TRPM8-inspired "retrorse nanochannel" through internal modification of poly(acrylamide-co-acrylonitrile) [P(AAm-co-AN)] with an upper critical solution temperature (UCST). Our results demonstrated that the internally modified nanochannels exhibited rapid, stable, and reversible heat-closing capability and converse temperature dependence within the typical temperature range of 25-40 °C. The biomimetic ion channel can effectively function as a facile, precise, and reversible thermal gate for controlling the transport of ions and substances. It also offers a promising microscopic technology for managing thermal effects on the substance, fluid, energy, and even signal delivery.

17.
Photosynth Res ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662327

RESUMEN

In Photosystem II, light-induced water splitting occurs via the S state cycle of the CaMn4O5-cluster. To understand the role of various possible conformations of the CaMn4O5-cluster in this process, the temperature dependence of the S1 → S2 and S2 → S3 state transitions, induced by saturating laser flashes, was studied in spinach photosystem II membrane preparations under different conditions. The S1 → S2 transition temperature dependence was shown to be much dependent on the type of the cryoprotectant and presence of 3.5% methanol, resulting in the variation of transition half-inhibition temperature by 50 K. No similar effect was observed for the S2 → S3 state transition, for which we also show that both the low spin g = 2.0 multiline and high spin g = 4.1 EPR configurations of the S2 state advance with similar efficiency to the S3 state, both showing a transition half-inhibition temperature of 240 K. This was further confirmed by following the appearance of the Split S3 EPR signal. The results are discussed in relevance to the functional and structural heterogeneity of the water oxidizing complex intermediates in photosystem II.

18.
Nanotechnology ; 35(30)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38604151

RESUMEN

Highly-crystallized carbon nitride (HCCN) nanosheets exhibit significant potential for advancements in the field of photoelectric conversion. However, to fully exploit their potential, a thorough understanding of the fundamental excitonic photophysical processes is crucial. Here, the temperature-dependent excitonic photoluminescence (PL) of HCCN nanosheets and amorphous polymeric carbon nitride (PCN) is investigated using steady-state and time-resolved PL spectroscopy. The exciton binding energy of HCCN is determined to be 109.26 meV, lower than that of PCN (207.39 meV), which is attributed to the ordered stacking structure of HCCN with a weaker Coulomb interaction between electrons and holes. As the temperature increases, a noticeable reduction in PL lifetime is observed on both the HCCN and PCN, which is ascribed to the thermal activation of carrier trapping by the enhanced electron-phonon coupling effect. The thermal activation energy of HCCN is determined to be 102.9 meV, close to the value of PCN, due to their same band structures. Through wavelength-dependent PL dynamics analysis, we have identified the PL emission of HCCN as deriving from the transitions:σ*-LP,π*-π, andπ*-LP, where theπ*-LP transition dominants the emission because of the high excited state density of the LP state. These results demonstrate the impact of high-crystallinity on the excitonic emission of HCCN materials, thereby expanding their potential applications in the field of photoelectric conversion.

19.
Methods Mol Biol ; 2795: 135-147, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38594535

RESUMEN

Electrophoretic mobility shift assays (EMSAs) of DNA-binding proteins and labeled DNA allow the qualitative and quantitative characterization of protein-DNA complex formation using native (nondenaturing) polyacrylamide or agarose gel electrophoresis. By varying the incubation temperature of the protein-DNA binding reaction and maintaining this temperature during electrophoresis, temperature-dependent protein-DNA interactions can be investigated. Here, we provide examples of the binding of a transcriptional repressor complex called the Evening Complex, comprising the DNA-binding protein LUX ARRYTHMO (LUX), the scaffold protein EARLY FLOWERING 3 (ELF3), and the adapter protein ELF4, to its cognate DNA and demonstrate direct detection and visualization of thermoresponsive binding in vitro. As negative controls we use the LUX DNA-binding domain and LUX full length protein, which do not exhibit temperature-dependent DNA binding.


Asunto(s)
Proteínas de Unión al ADN , ADN , Ensayo de Cambio de Movilidad Electroforética , Temperatura , Proteínas de Unión al ADN/metabolismo , Unión Proteica , ADN/química , Electroforesis en Gel de Poliacrilamida
20.
Molecules ; 29(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38611830

RESUMEN

Poly(vinylidene fluoride) (PVDF) is predominantly characterized by alternating CH2 and CF2 units in a polymer backbone, originating from the head-to-tail addition of monomers or regular propagation. Due, to a small extent, to inverse monomer addition, so-called defect structures occur which influence the macroscopic properties of PVDF significantly. The amount of defect structures in the material is determined by the polymerization conditions. Here, the temperature dependence of the fraction of defect structures in PVDF obtained from polymerizations between 45 and 90 °C is reported. We utilized 19F-NMR spectroscopy to determine the fraction of defect structures as a function of temperature. To derive kinetic data, the polymerization of VDF is considered a quasi-copolymerization described by the Terminal Model involving four different propagation reactions. Based on the experimentally determined temperature-dependent fractions of defect structures, the known overall propagation rate coefficient, and taking into account the self-healing behavior of the macroradical, the Arrhenius parameters of the individual propagation rate coefficients were determined using the Monte Carlo methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...