Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.135
Filtrar
1.
Neuroimage Clin ; 44: 103677, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39362044

RESUMEN

Deficiencies in inhibitory control are one of the hallmarks of attention-deficit-(hyperactivity) disorder (AD(H)D). Response inhibition demands can become increased through additional conflicts, namely when already integrated representations of perception-action associations have to be updated. Yet, the neural mechanisms of how such conflicts worsen response inhibition in AD(H)D are unknown, but, if identified, could help to better understand the complex nature of AD(H)D-associated impulsivity. We investigated both behavioral performance and EEG activity in the theta and alpha band of adolescents (10-18 years of age) with AD(H)D (n = 28) compared to neurotypical (NT) controls (n = 33) in a conflict-modulated Go/Nogo paradigm. We used multivariate pattern analysis (MVPA) and EEG-beamforming to examine how changes in representational content are coded by oscillatory activity and to delineate the cortical structures involved in it. The presented behavioral and neurophysiological data show that adolescents with AD(H)D are more strongly affected by increased response inhibition demands through additional conflicts than NT controls. Precisely, AD(H)D participants showed higher false alarm rates than NT controls in both, non-overlapping and overlapping Nogo trials, but performed even worse in the latter. This is likely due to an inefficient updating of representations related to delayed modulations of alpha band activity in the ventral stream and orbitofrontal regions. Theta band activity is also modulated by conflict but was not differentially affected in the two groups. By this, the present study provides novel insights into underlying neurophysiological mechanisms of the complex nature of response inhibition deficits in adolescents with AD(H)D, stressing the importance to examine the interplay of theta and alpha band activity more closely to better understand inhibitory control deficits in AD(H)D.

2.
Brain Topogr ; 38(1): 2, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39367155

RESUMEN

Frequent listening to unfamiliar music excerpts forms functional connectivity in the brain as music becomes familiar and memorable. However, where these connections spectrally arise in the cerebral cortex during music familiarization has yet to be determined. This study investigates electrophysiological changes in phase-based functional connectivity recorded with electroencephalography (EEG) from twenty participants' brains during thrice passive listening to initially unknown classical music excerpts. Functional connectivity is evaluated based on measuring phase synchronization between all pairwise combinations of EEG electrodes across all repetitions via repeated measures ANOVA and between every two repetitions of listening to unknown music with the weighted phase lag index (WPLI) method in different frequency bands. The results indicate an increased phase synchronization during gradual short-term familiarization between the right frontal and the right parietal areas in the theta and alpha bands. In addition, the increased phase synchronization is discovered between the right temporal areas and the right parietal areas at the theta band during gradual music familiarization. Overall, this study explores the short-term music familiarization effects on neural responses by revealing that repetitions form phasic coupling in the theta and alpha bands in the right hemisphere during passive listening.


Asunto(s)
Ritmo alfa , Percepción Auditiva , Electroencefalografía , Lóbulo Frontal , Música , Lóbulo Parietal , Ritmo Teta , Humanos , Masculino , Femenino , Ritmo alfa/fisiología , Adulto Joven , Lóbulo Parietal/fisiología , Ritmo Teta/fisiología , Adulto , Percepción Auditiva/fisiología , Lóbulo Frontal/fisiología , Electroencefalografía/métodos , Lóbulo Temporal/fisiología , Reconocimiento en Psicología/fisiología , Estimulación Acústica/métodos
3.
Hippocampus ; : e23641, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39368076

RESUMEN

Topographical projection patterns from the entorhinal cortex to area CA1 of the hippocampus have led to a hypothesis that proximal CA1 (pCA1, closer to CA2) is spatially more selective than distal CA1 (dCA1, closer to the subiculum). While earlier studies have shown evidence supporting this hypothesis, we recently showed that this difference does not hold true under all experimental conditions. In a complex environment with distinct local texture cues on a circular track and global visual cues, pCA1 and dCA1 display comparable spatial selectivity. Correlated with the spatial selectivity differences, the earlier studies also showed differences in theta phase coding dynamics between pCA1 and dCA1 neurons. Here we show that there are no differences in theta phase coding dynamics between neurons in these two regions under the experimental conditions where pCA1 and dCA1 neurons are equally spatially selective. These findings challenge the established notion of dCA1 being inherently less spatially selective and theta modulated than pCA1 and suggest further experiments to understand theta-mediated activation of the CA1 sub-networks to represent space.

