Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Biomolecules ; 14(7)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39062477

RESUMEN

Atopic dermatitis, psoriasis and lichen sclerosus are among the most challenging conditions treated by dermatologists worldwide, with potentially significant physical, social and psychological impacts. Emerging evidence suggests that autologous-platelet-rich plasma could be used to manage skin inflammation. However, the presence of soluble autoimmune components could hinder their therapeutic potential. The aim of this study was to analyze the proteomic profile of plasma rich in growth factors (PRGFs) obtained from donors with inflammatory skin conditions to evaluate the impact of skin health status on the composition and bioactivity of PRGF-based treatments. Venous blood from healthy volunteers and patients with psoriasis, lichen sclerosus and atopic dermatitis was processed to produce PRGF supernatant. Half of the samples were subjected to an additional thermal treatment (56 °C) to inactivate inflammatory and immune molecules. Proteomic analysis was performed to assess the protein profile of PRGFs from healthy and non-healthy patients and the effect of Immunosafe treatment. Differential abundance patterns of several proteins related to key biological processes have been identified, including complement activation, blood coagulation, and glycolysis- and gluconeogenesis-related genes. These results also demonstrate that the thermal treatment (Immunosafe) contributes to the inactivation of the complement system and, as a consequence, reduction in the immunogenic potential of PRGF products.


Asunto(s)
Calor , Péptidos y Proteínas de Señalización Intercelular , Proteómica , Humanos , Proteómica/métodos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/sangre , Adulto , Masculino , Femenino , Estado de Salud , Persona de Mediana Edad , Enfermedades de la Piel/metabolismo , Enfermedades de la Piel/sangre , Proteoma/metabolismo , Plasma Rico en Plaquetas/metabolismo , Inflamación/metabolismo
2.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39000491

RESUMEN

Derived from the denitrifying bacterium Aromatoleum aromaticum EbN1 (Azoarcus sp.), the enzyme S-1-(4-hydroxyphenyl)-ethanol dehydrogenase (S-HPED) belongs to the short-chain dehydrogenase/reductase family. Using research techniques like UV-Vis spectroscopy, dynamic light scattering, thermal-shift assay and HPLC, we investigated the catalytic and structural stability of S-HPED over a wide temperature range and within the pH range of 5.5 to 9.0 under storage and reaction conditions. The relationship between aggregation and inactivation of the enzyme in various pH environments was also examined and interpreted. At pH 9.0, where the enzyme exhibited no aggregation, we characterized thermally induced enzyme inactivation. Through isothermal and multitemperature analysis of inactivation data, we identified and confirmed the first-order inactivation mechanism under these pH conditions and determined the kinetic parameters of the inactivation process. Additionally, we report the positive impact of glucose as an enzyme stabilizer, which slows down the dynamics of S-HPED inactivation over a wide range of pH and temperature and limits enzyme aggregation. Besides characterizing the stability of S-HPED, the enzyme's catalytic activity and high stereospecificity for 10 prochiral carbonyl compounds were positively verified, thus expanding the spectrum of substrates reduced by S-HPED. Our research contributes to advancing knowledge about the biocatalytic potential of this catalyst.


Asunto(s)
Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Cinética , Temperatura , Catálisis , Oxidorreductasas de Alcohol/química , Oxidorreductasas de Alcohol/metabolismo
3.
Int J Food Microbiol ; 423: 110830, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39047618

RESUMEN

As spores of Alicyclobacillus acidoterrestris can survive traditional pasteurization, this organism has been suggested as a target bacterium in the fruit juice industry. This study aimed to investigate the inactivation effect of cold plasma on A. acidoterrestris spores and the mechanism behind the inactivation. The inactivation effect was detected by the plate count method and described by kinetic models. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), the detection of dipicolinic acid (DPA) release and heat resistance detection, the detection and scavenging experiment of reactive species, and cryo-scanning electron microscopy were used to explore the mechanism of cold plasma inactivation of A. acidoterrestris. The results showed that cold plasma can effectively inactivate A. acidoterrestris spores in saline with a 3.0 ± 0.3 and 4.4 ± 0.8 log reduction in CFU/mL, for 9 and 18 min, respectively. The higher the voltage and the longer the treatment time, the stronger the overall inactivation effect. However, a lower gas flow rate may increase the probability of spore contact with reactive species, resulting in better inactivation results. The biphasic model fits the survival curves better than the Weibull model. SEM and TEM revealed that cold plasma treatment can cause varying degrees of damage to the morphology and structure of A. acidoterrestris spores, with at least 50 % sustaining severe morphological and structural damage. The DPA release and heat resistance detection showed that A. acidoterrestris spores did not germinate but died directly during the cold plasma treatment. 1O2 plays the most important role in the inactivation, while O3, H2O2 and NO3- may also be responsible for inactivation. Cold plasma treatment for 1 min reduced A. acidoterrestris spores in apple juice by 0.4 ± 0.0 log, comparable to a 12-min heat treatment at 95 °C. However, as the treatment time increased, the survival curve exhibited a significant tailing phenomenon, which was most likely caused by the various compounds in apple juice that can react with reactive species and exert a physical shielding effect on spores. Higher input power and higher gas flow rate resulted in more complete inactivation of A. acidoterrestris spores in apple juice. What's more, the high inactivation efficiency in saline indicates the cold plasma device provides a promising alternative for controlling A. acidoterrestris spores during apple washing. Overall, our study provides adequate data support and a theoretical basis for using cold plasma to inactivate A. acidoterrestris spores in the food industry.


