Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Cell Commun Signal ; 22(1): 411, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39180088

RESUMEN

BACKGROUND: p63 is a transcription factor with intrinsic pioneer factor activity and pleiotropic functions. Transforming growth factor ß (TGFß) signaling via activation and cooperative action of canonical, SMAD, and non-canonical, MAP-kinase (MAPK) pathways, elicits both anti- and pro-tumorigenic properties, including cell stemness and invasiveness. TGFß activates the ΔNp63 transcriptional program in cancer cells; however, the link between TGFß and p63 in unmasking the epigenetic landscape during tumor progression allowing chromatin accessibility and gene transcription, is not yet reported. METHODS: Small molecule inhibitors, including protein kinase inhibitors and RNA-silencing, provided loss of function analyses. Sphere formation assays in cancer cells, chromatin immunoprecipitation and mRNA expression assays were utilized in order to gain mechanistic evidence. Mass spectrometry analysis coupled to co-immunoprecipitation assays revealed novel p63 interactors and their involvement in p63-dependent transcription. RESULTS: The sphere-forming capacity of breast cancer cells was enhanced upon TGFß stimulation and significantly decreased upon ΔNp63 depletion. Activation of TGFß signaling via p38 MAPK signaling induced ΔNp63 phosphorylation at Ser 66/68 resulting in stabilized ΔNp63 protein with enhanced DNA binding properties. TGFß stimulation altered the ratio of H3K27ac and H3K27me3 histone modification marks, pointing towards higher H3K27ac and increased p300 acetyltransferase recruitment to chromatin. By silencing the expression of ΔNp63, the TGFß effect on chromatin remodeling was abrogated. Inhibition of H3K27me3, revealed the important role of TGFß as the upstream signal for guiding ΔNp63 to the TGFß/SMAD gene loci, as well as the indispensable role of ΔNp63 in recruiting histone modifying enzymes, such as p300, to these genomic regions, regulating chromatin accessibility and gene transcription. Mechanistically, TGFß through SMAD activation induced dissociation of ΔNp63 from NURD or NCOR/SMRT histone deacetylation complexes, while promoted the assembly of ΔNp63-p300 complexes, affecting the levels of histone acetylation and the outcome of ΔNp63-dependent transcription. CONCLUSIONS: ΔNp63, phosphorylated and recruited by TGFß to the TGFß/SMAD/ΔNp63 gene loci, promotes chromatin accessibility and transcription of target genes related to stemness and cell invasion.


Asunto(s)
Epigénesis Genética , Invasividad Neoplásica , Células Madre Neoplásicas , Factores de Transcripción , Factor de Crecimiento Transformador beta , Proteínas Supresoras de Tumor , Humanos , Factor de Crecimiento Transformador beta/metabolismo , Epigénesis Genética/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Línea Celular Tumoral , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Fosforilación , Regulación Neoplásica de la Expresión Génica , Transducción de Señal
2.
Biol Pharm Bull ; 47(2): 399-410, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38220208

RESUMEN

Metastases and drug resistance are the major risk factors associated with breast cancer (BC), which is the most common type of tumor affecting females. Icariin (ICA) is a traditional Chinese medicine compound that possesses significant anticancer properties. Long non-coding RNAs (lncRNAs) are involved in a wide variety of biological and pathological processes and have been shown to modulate the effectiveness of certain drugs in cancer. The purpose of this study was to examine the potential effect of ICA on epithelial mesenchymal transition (EMT) and stemness articulation in BC cells, as well as the possible relationship between its inhibitory action on EMT and stemness with the NEAT1/transforming growth factor ß (TGFß)/SMAD2 pathway. The effect of ICA on the proliferation (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony assays), EMT (Western blotting, immunofluorescence, and wound healing), and stemness (mammosphere formation assays, Western blotting) of BC cells were examined. According to the findings, ICA suppressed the proliferation, EMT, and stem cell-like in MDA-MB-231 cells, and exerted its inhibitory impact by downregulating the TGFß/SMAD2 signaling pathway. ICA could significantly downregulate the expression of lncRNA NEAT1, and silencing NEAT1 enhanced the effect of ICA in suppressing EMT and expression of different stem cell markers. In addition, silencing NEAT1 was found to attenuate the TGFß/SMAD2 signaling pathway, thereby improving the inhibitory impact of ICA on stemness and EMT in BC cells. In conclusion, ICA can potentially inhibit the metastasis of BC via affecting the NEAT1/TGFß/SMAD2 pathway, which provides a theoretical foundation for understanding the mechanisms involved in potential application of ICA for BC therapy.