4.
Neuropsychologia ; 204: 109008, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39368546

RESUMEN

Mind wandering (MW) is the intentional or unintentional experience of attending to internal task-unrelated thoughts while being occupied with an external task. Even though maintaining task focus is assumed to require executive functions (EF), it is not clear how and to what extent MW and EF interact. Research has found that activity in the dorsolateral prefrontal cortex (DLPFC) is associated with EF and MW. To understand the causal role of the DLPFC in relation to MW and EF, researchers have turned to non-invasive brain stimulation. Thus far, most studies have used transcranial direct current stimulation, but the results have been inconclusive. To further elucidate the relationship between the DLPFC, EF and MW, we conducted a pre-registered, sham-controlled, triple-blinded within-subject experiment by combining intermittent theta burst stimulation (iTBS) interleaved with a recently developed MW-EF task. In contrast to our expectations, participants reported significantly more MW following real iTBS as compared to sham stimulation. However, at the same time, psychomotor precision and EF improved, indicating that participants were able to engage in resource-intensive MW while simultaneously performing well on the task. We argue that iTBS enhanced the underlying executive resources that could be used to increase both MW and task performance in line with the resource-control view of MW. This finding opens exciting avenues for studying the complex interplay between MW and EF and provides empirical support for the utility of iTBS in improving executive performance during a demanding cognitive task.

5.
Biochem Biophys Res Commun ; 734: 150789, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39369539

RESUMEN

Children with epilepsy are particularly vulnerable to anxiety disorders, where these disorders are frequently underdiagnosed and untreated. Despite the high prevalence of anxiety in epilepsy, the underlying neurobiological mechanisms are not fully understood. The medial prefrontal cortex (mPFC) and ventral hippocampus (vHPC) are key brain regions implicated in the genesis and modulation of anxiety, and their interactions play a crucial role in emotional processing including anxiety. We utilized a pilocarpine-induced epilepsy model in young mice (7 weeks old) to assess anxiety-like behaviors using the open field test (OFT), light/dark box, and elevated plus maze (EPM). Local field potential (LFP) recordings were conducted to examine theta power and coherence between the mPFC and vHPC. LFP recordings revealed significantly altered theta power variation in both the mPFC and vHPC during exposure to anxiogenic contexts, suggesting the involvement of these regions in anxiety in the young epileptic mice. Notably, theta-frequency synchrony between the mPFC and vHPC was not significantly altered in the young epileptic mice, indicating that altered theta power rather than inter-regional synchrony may underlie anxiety behaviors in young epileptic mice. Furthermore, we demonstrated that chemogenetic inhibition of excitatory neurons in the mPFC and vHPC reduced anxiety levels in young epileptic mice. Altogether, our findings highlight the critical contributions of mPFC and vHPC to the pathogenesis of comorbid anxiety in epilepsy. These findings underscore the potential therapeutic significance of modulating the activity in these two regions as means to alleviate anxiety in a youth epilepsy population.

6.
Mol Brain ; 17(1): 72, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354549

RESUMEN

Working memory (WM) is essential for the temporary storage and processing of information required for complex cognitive tasks and relies on neuronal theta and gamma oscillations. Given the limited capacity of WM, researchers have investigated various methods to improve it, including transcranial alternating current stimulation (tACS), which modulates brain activity at specific frequencies. One particularly promising approach is theta-gamma peak-coupled-tACS (TGCp-tACS), which simulates the natural interaction between theta and gamma oscillations that occurs during cognitive control in the brain. The aim of this study was to improve WM in healthy young adults with TGCp-tACS, focusing on both behavioral and neurophysiological outcomes. Thirty-one participants completed five WM tasks under both sham and verum stimulation conditions. Electroencephalography (EEG) recordings before and after stimulation showed that TGCp-tACS increased power spectral density (PSD) in the high-gamma region at the stimulation site, while PSD decreased in the theta and delta regions throughout the cortex. From a behavioral perspective, although no significant changes were observed in most tasks, there was a significant improvement in accuracy in the 14-item Sternberg task, indicating an improvement in phonological WM. In conclusion, TGCp-tACS has the potential to promote and improve the phonological component of WM. To fully realize the cognitive benefits, further research is needed to refine the stimulation parameters and account for individual differences, such as baseline cognitive status and hormonal factors.