Asunto(s)
Alicyclobacillus , Jugos de Frutas y Vegetales , Viabilidad Microbiana , Gases em Plasma , Esporas Bacterianas , Alicyclobacillus/crecimiento & desarrollo , Alicyclobacillus/fisiología , Esporas Bacterianas/crecimiento & desarrollo , Gases em Plasma/farmacología , Cinética , Jugos de Frutas y Vegetales/microbiología , Microbiología de Alimentos , Recuento de Colonia Microbiana , Ácidos Picolínicos/farmacología , Microscopía Electrónica de Rastreo , Conservación de Alimentos/métodos , Calor
4.
J Food Prot ; 87(8): 100325, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38964610

RESUMEN

With the emergence of clade 2.3.4.4b H5N1 highly pathogenic avian influenza virus (AIV) infection of dairy cattle and its subsequent detection in raw milk, coupled with recent AIV infections affecting dairy farm workers, experiments were conducted to affirm the safety of cooked ground beef related to AIV because such meat is often derived from cull dairy cows. Specifically, retail ground beef (percent lean:fat = ca. 80:20) was inoculated with a low pathogenic AIV (LPAIV) isolate to an initial level of 5.6 log10 50% egg infectious doses (EID50)  per 300 g patty. The inoculated meat was pressed into patties (ca. 2.54 cm thick, ca. 300 g each) and then held at 4 °C for up to 60 min. In each of the two trials, two patties for each of the following three treatments were cooked on a commercial open-flame gas grill to internal instantaneous temperatures of 48.9 °C (120°F), 62.8 °C (145°F), or 71.1 °C (160°F), but without any dwell time. Cooking inoculated ground beef patties to 48.9 °C (ave. cooking time of ca. 15 min) resulted in a mean reduction of ≥2.5 ± 0.9 log10 EID50 per 300 g of ground beef as assessed via quantification of virus in embryonating chicken eggs (ECEs). Likewise, cooking patties on a gas grill to 62.8 °C (ave. cooking time of ca. 21 min) or to the USDA FSIS recommended minimum internal temperature for ground beef of 71.1 °C (ave. cooking time of ca. 24 min) resulted in a reduction to nondetectable levels from initial levels of ≥5.6 log10 EID50 per 300 g. These data establish that levels of infectious AIV are substantially reduced within inoculated ground beef patties (20% fat) using recommended cooking procedures.


Asunto(s)
Culinaria , Animales , Bovinos , Humanos , Gripe Aviar , Carne Roja , Subtipo H5N1 del Virus de la Influenza A , Carne , Aves
5.
Front Vet Sci ; 11: 1371774, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38933699

RESUMEN

Introduction: There are no microbiological regulatory limits for viruses in animal feed and feed ingredients. Methods: A performance objective (PO) was proposed in this study to manufacture a spray-dried porcine plasma (SDPP) batch absent of any infectious viral particles. The PO levels of -7.0, -7.2, and -7.3 log TCID50/g in SDPP were estimated for three batch sizes (10, 15, and 20 tons). Results and discussion: A baseline survey on the presence of porcine epidemic diarrhea virus (PEDV) in raw porcine plasma revealed a concentration of -1.0 ± 0.6 log TCID50/mL as calculated using a TCID50-qPCR derived standard curve. The mean African swine fever virus (ASFV) concentration in raw plasma was estimated to be 0.6 log HAD50/mL (0.1-1.4, 95% CI) during a pre-clinical scenario (collected from asymptomatic and undetected viremic pigs). Different processing scenarios (baseline: spray-drying + extended storage) and baseline + ultraviolet (UV) radiation were evaluated to meet the PO levels proposed in this study. The baseline and baseline + UV processing scenarios were >95 and 100% effective in achieving the PO for PEDV by using different batch sizes. For the ASFV in SDPP during a pre-clinical scenario, the PO compliance was 100% for all processing scenarios evaluated. Further research is needed to determine the underlying mechanisms of virus inactivation in feed storage to further advance the implementation of feed safety risk management efforts globally.