Asunto(s)
Memoria a Corto Plazo , Estimulación Transcraneal de Corriente Directa , Humanos , Memoria a Corto Plazo/fisiología , Masculino , Femenino , Adulto Joven , Estimulación Transcraneal de Corriente Directa/métodos , Ritmo Teta/fisiología , Ritmo Gamma/fisiología , Electroencefalografía , Adulto , Estimulación Eléctrica , Conducta/fisiología
7.
Neuroscience ; 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39366451

RESUMEN

Microinfarcts are widespread in the elderly, accompanied by varying degrees of cognitive decline. Continuous theta burst stimulation (cTBS) has been demonstrated to be neuroprotective on cognitive dysfunction, but the underlying cellular mechanism has been still not clear. In the present study, we evaluated the effects of cTBS on cognitive function and brain pathological changes in mice model of microinfarcts. The spatial learning and memory was assessed by Morris water maze (MWM), Glymphatic clearance efficiency was evaluated using in vivo two-photon imaging. The loss of neurons, activation of astrocytes and microglia, the expression and polarity distribution of the astrocytic aquaporin-4 (AQP4) were assessed by immunofluorescence staining. Our results showed that cTBS treatment significantly improved the spatial learning and memory, accelerated the efficiency of glymphatic clearance, up-regulated the AQP4 expression and improved the polarity distribution of AQP4 in microinfarcts mice. Besides, cTBS treatment increased the number of surviving neurons, whereas decreased the activated astrocytes and microglia. Our study suggested that cTBS accelerated glymphatic clearance and inhibited the excessive gliogenesis, which ultimately exerted neuroprotective effects on microinfarcts mice.

8.
Front Psychiatry ; 15: 1446849, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39224479

RESUMEN

Objective: Auditory hallucinations are the most frequently occurring psychotic symptom in schizophrenia. Continuous theta burst stimulation (cTBS) has been used as an adjuvant treatment for auditory hallucinations. This meta-analysis focused on randomized controlled clinical trials (RCTs) to assess the efficacy of adjuvant cTBS on auditory hallucinations in schizophrenia. Methods: We performed a comprehensive search of four international databases from their inception to January 14, 2024, to identify relevant RCTs that assessed the effects of adjuvant cTBS on auditory hallucinations. The key words included "auditory hallucinations", "continuous theta burst stimulation" and "transcranial magnetic stimulation". Inclusion criteria included patients with auditory hallucinations in schizophrenia or schizoaffective disorder. The Revised Cochrane risk-of-bias tool for randomized trials (RoB1) were used to evaluate the risk of bias and the Review Manager Software Version 5.4 was employed to pool the data. Results: A total of 4 RCTs involving 151 patients with auditory hallucinations were included in the analysis. The Cochrane risk of bias of these studies presented "low risk" in all items. Preliminary analysis showed no significant advantage of adjuvant cTBS over sham stimulation in reducing hallucinations [4 RCTs, n = 151; SMD: -0.45 (95%CI: -1.01, 0.12), P = 0.13; I2 = 61%]. Subgroup analysis revealed that patients treated with adjuvant cTBS for more than 10 stimulation sessions and total number of pulses more than 6000 [3 RCTs, n = 87; SMD: -4.43 (95%CI: -8.22, -0.63), P = 0.02; I2 = 47%] had a statistically significant improvement in hallucination symptoms. Moreover, the rates of adverse events and discontinuation did not show any significant difference between the cTBS and sham group. Conclusions: Although preliminary analysis did not revealed a significant advantage of adjuvant cTBS over sham stimulation, subgroup analysis showed that specific parameters of cTBS appear to be effective in the treatment of auditory hallucinations in schizophrenia. Further large-scale studies are needed to determine the standard protocol of cTBS for treating auditory hallucinations. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42024534045.

9.
Psychol Med ; : 1-12, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39238103

RESUMEN

BACKGROUND: The right inferior frontal gyrus (RIFG) is a potential beneficial brain stimulation target for autism. This randomized, double-blind, two-arm, parallel-group, sham-controlled clinical trial assessed the efficacy of intermittent theta burst stimulation (iTBS) over the RIFG in reducing autistic symptoms (NCT04987749). METHODS: Conducted at a single medical center, the trial enrolled 60 intellectually able autistic individuals (aged 8-30 years; 30 active iTBS). The intervention comprised 16 sessions (two stimulations per week for eight weeks) of neuro-navigated iTBS or sham over the RIFG. Fifty-seven participants (28 active) completed the intervention and assessments at Week 8 (the primary endpoint) and follow-up at Week 12. RESULTS: Autistic symptoms (primary outcome) based on the Social Responsiveness Scale decreased in both groups (significant time effect), but there was no significant difference between groups (null time-by-treatment interaction). Likewise, there was no significant between-group difference in changes in repetitive behaviors and exploratory outcomes of adaptive function and emotion dysregulation. Changes in social cognition (secondary outcome) differed between groups in feeling scores on the Frith-Happe Animations (Week 8, p = 0.026; Week 12, p = 0.025). Post-hoc analysis showed that the active group improved better on this social cognition than the sham group. Dropout rates did not vary between groups; the most common adverse event in both groups was local pain. Notably, our findings would not survive stringent multiple comparison corrections. CONCLUSIONS: Our findings suggest that iTBS over the RIFG is not different from sham in reducing autistic symptoms and emotion dysregulation. Nonetheless, RIFG iTBS may improve social cognition of mentalizing others' feelings in autistic individuals.

10.
Cureus ; 16(9): e68771, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39246638

RESUMEN

Previous studies have shown that right-sided frontal alpha asymmetry (fAA) is an electroencephalography (EEG) marker for negatively valenced emotions and a marker for negative self-perceptions of a person's psychosocial interactions. Alpha activity is affected by the changes in visual stimulation associated with eye-opening and eye-closing; theta activity is not so affected. Therefore, this analysis investigates the relationship between an individual's theta asymmetry and self-perceptions of their psychosocial interactions. We used quantitative electroencephalographic (qEEG) data from eight right-handed male medical students aged between 19 and 38 years, recorded under eyes-open (EO) and eyes-closed (EC) conditions. Significant correlations were found between self-reported measures of psychosocial interactions via the Interactive Self-Report Inventory (ISI). The main finding was that greater left-sided frontal temporal asymmetry (fTA) under both EO and EC conditions was associated with lower "regulated" ISI scores and lower "dependent" ISI scores. Greater left-sided temporal theta asymmetry (tTA), under EC conditions, was associated with higher "anxious" ISI scores. Greater left-sided prefrontal theta symmetry (pfTA), under EO conditions, was associated with lower "relaxed" ISI scores. These findings suggest that theta asymmetries in the frontal, prefrontal, and temporal cortices may be indicative of negative emotional states. The results of this study underscore the potential of pfTA, fTA, and tTA to be used as biomarkers for cognitive-emotional balance. The implications for mental health interventions, particularly personalized therapeutic approaches, are significant.

11.
Bioorg Chem ; 153: 107774, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39260160

RESUMEN

In most organisms, the tri-carboxylic acid cycle (TCA cycle) is an essential metabolic system that is involved in both energy generation and carbon metabolism. Its uni-directionality, however, restricts its use in synthetic biology and carbon fixation. Here, it is describing the use of the modified TCA cycle, called the Tri-carboxylic acid Hooked to Ethylene by Enzyme Reactions and Amino acid Synthesis, the reductive tricarboxylic acid branch/4-hydroxybutyryl-CoA/ethylmalonyl-CoA/acetyl-CoA (THETA) cycle, in Escherichia coli for the purposes of carbon fixation and amino acid synthesis. Three modules make up the THETA cycle: (1) pyruvate to succinate transformation, (2) succinate to crotonyl-CoA change, and (3) crotonyl-CoA to acetyl-CoA and pyruvate change. It is presenting each module's viability in vivo and showing how it integrates into the E. coli metabolic network to support growth on minimal medium without the need for outside supplementation. Enzyme optimization, route redesign, and heterologous expression were used to get over metabolic roadblocks and produce functional modules. Furthermore, the THETA cycle may be improved by including components of the Carbon-Efficient Tri-Carboxylic Acid Cycle (CETCH cycle) to improve carbon fixation. THETA cycle's promise as a platform for applications in synthetic biology and carbon fixation.