6.
Poult Sci ; 103(8): 103961, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38941761

RESUMEN

Salmonella and Campylobacter are major foodborne pathogens that cause outbreaks associated with contaminated chicken liver. Proper cooking is necessary to avoid the risk of illness to consumers. This study tested the thermal inactivation of a 4-strain Salmonella cocktail and a 3-strain Campylobacter cocktail in chicken livers separately at temperatures ranging from 55.0 to 62.5°C. Inoculated livers were sealed in aluminum cells and immersed in a water bath. The decimal reduction time (D-values) of Salmonella in chicken livers were 9.01, 2.36, 0.82, and 0.23 min at 55.0, 57.5, 60.0, and 62.5°C, respectively. The D-values of Campylobacter ranged from 2.22 min at 55.0°C to 0.19 min at 60.0°C. Salmonella and Campylobacter had similar z-values in chicken livers of 4.8 and 4.6°C, respectively. Chicken livers can be heated to internal temperatures of 70.0 to 73.9°C for at least 1.6 to 0.2 s to achieve a 7-log reduction of Salmonella. Validation tests demonstrated that heating chicken livers to internal temperatures of 70.0 to 73.9°C for 2 to 0 s resulted in a reduction of Salmonella exceeding 7 logs. Collectively, these data show that Salmonella exhibits higher heat resistance than Campylobacter in chicken livers. Therefore, Salmonella could be considered as the target pathogen when designing thermal treatments or cooking instructions for liver products. These findings will aid in designing effective thermal processing for both industrial and home cooking to eliminate Salmonella and Campylobacter, ensuring consumer safety when consuming chicken liver products.


Asunto(s)
Campylobacter , Pollos , Microbiología de Alimentos , Calor , Hígado , Salmonella , Animales , Campylobacter/fisiología , Hígado/microbiología , Salmonella/fisiología , Cinética , Culinaria
7.
Chem Biodivers ; 21(8): e202401038, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38849308

RESUMEN

The investigation into the behavior of ficin, bromelain, papain under thermal conditions holds both theoretical and practical significance. The production processes of medicines and cosmetics often involve exposure to high temperatures, particularly during the final product sterilization phase. Hence, it's crucial to identify the "critical" temperatures for each component within the mixture for effective technological regulation. In light of this, the objective of this study was to examine the thermal inactivation, aggregation, and denaturation processes of three papain-like proteases: ficin, bromelain, papain. To achieve this goal, the following experiments were conducted: (1) determination of the quantity of inactivated proteases using enzyme kinetics with BAPNA as a substrate; (2) differential scanning calorimetry (DSC); (3) assessment of protein aggregation using dynamic light scattering (DLS) and spectrophotometric analysis at 280 nm. Our findings suggest that the inactivation of ficin and papain exhibits single decay step which characterized by a rapid decline, then preservation of the same residual activity by enzyme stabilization. Only bromelain shows two steps with different kinetics. The molecular sizes of the active and inactive forms are similar across ficin, bromelain, and papain. Furthermore, the denaturation of these forms occurs at approximately the same rate and is accompanied by protein aggregation.


Asunto(s)
Bromelaínas , Ficaína , Papaína , Desnaturalización Proteica , Papaína/metabolismo , Papaína/química , Desnaturalización Proteica/efectos de los fármacos , Bromelaínas/química , Bromelaínas/metabolismo , Ficaína/química , Ficaína/metabolismo , Cinética , Temperatura , Agregado de Proteínas/efectos de los fármacos , Rastreo Diferencial de Calorimetría , Dispersión Dinámica de Luz
8.
Int J Food Microbiol ; 418: 110739, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38749263