12.
Sleep Med ; 124: 77-83, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39276701

RESUMEN

OBJECTIVES: Primary insomnia is a substantial public health burden, but current treatments for this disorder have limited effectiveness and adherence. Herein, we aimed to investigate the efficacy and safety of continuous theta burst stimulation (cTBS) for the treatment of primary insomnia. METHODS: This two-armed, randomized, sham-controlled trial was conducted at Peking University Sixth Hospital and local community clinics. A total of 46 patients with primary insomnia were recruited and randomly allocated to either the cTBS group or sham group. Forty-one patients completed 10 sessions of cTBS or sham intervention and follow-up assessments. RESULTS: After the intervention, the severity of insomnia was significantly lower in the cTBS group than in the sham group, with a large effect size (Cohen's d = -1.938). Additionally, 52.4 % of patients in the cTBS group achieved a response (Insomnia Severity Index score reduction ≥8), whereas only 4 % of patients in the sham group achieved a response. The duration of objective total sleep time and slow-wave sleep were higher in the cTBS group than in the sham group. The degree of anxiety was lower in the cTBS group than in the sham group. There were no significant differences in depression, sleepiness, or cognitive function between the cTBS and sham groups. During follow-up, the sleep quality of the cTBS group significantly improved and remained stable at the 6-month follow-up. CONCLUSION: In this randomized clinical trial, cTBS improved insomnia symptoms and was generally well tolerated, thus supporting the further development of cTBS for the treatment of primary insomnia.

13.
Neurophysiol Clin ; 54(6): 103012, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39278041

RESUMEN

BACKGROUND: Repetitive transcranial magnetic stimulation (rTMS) of the primary motor cortex (M1) at high frequency (HF) is an effective treatment of neuropathic pain. The classical HF-rTMS protocol (CHF-rTMS) includes a daily session for one week as an induction phase of treatment followed by more spaced sessions. Another type of protocol without an induction phase and based solely on spaced sessions of HF-rTMS (SHF-rTMS) has also been shown to produce neuropathic pain relief. However, CHF-rTMS and SHF-rTMS of M1 have never been compared regarding their analgesic potential. Another type of rTMS paradigm, called accelerated intermittent theta burst stimulation (ACC-iTBS), has recently been proposed for the treatment of depression, the other clinical condition for which HF-rTMS is proposed as an effective therapeutic strategy. ACC-iTBS combines a high number of pulses delivered in short sessions grouped into a few days of stimulation. This type of protocol has never been applied to M1 for the treatment of pain. METHODS/DESIGN: The objective of this single-centre randomized study is to compare the efficacy of three different rTMS protocols for the treatment of chronic neuropathic pain: CHF-rTMS, SHF-rTMS, and ACC-iTBS. The CHF-rTMS will consists of 10 stimulation sessions, including 5 daily sessions of 10Hz-rTMS (3,000 pulses per session) over one week, then one session per week for 5 weeks, for a total of 30,000 pulses delivered in 10 stimulation days. The SHF-rTMS protocol will only include 4 sessions of 20Hz-rTMS (1,600 pulses per session), one every 15 days, for a total of 6,400 pulses delivered in 4 stimulation days. The ACC-iTBS protocol will comprise 5 sessions of iTBS (600 pulses per session) completed in half a day for 2 consecutive days, repeated 5 weeks later, for a total of 30,000 pulses delivered in 4 stimulation days. Thus, CHF-rTMS and ACC-iTBS protocols will share a higher total number of TMS pulses (30,000 pulses) compared to SHF-rTMS protocol (6,400 pulses), while CHF-rTMS protocol will include a higher number of stimulation days (10 days) compared to ACC-iTBS and SHF-rTMS protocols (4 days). In all protocols, the M1 target will be defined in the same way and stimulated at the same intensity using a navigated rTMS (nTMS) procedure. The evaluation will be based on clinical outcomes with various scales and questionnaires assessed every week, from two weeks before the 7-week period of therapeutic stimulation until 4 weeks after. Additionally, three sets of neurophysiological outcomes (resting-state electroencephalography (EEG), nTMS-EEG recordings, and short intracortical inhibition measurement with threshold tracking method) will be assessed the week before and after the 7-week period of therapeutic stimulation. DISCUSSION: This study will make it possible to compare the analgesic efficacy of the CHF-rTMS and SHF-rTMS protocols and to appraise that of the ACC-iTBS protocol for the first time. This study will also make it possible to determine the respective influence of the total number of pulses and days of stimulation delivered to M1 on the extent of pain relief. Thus, if their analgesic efficacy is not inferior to that of CHF-rTMS, SHF-rTMS and especially the new ACC-iTBS protocol could be an optimal compromise of a more easy-to-perform rTMS protocol for the treatment of patients with chronic neuropathic pain.