RESUMEN

Risky home canning techniques are still performed for food preservation due to limited science-based recommendations. This study aimed to evaluate the inactivation of Shiga toxin-producing Escherichia coli O157:H7, Salmonella enterica (ser. Typhimurium, Enteritidis, and Infantis) and Listeria monocytogenes during home canning with a household dishwasher. The 450 mL of blended tomato (acidic liquid food) and potato puree (non-acidic solid food) were prepared with 1.5 % salt and 25 mL vinegar as model foods in glass jars (660 mL). The two model foods were sterilized, then inoculated with separate cocktails of each pathogen at 106-107 CFU/g. The prepared jars were placed in the bottom rack of a dishwasher and subjected to the following cycles: economic (50 °C, 122 min), express (60 °C, 54 min), and intensive (70 °C, 96 min). Temperature changes in jars were monitored by using thermocouples during heat treatment. Within the center of the jars, temperatures were measured as 45 to 53 °C in blended tomato and 44 to 52 °C in potato puree during all tested dishwasher cycles, respectively. The economic cycle treatment reduced S. enterica, E. coli O157:H7, and L. monocytogenes populations by 3.1, 4.6, and 4.2 log CFU/g in blended tomato (P ≤ 0.05), where a <1.0 log reduction was observed in potato puree (P > 0.05). All pathogens showed similar heat resistance during the express cycle treatment with a log reduction ranging from 4.2 to 5.0 log CFU/g in blended tomato and 0.6 to 0.7 log CFU/g in potato puree. Reduction in L. monocytogenes population was limited (0.6 log CFU/g) compared to E. coli O157:H7 (2.0 log CFU/g) and S. enterica (2.7 log CFU/g) in blended tomato during the intensive cycle treatment (P ≤ 0.05). Dishwasher cycles at manufacturer defined settings failed to adequately inactivate foodborne pathogens in model foods. This study indicates that home-canned vegetables may cause foodborne illnesses when dishwashers in home kitchens are used for heat processing.


Asunto(s)
Escherichia coli O157 , Microbiología de Alimentos , Conservación de Alimentos , Listeria monocytogenes , Solanum lycopersicum , Listeria monocytogenes/crecimiento & desarrollo , Escherichia coli O157/crecimiento & desarrollo , Solanum lycopersicum/microbiología , Conservación de Alimentos/métodos , Salmonella enterica/crecimiento & desarrollo , Solanum tuberosum/microbiología , Manipulación de Alimentos/métodos , Recuento de Colonia Microbiana , Contaminación de Alimentos/prevención & control
9.
Food Microbiol ; 121: 104529, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38637065

RESUMEN

Hepatitis E virus (HEV) is the causative agent of foodborne infections occurring in high income countries mainly by consumption of undercooked and raw pork products. The virus is zoonotic with pigs and wild boars as the main reservoirs. Several studies proved the presence of HEV-RNA in pork liver sausages, pâté and other pork by-products. However, the detection of HEV nucleic acids does not necessary correspond to infectious virus and information on the persistence of the virus in the food is still limited. To which extent and how long the virus can survive after conventional industrial and home-made conservation and cooking procedures is largely unknown. In the present study, we investigated the persistence of two subtypes of HEV-3, by measuring the viral RNA on cell supernatant of infected A549 cells, after long-term storage at +4 °C and -20 °C and after heating for short or long-time span. Results confirmed that either low temperature storage (+4 °C) or freezing (-20 °C) do not influence the survival of the virus, and only a moderate reduction of presence of its RNA after 12 weeks at +4 °C was observed. To the other side, heating at 56 °C for long time (1 h) or at higher temperatures (>65 °C) for shorter time inactivated the virus successfully.


Asunto(s)
Virus de la Hepatitis E , Hepatitis E , Productos de la Carne , Enfermedades de los Porcinos , Porcinos , Animales , Virus de la Hepatitis E/genética , Calor , ARN Viral/genética , Filogenia , Sus scrofa
10.
Environ Pollut ; 349: 123957, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38631446

RESUMEN

Road dust-associated contaminants (RD-AC) are gradually becoming a much thornier problem, as their monotonous correlations render them carcinogenic, mutagenic, and teratogenic. While many studies have examined the harmful effects of road dust on both humans and the environment, few studies have considered the co-exposure risk and gradient outcomes given the spatial extent of RD-AC. In this spirit, this paper presents in-depth elucidation into the baffling complexities induced by both major and emerging contaminants of road dust through a panorama-to-profile up-to-date review of diverse studies unified by the goal of advancing innovative methods to mitigate these contaminants. The paper thoroughly explores the correlations between RD-AC and provides insights to understand their potential in dispersing saprotrophic microorganisms. It also explores emerging challenges and proposes a novel integrated framework system aimed at thermally inactivating viruses and other pathogenic micro-organisms commingled with RD-AC. The main findings are: (i) the co-exposure risk of both major and emerging contaminants add another layer of complexity, highlighting the need for more holistic framework strategies, given the geospatial morphology of these contaminants; (ii) road dust contaminants show great potential for extended prevalence and severity of viral particles pollution; (iii) increasing trend of environmentally persistent free radicals (EPFRs) in road dust, with studies conducted solely in China thus far; and (iv) substantial hurdle exists in acquiring data concerning acute procedural distress and long-term co-exposure risk to RD-ACs. Given the baffling complexities of RD-ACs, co-exposure risk and the need for innovative mitigation strategies, the study underscore the significance of establishing robust systems for deep road dust contaminants control and future research efforts while recognizing the interconnectivity within the contaminants associated with road dust.


Asunto(s)
Polvo , Polvo/análisis , Monitoreo del Ambiente/métodos , Humanos
11.
J Food Prot ; 87(6): 100280, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38642807

RESUMEN

A validation study was conducted to investigate the effect of the English muffin baking process to control Salmonella contamination and to study the thermal inactivation kinetic parameters (D- and z-values) of Salmonella in English muffin dough. The unbleached bread flour was inoculated with 3 serovar Salmonella cocktail (Salmonella serovars viz., Newport, Typhimurium, and Senftenberg), and dried back to its preinoculated water activity levels with 7.46 ± 0.12 log CFU/g of Salmonella concentration. The Salmonella inoculated flour was used to prepare English muffin batter and baked at 204.4°C (400°F) for 18 min and allowed to cool at ambient air for 15 min. The English muffins reached 99 ± 0°C (211.96 ± 0.37°F) as their maximum mean internal temperature during baking. The pH and aw of English muffin dough were 5.01 ± 0.01 and 0.947 ± 0.003, respectively. At the end of the 18-min baking period, the Salmonella inoculated English muffins recorded a more than 5 log CFU/g reduction on the injury-recovery media. The D-values of 3 serovar cocktails of Salmonella at 55, 58.5, and 62°C were 42.0 ± 5.68, 15.6 ± 0.73, and 3.0 ± 0.32 min, respectively; and the z-value was 6.2 ± 0.59°C. The water activity (aw) of the English muffin crumb (0.947 ± 0.003 to 0.9557 ± 0.001) remained statistically unchanged during baking, whereas the aw of the muffin crust decreased significantly (0.947 ± 0.003 to 0.918 ± 0.002) by the end of 18 min of baking. This study validates and documents the first scientific evidence that baking English muffins at 204.4°C (400°F) for 18 min acts as an effective kill step by controlling Salmonella population by >5 log CFU/g.


Asunto(s)
Recuento de Colonia Microbiana , Contaminación de Alimentos , Microbiología de Alimentos , Salmonella , Contaminación de Alimentos/prevención & control , Contaminación de Alimentos/análisis , Pan/microbiología , Humanos , Manipulación de Alimentos/métodos , Culinaria , Harina/microbiología , Cinética
12.
J Food Prot ; 87(4): 100253, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38417481

RESUMEN

A wide range of drying parameters and methods are used by industry to produce dried apples. To ensure end-product safety and regulatory compliance, it is essential to evaluate the effectiveness of such industrial practices on microbial inactivation. Therefore, the objective of this study was to evaluate the effects of drying air temperature and velocity on Listeria monocytogenes inactivation during drying of apple slices. Apples (cv. Gala) were cored, sliced as rings (∼6 mm thick), and surface-inoculated with broth-grown culture of an 8-strain cocktail of L. monocytogenes to achieve an inoculation level of 8.6 ± 0.3 log CFU/g. Apple rings were dried in batches using dry air in a pilot-scale impingement oven at 60 or 80 °C air temperature and 0.7 or 2.1 m/s air velocity, and sampled every 30 min for bacterial enumeration, water activity (aw), and moisture content analysis. L. monocytogenes reduction increased (P < 0.05) with higher air velocity or higher drying air temperature. By the end of drying, in which the standard moisture content for dried apple slices of <24% wet basis was reached, L. monocytogenes was reduced by 1.8 ± 0.3 and 2.8 ± 0.7 log CFU/g at 0.7 and 2.1 m/s air velocity, respectively, after 180 min at 60 °C. When using 80 °C drying temperature, L. monocytogenes reduction was 5.2 ± 0.5 log CFU/g at both air velocities after 150 min. Therefore, process conditions should be considered in the validation of fruit drying processes, instead of solely relying on product endpoint properties, such as moisture content.