14.
J Affect Disord ; 367: 876-885, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39260582

RESUMEN

Theta burst stimulation (TBS) is a promising therapy for treatment-resistant major depressive disorder (MDD), but a significant proportion of individuals do not respond adequately, necessitating alternative approaches. This study explores whether individuals meeting minimum recommended physical activity levels demonstrate better responses to TBS compared to physically inactive individuals. Using data from a randomized controlled trial (n = 43), participants were categorized as physically active or inactive based on baseline International Physical Activity Questionnaire (IPAQ) scores. Depression scores (Hamilton Rating Scale for Depression, 17-item; HRSD-17) were assessed at baseline, 4, and 6 weeks of TBS treatment. A significant Time X Group effect adjusted for age and baseline depression was observed. Physically active individuals consistently exhibited lower depression scores across time points. At 4 and 6 weeks, there was a significant increase in between-group differences, indicating that the physically active group derived greater benefits from treatment. At 6 weeks, a significantly higher proportion of responders (≥50 % HRSD-17 reduction) were observed in the physically active compared to inactive group. Physical activity significantly contributed to regression and logistic models predicting treatment response. These findings support the potential role of baseline physical activity in enhancing TBS therapy for MDD.

15.
J Clin Med ; 13(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39274290

RESUMEN

Background. No device is yet available to effectively capture the attentional repercussions of hypersomnolence (HYP). The present study aimed to compare attentional performance of children with HYP, attention deficit hyperactivity disorder (ADHD), and controls using behavioral and electrophysiological (EEG) markers, and to assess their relationship with conventional sleepiness measurements. Methods. Children with HYP underwent a multiple sleep latency test (MSLT) and completed the adapted Epworth sleepiness scale (AESS). Along with age-matched children with ADHD, they were submitted to a resting EEG followed by the Bron-Lyon Attention Stability Test (BLAST). The control group only performed the BLAST. Multivariate models compared reaction time (RT), error percentage, BLAST-Intensity, BLAST-Stability, theta activity, and theta/beta ratio between groups. Correlations between these measures and conventional sleepiness measurements were conducted in children with HYP. Results. Children with HYP had lower RT and BLAST-Stability than controls but showed no significant difference in BLAST/EEG markers compared to children with ADHD. The AESS was positively correlated with the percentage of errors and negatively with BLAST-Intensity. Conclusions. Children with HYP showed impulsivity and attention fluctuations, without difference from children with ADHD for BLAST/EEG markers. The BLAST-EEG protocol could be relevant for the objective assessment of attentional fluctuations related to hypersomnolence.