Asunto(s)
Listeria monocytogenes , Malus , Malus/microbiología , Temperatura , Recuento de Colonia Microbiana , Frutas/microbiología , Microbiología de Alimentos , Manipulación de Alimentos/métodos
13.
Food Res Int ; 179: 114010, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38342535

RESUMEN

Thermal processing is a widely used method to ensure the microbiological safety of milk. Predictive microbiology plays a crucial role in quantifying microbial growth and decline, providing valuable guidance on the design and optimization of food processing operations. This study aimed to investigate the thermal inactivation kinetics of Listeria monocytogenes in milk under both isothermal and dynamic conditions. The thermal inactivation of L. monocytogenes was conducted under isothermal and non-isothermal conditions in sterilized and pasteurized milk, with and without background microbiota, respectively. Furthermore, a secondary model was developed between the shoulder effect and temperature, which was then integrated into the dynamic model. The results showed that L. monocytogenes grown in Tryptic Soy Yeast Extract Broth (TSBYE) prior to thermal inactivation exhibited higher heat resistance compared to cells grown in sterilized milk at isothermal temperatures of 60.0, 62.5, and 65℃. Moreover, the presence of background microbiota in milk significantly enhanced the heat resistance of L. monocytogenes, as evidenced by the increased D-values from 1.13 min to 2.34 min, from 0.46 min to 0.53 min, and from 0.25 min to 0.34 min at 60.0, 62.5, and 65 °C, respectively, regardless of whether the background microbiota was inactivated after co-growth or co-inactivated with L. monocytogenes. For non-isothermal inactivation, the one-step dynamic model based on the log-linear with shoulder model effectively described the microbial inactivation curve and exhibited satisfactory model performance. The model developed contributes to improved risk assessment, enabling dairy processors to optimize thermal treatment and ensure microbiological safety.


Asunto(s)
Microbiología de Alimentos , Listeria monocytogenes , Animales , Leche/microbiología , Recuento de Colonia Microbiana , Calor
14.
J Food Prot ; 87(2): 100215, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38182094

RESUMEN

Lytic bacteriophages are promising biocontrol agents against pathogenic bacteria for food and therapeutic applications. Investigating the feasibility of combining phage and physical lethal agents, such as heat, as an effective hurdle combination could lead to beneficial applications. The current research was initiated to compare the thermal inactivation kinetics of a lytic phage (Escherichia phage OSYSP) and its host (Shiga toxin-producing Escherichia coli O157:H7 EDL933), considering they have different critical thermal targets in their structures. To provide a basis for comparison, thermal inactivation kinetics were determined on suspensions of these agents in buffered peptone water using a thermally controlled circulating water bath. Results showed that the bacteriophage virions have a remarkable heat resistance (p < 0.05) compared to their host cells. The D-values of the populations of phage (PFU/mL) and EDL933 strain (CFU/mL) were 166.7 and 7.3 min at 55°C, compared to 44.4 and 0.3 min at 60°C, respectively. Additionally, D-values were significantly (p < 0.05) more influenced by temperature changes in the case of E. coli O157:H7 EDL933 (z-value 3.7°C) compared to that for phage OSYSP (z-value 7.7°C). When the phage suspension was heat-treated in a thermal cycler instead of a water bath, no significant differences between the two treatment procedures (p > 0.05) in estimating virus D- and z-values were observed. Based on these findings, it may be feasible to combine phage OSYSP with mild heat during processing of food to selectively inactivate E. coli O157:H7 EDL933 and subsequently maintain product safety during storage by the surviving phage population; however, the feasibility of this application needs to be investigated. Additionally, the relatively heat-resistant phage OSYSP could qualify as a biological indicator to validate thermal treatments of minimally processed foods in which E. coli O157:H7 EDL933 is the pathogen-of-concern.


Asunto(s)
Bacteriófagos , Escherichia coli O157 , Bacteriófagos/fisiología , Escherichia , Escherichia coli O157/fisiología , Microbiología de Alimentos , Cinética , Agua
15.
J Food Prot ; 87(3): 100222, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38218339

RESUMEN

Thermal inactivation studies were undertaken on Listeria monocytogenes and Salmonella spp. inoculated on the surface of country ham. Hams (average = ca. 3.4 ± 0.5 kg each; average = ca. ≥18% shrinkage) were used as provided by the processor (i.e., "salted hams"), desalted in tap water (i.e., "desalted hams"), or dried for an additional period (i.e., "extra-dried hams"). Hams were surface inoculated (ca. 9.5 log CFU/ham) with a multistrain cocktail of L. monocytogenes or Salmonella spp. and cooked within a bag ina circulating water bath to an internal temperature of 130°F (54.4°C) instantaneous, 145°F (62.8°C) and held for 4 min, 153°F (67.2°C) and held for 34 s, or 160°F (71.1°C) instantaneous. Regardless of ham type, all four time and temperature combinations tested herein delivered a ≥6.7-log reduction of cells of L. monocytogenes or Salmonella spp. Differences in product pH, moisture content, or aw did not have an appreciable impact on the thermal inactivation of L. monocytogenes or Salmonella spp. on country ham. In addition, shelf-life studies were undertaken using slices of "salted" country ham that were surface inoculated (ca. 5.5 log CFU/slice) with a multistrain cocktail of L. monocytogenes or Staphylococcus aureus and then stored at 20°C. Levels of S. aureus increased by ca. ≤1.4 log CFU/slice during storage for 90 days, whereas levels of L. monocytogenes remained relatively unchanged (≤0.2 log CFU/slice increase). Our data validated that cooking parameters elaborated in the U.S. Department of Agriculture's Food Safety and Inspection Service Cooking Guideline for Meat and Poultry Products (Revised Appendix A) are sufficient to deliver significant reductions (ca. ≥6.8 log CFU/ham) in levels of L.monocytogenes and Salmonella spp. on country ham. In addition, in the event of postprocessing contamination, country ham may support the outgrowth of S. aureus or survival of L. monocytogenes during storage at 20°C for 90 days.


Asunto(s)
Listeria monocytogenes , Productos de la Carne , Manipulación de Alimentos , Staphylococcus aureus , Recuento de Colonia Microbiana , Culinaria , Temperatura , Salmonella , Agua , Microbiología de Alimentos
16.
Biotechnol Lett ; 46(1): 85-95, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38064041

RESUMEN

The objective of this study was to obtain sufficient information on the thermal stabilization of a food-grade lipase from Thermomyces lanuginosus (TLL) using the immobilization technique. To do this, a new non-porous support was prepared via the sequential extraction of SiO2 from rice husks, followed by functionalization with (3-aminopropyl) triethoxysilane - 3-APTES (Amino-SiO2), and activation with glutaraldehyde - GA (GA-Amino-SiO2). We evaluated the influence of GA concentration, which varied from 0.25% v v-1 to 4% v v-1, on the immobilization parameters and enzyme thermal stabilization. The thermal inactivation parameters for both biocatalyst forms (soluble or immobilized TLL) were calculated by fitting a non-first-order enzyme inactivation kinetic model to the experimental data. According to the results, TLL was fully immobilized on the external support surface activated with different GA concentrations using an initial protein load of 5 mg g-1. A sharp decrease of hydrolytic activity was observed from 216.6 ± 12.4 U g-1 to 28.6 ± 0.9 U g-1 of after increasing the GA concentration from 0.25% v v-1 to 4.0% v v-1. The support that was prepared using a GA concentration at 0.5% v v-1 provided the highest stabilization of TLL - 31.6-times more stable than its soluble form at 60 °C. The estimations of the thermodynamic parameters, e.g., inactivation energy (Ed), enthalpy (ΔH#), entropy (ΔS#), and the Gibbs energy (ΔG#) values, confirmed the enzyme stabilization on the external support surface at temperatures ranging from 50 to 65 °C. These results show promising applications for this new heterogeneous biocatalyst in industrial processes given the high catalytic activity and thermal stability.


Asunto(s)
Lipasa , Oryza , Propilaminas , Silanos , Lipasa/metabolismo , Dióxido de Silicio , Glutaral , Enzimas Inmovilizadas/metabolismo , Termodinámica , Estabilidad de Enzimas
17.
Animals (Basel) ; 13(22)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38003166

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) may cause difficult-to-treat infections in dairy cattle. One possible route of MRSA transmission into calves is via the feeding of contaminated waste milk. We tested the heat resistance of 17 MRSA strains isolated from German dairy farms in colostrum and raw milk in a laboratory approach. Heating colostrum or raw milk at 60 °C for 30 min eliminated all viable MRSA in the milk, provided the MRSA inoculation rate is low (103 cfu mL-1). In contrast, raw milk highly inoculated with MRSA (106 cfu mL-1) required a holding time of at least 30 min at 70 °C to fully eliminate MRSA from it. However, quantitative analysis showed that a heat treatment for 10 min at 60 °C already significantly reduced the number of viable MRSA in highly inoculated raw milk. Heating colostrum and raw milk above 60 °C may destroy immunoglobulins which are crucial for the calf's health. Therefore, we suggest that colostrum and raw milk that is to be fed to calves on MRSA-positive dairy farms is heated at 60 °C for at least 10 min to reduce the likelihood of transmitting MRSA. In addition, the 60 °C heat-treated colostrum/raw milk should be fed to the calves as soon as possible to avoid re-growth of viable MRSA.