16.
Brain Stimul ; 17(5): 1101-1118, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39277130

RESUMEN

Navigational decision-making tasks, such as spatial working memory (SWM), rely highly on information integration from several cortical and sub-cortical regions. Performance in SWM tasks is associated with theta rhythm, including low-frequency oscillations related to movement and memory. The interaction of the ventral hippocampus (vHPC) and medial prefrontal cortex (mPFC), reflected in theta synchrony, is essential in various steps of information processing during SWM. We used a closed-loop neurofeedback (CLNF) system to upregulate theta power in the mPFC and investigate its effects on circuit dynamics and behavior in animal models. Specifically, we hypothesized that enhancing the power of the theta rhythm in the mPFC might improve SWM performance. Animals were divided into three groups: closed-loop (CL), random-loop (RL), and OFF (without stimulation). We recorded local field potential (LFP) in the mPFC while electrical reward stimulation contingent on cortical theta activity was delivered to the lateral hypothalamus (LH), which is considered one of the central reward-associated regions. We also recorded LFP in the vHPC to evaluate the related subcortical neural changes. Results revealed a sustained increase in the theta power in both mPFC and vHPC for the CL group. Our analysis also revealed an increase in mPFC-vHPC synchronization in the theta range over the stimulation sessions in the CL group, as measured by coherence and cross-correlation in the theta frequency band. The reinforcement of this circuit improved spatial decision-making performance in the subsequent behavioral results. Our findings provide direct evidence of the relationship between specific theta upregulation and SWM performance and suggest that theta oscillations are integral to cognitive processes. Overall, this study highlights the potential of adaptive CLNF systems in investigating neural dynamics in various brain circuits.

17.
Evol Appl ; 17(9): e70000, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39257570

RESUMEN

Many international, national, state, and local organizations prioritize the ranking of threatened and endangered species to help direct conservation efforts. For example, the International Union for Conservation of Nature (IUCN) assesses the Green Status of species and publishes the influential Red List of threatened species. Unfortunately, such conservation yardsticks do not explicitly consider genetic or genomic diversity (GD), even though GD is positively associated with contemporary evolutionary fitness, individual viability, and with future evolutionary potential. To test whether populations of genome sequences could help improve conservation assessments, we estimated GD metrics from 82 publicly available mammalian datasets and examined their statistical association with attributes related to conservation. We also considered intrinsic biological factors, including trophic level and body mass, that could impact GD and quantified their relative influences. Our results identify key population GD metrics that are both reflective and predictive of IUCN conservation categories. Specifically, our analyses revealed that Watterson's theta (the population mutation rate) and autozygosity (a product of inbreeding) are associated with the current Red List categorization, likely because demographic declines that lead to "listing" decisions also reduce levels of standing genetic variation. We argue that by virtue of this relationship, conservation organizations like IUCN could leverage emerging genome sequence data to help categorize Red List threat rankings (especially in otherwise data-deficient species) and/or enhance Green Status assessments to establish a baseline for future population monitoring. Thus, our paper (1) outlines the theoretical and empirical justification for a new GD-based assessment criterion, (2) provides a bioinformatic pipeline for estimating GD from population genomic data, and (3) suggests an analytical framework that can be used to measure baseline GD while providing quantitative GD context for consideration by conservation authorities.

18.
Brain Stimul ; 17(5): 1076-1085, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39245294

RESUMEN

BACKGROUND: Theta-gamma transcranial alternating current stimulation (tACS) was recently found to enhance thumb acceleration in young, healthy participants, suggesting a potential role in facilitating motor skill acquisition. Given the relevance of motor skill acquisition in stroke rehabilitation, theta-gamma tACS may hold potential for treating stroke survivors. OBJECTIVE: We aimed to examine the effects of theta-gamma tACS on motor skill acquisition in young, healthy participants and stroke survivors. METHODS: In a pre-registered, double-blind, randomized, sham-controlled study, 78 young, healthy participants received either theta-gamma peak-coupled (TGP) tACS, theta-gamma trough-coupled (TGT) tACS or sham stimulation. 20 individuals with a chronic stroke received either TGP or sham. TACS was applied over motor cortical areas while participants performed an acceleration-dependent thumb movement task. Stroke survivors were characterized using standardized testing, with a subgroup receiving additional structural brain imaging. RESULTS: Neither TGP nor TGT tACS significantly modified general motor skill acquisition in the young, healthy cohort. In contrast, in the stroke cohort, TGP diminished motor skill acquisition compared to sham. Exploratory analyses revealed that, independent of general motor skill acquisition, healthy participants receiving TGP or TGT exhibited greater peak thumb acceleration than those receiving sham. CONCLUSION: Although theta-gamma tACS increased thumb acceleration in young, healthy participants, consistent with previous reports, it did not enhance overall motor skill acquisition in a more complex motor task. Furthermore, it even had detrimental effects on motor skill acquisition in stroke survivors.