18.
Foods ; 12(20)2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37893615

RESUMEN

Yan 73 (Vitis vinifera) is a dyed grape variety cultivated in China. Currently, most studies have focused on the mechanism of anthocyanins or the impact of anthocyanins as auxiliary color varieties on wine color. There is little research on its direct use or direct processing of products such as juice. In order to investigate the effects of different processing methods on the juice of Yan 73 grapes, the physicochemical and functional properties, as well as the sensory indexes of the juice, were analyzed by using thermal pasteurization (TP), thermosonication (TS), TS combined with nisin (TSN), TS combined with ε-Polylysine (TSε), irradiation (IR), and high hydrostatic pressure (HHP). The physicochemical indexes, functional properties, and sensory indexes of Smoke 73 grape juice were determined and analyzed. The results of the study showed that among the seven sterilization methods, total polyphenol content (TPC) in juice was significantly increased in all treatments except HHP. TPC was the highest in TP (3773.33 mg GAE/L). Total anthocyanin content (TAC) was increased except IR5, and TSN (1202.67 mg/L) had the highest TAC. In terms of color, TP (a* = 36.57, b* = 19.70, L* = 14.81, C* = 41.55, h° = 28.30, ΔE = 5.9) promotes the dissolution of anthocyanins because of high temperatures, which basically improves all the color indicators of grape juice and makes the color of grape juice more vivid. After HHP treatment, the color (ΔE = 1.72) and aroma indicators are closer to the grape juice itself. The Entropy weight-TOPSIS, CRITIC-Topsis, and PCA integrated quality evaluation models showed that all selected TP as the best integrated quality.

19.
Viruses ; 15(10)2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37896853

RESUMEN

Tomato brown rugose fruit virus (ToBRFV) is a contact-transmitted tobamovirus affecting many tomato growing regions of the world. This study investigated the effects of different glasshouse surfaces on the survival of the virus; the efficacy of different disinfectants; and heat treatment against ToBRFV (surfaces included steel, aluminium, hard plastic, polythene, glass and concrete). A bioassay followed by ELISA was used to check virus viability. ToBRFV survived for at least 7 days on all surfaces tested and on some for at least 6 months. The virus survived for over two hours on hands and gloves. Hand washing was shown to be unreliable for the removal of the virus. Glutaraldehyde and quaternary ammonium compound disinfectants were effective at one hour on all surfaces. Some other disinfectants were effective at one hour of contact time, on all surfaces except concrete. Sodium hypochlorite was partially effective against ToBRFV, even on concrete. A 5 min soak of plastic trays in water at 90 °C was effective at denaturing ToBRFV; however, 5 min at 70 °C was not. Heating infected sap showed the thermal inactivation point to be 90 °C, confirming the hot water treatment results and showing that deactivation was due to the heat treatment and not a washing effect of the water.


Asunto(s)
Desinfectantes , Solanum lycopersicum , Tobamovirus , Virus , Desinfección/métodos , Frutas , Desinfectantes/farmacología
20.
Foods ; 12(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37835233

RESUMEN

Inactivation is a crucial step in the production of postbiotics, with thermal inactivation being the prevailing method employed. Nevertheless, the impact of thermal treatment on bioactivity and chemical composition remains unexplored. The objective of this study was to assess the influence of heating temperature on the antioxidant, anti-inflammatory properties and the chemical composition of ET-22 and BL-99 postbiotics. The findings revealed that subjecting ET-22 and BL-99 to thermal treatment ranging from 70 °C to 121 °C for a duration of 10 min effectively deactivated them, leading to the disruption of cellular structure and release of intracellular contents. The antioxidant and anti-inflammatory activity of ET-22 and BL-99 postbiotics remained unaffected by mild heating temperatures (below 100 °C). However, excessive heating at 121 °C diminished the antioxidant activity of the postbiotic. To further investigate the impact of thermal treatments on chemical composition, non-targeted metabolomics was conducted to analyze the cell-free supernatants derived from ET-22 and BL-99. The results revealed that compared to mild inactivation at temperatures below 100 °C, the excessive temperature of 121 °C significantly altered the chemical profile of the postbiotic. Several bioactive components with antioxidant and anti-inflammatory properties, including zomepirac, flumethasone, 6-hydroxyhexanoic acid, and phenyllactic acid, exhibited a significant reduction in their levels following exposure to a temperature of 121 °C. This decline in their abundance may be associated with a corresponding decrease in their antioxidant and anti-inflammatory activities. The cumulative evidence gathered strongly indicates that heating temperatures exert a discernible influence on the properties of postbiotics, whereby excessive heating leads to the degradation of heat-sensitive active constituents and subsequent diminishment of their biological efficacy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...