19.
Alzheimers Res Ther ; 16(1): 203, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39267112

RESUMEN

BACKGROUND: The mechanistic effects of gamma transcranial alternating current stimulation (tACS) on hippocampal gamma oscillation activity in Alzheimer's Disease (AD) remains unclear. This study aimed to clarify beneficial effects of gamma tACS on cognitive functioning in AD and to elucidate effects on hippocampal gamma oscillation activity. METHODS: This is a double-blind, randomized controlled single-center trial. Participants with mild AD were randomized to tACS group or sham group, and underwent 30 one-hour sessions of either 40 Hz tACS or sham stimulation over consecutive 15 days. Cognitive functioning, structural magnetic resonance imaging (MRI), and simultaneous electroencephalography-functional MRI (EEG-fMRI) were evaluated at baseline, the end of the intervention and at 3-month follow-up from the randomization. RESULTS: A total of 46 patients were enrolled (23 in the tACS group, 23 in the sham group). There were no group differences in the change of the primary outcome, 11-item cognitive subscale of the Alzheimer's Disease Assessment Scale (ADAS-Cog) score after intervention (group*time, p = 0.449). For secondary outcomes, compared to the control group, the intervention group showed significant improvement in MMSE (group*time, p = 0.041) and MoCA scores (non-parametric test, p = 0.025), which were not sustained at 3-month follow-up. We found an enhancement of theta-gamma coupling in the hippocampus, which was positively correlated with improvements of MMSE score and delayed recall. Additionally, fMRI revealed increase of the local neural activity in the hippocampus. CONCLUSION: Effects on the enhancement of theta-gamma coupling and neural activity within the hippocampus suggest mechanistic models for potential therapeutic mechanisms of tACS. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03920826; Registration Date: 2019-04-19.


Asunto(s)
Enfermedad de Alzheimer , Electroencefalografía , Hipocampo , Imagen por Resonancia Magnética , Estimulación Transcraneal de Corriente Directa , Humanos , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/diagnóstico por imagen , Masculino , Femenino , Estimulación Transcraneal de Corriente Directa/métodos , Anciano , Método Doble Ciego , Hipocampo/diagnóstico por imagen , Hipocampo/fisiopatología , Electroencefalografía/métodos , Resultado del Tratamiento , Persona de Mediana Edad , Ritmo Gamma/fisiología , Pruebas Neuropsicológicas , Cognición/fisiología
20.
Behav Brain Res ; 476: 115232, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39236930

RESUMEN

Anxiety disorders are among the most common mental disorders. Treatment guidelines recommend pharmacotherapy and cognitive behavioral therapy as standard treatment. Although cognitive behavioral therapy is an effective therapeutic approach, not all patients benefit sufficiently from it. In recent years, non-invasive brain stimulation techniques, such as transcranial magnetic stimulation, have been investigated as promising adjuncts in the treatment of affective disorders. The aim of this study is to investigate whether a combination of intermittent theta burst stimulation (iTBS) and virtual reality exposure therapy leads to a significantly greater reduction in acrophobia than virtual reality exposure with sham stimulation. In this randomized double-blind placebo-controlled study, 43 participants with acrophobia received verum or sham iTBS over the left dorsolateral prefrontal cortex prior to two sessions of virtual reality exposure therapy. Stimulation of the left dorsolateral prefrontal cortex with iTBS was motivated by an experimental study showing a positive effect on extinction memory retention. Acrophobic symptoms were assessed using questionnaires and two behavioral approach tasks one week before, after treatment and six months after the second diagnostic session. The results showed that two sessions of virtual reality exposure therapy led to a significant reduction in acrophobic symptoms, with an overall remission rate of 79 %. However, there was no additional effect of iTBS of the left dorsolateral prefrontal cortex on the therapeutic effects. Further research is needed to determine how exactly a combination of transcranial magnetic stimulation and exposure therapy should be designed to enhance efficacy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...