Asunto(s)
Neoplasias de la Mama , Flavonoides , ARN Largo no Codificante , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transducción de Señal , Proteína Smad2/metabolismo , Células Madre/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
3.
Res Sq ; 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37986901

RESUMEN

Endometriosis is linked to increased infertility and pregnancy complications due to defective endometrial decidualization. We hypothesized that identification of altered signaling pathways during decidualization could identify the underlying cause of infertility and pregnancy complications. Our study reveals that transforming growth factor ß (TGFß) pathways are impaired in the endometrium of individuals with endometriosis, leading to defective decidualization. Through detailed transcriptomic analyses, we discovered abnormalities in TGFß signaling pathways and key regulators, such as SMAD4, in the endometrium of affected individuals. We also observed compromised activity of bone morphogenetic proteins (BMP), a subset of the TGFß family, that control endometrial receptivity. Using 3-dimensional models of endometrial stromal and epithelial assembloids, we showed that exogenous BMP2 improved decidual marker expression in individuals with endometriosis. Our findings unveil a previously unidentified dysfunction in BMP/SMAD signaling in the endometrium of individuals with endometriosis, explaining decidualization defects and subsequent pregnancy complications in these individuals.

4.
World J Gastroenterol ; 29(20): 3103-3118, 2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37346154

RESUMEN

BACKGROUND: The transforming growth factor ß (TGFß) signaling pathway plays a crucial role in the development of liver fibrosis by activating TGFß type II receptor (TGFßR2), followed by the recruitment of TGFßR1 finally triggering downstream signaling pathway. AIM: To find drugs targeting TGFßR2 that inhibit TGFßR1/TGFßR2 complex formation, theoretically inhibit TGFß signaling pathway, and thereby ameliorate liver fibrosis. METHODS: Food and Drug Administration-approved drugs were screened for binding affinity with TGFßR2 by virtual molecular docking. We identified 6 candidates and further explored their potential by Cell Counting Kit-8 (CCK-8) cell cytotoxic experiment to validate toxicity and titrated the best cellular working concentrations. Next, we further demonstrated the detailed molecular working mechanisms using mutagenesis analysis. Finally, we used a mouse model to investigate its potential anti-liver fibrosis effect. RESULTS: We identified 6 drug candidates. Among these 6 drugs, dihydroergotamine (DHE) shows great ability in reducing fibrotic gene expressions such as collagen, p-SMAD3, and α-SMA in TGFß induced cellular model of liver fibrosis in LX-2 cells. Furthermore, we demonstrated that DHE binds to TGFßR2. Moreover, mutation of Leu27, Phe30, Thr51, Ser52, Ile53, and Glu55 of TGFßR2 disrupted the binding of TGFßR2 with DHE. In addition, DHE significantly improved liver fibrosis, as evidenced by Masson's trichrome staining of liver sections. This is further supported by the width and the velocity of the portal vein, and serum markers of liver function. In line with those observations, DHE also decreased macrophages infiltration and extracellular matrix deposition in the liver. CONCLUSION: DHE alleviates liver fibrosis by binding to TGFßR2 thereby suppressing TGFß signaling pathway. We show here that as far as drug repurposing, DHE has great potential to treat liver fibrosis.


Asunto(s)
Dihidroergotamina , Cirrosis Hepática , Ratones , Animales , Receptor Tipo II de Factor de Crecimiento Transformador beta , Dihidroergotamina/efectos adversos , Simulación del Acoplamiento Molecular , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/prevención & control , Cirrosis Hepática/inducido químicamente , Fibrosis , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1 , Receptores de Factores de Crecimiento Transformadores beta/genética
5.
J Cell Physiol ; 238(4): 790-812, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36791282

RESUMEN

The liver kinase B1 (LKB1) controls cellular metabolism and cell polarity across species. We previously established a mechanism for negative regulation of transforming growth factor ß (TGFß) signaling by LKB1. The impact of this mechanism in the context of epithelial polarity and morphogenesis remains unknown. After demonstrating that human mammary tissue expresses robust LKB1 protein levels, whereas invasive breast cancer exhibits significantly reduced LKB1 levels, we focused on mammary morphogenesis studies in three dimensional (3D) acinar organoids. CRISPR/Cas9-introduced loss-of-function mutations of STK11 (LKB1) led to profound defects in the formation of 3D organoids, resulting in amorphous outgrowth and loss of rotation of young organoids embedded in matrigel. This defect was associated with an enhanced signaling by TGFß, including TGFß auto-induction and induction of transcription factors that mediate epithelial-mesenchymal transition (EMT). Protein marker analysis confirmed a more efficient EMT response to TGFß signaling in LKB1 knockout cells. Accordingly, chemical inhibition of the TGFß type I receptor kinase largely restored the morphogenetic defect of LKB1 knockout cells. Similarly, chemical inhibition of the bone morphogenetic protein pathway or the TANK-binding kinase 1, or genetic silencing of the EMT factor SNAI1, partially restored the LKB1 knockout defect. Thus, LKB1 sustains mammary epithelial morphogenesis by limiting pathways that promote EMT. The observed downregulation of LKB1 expression in breast cancer is therefore predicted to associate with enhanced EMT induced by SNAI1 and TGFß family members.


Asunto(s)
Mama , Transición Epitelial-Mesenquimal , Morfogénesis , Organoides , Femenino , Humanos , Células Epiteliales/metabolismo , Hígado/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Línea Celular , Mama/citología , Mama/crecimiento & desarrollo
6.
Yakugaku Zasshi ; 142(12): 1327-1332, 2022.
Artículo en Japonés | MEDLINE | ID: mdl-36450509

RESUMEN

Tissue-resident memory T cells are a highly abundant, non-blood circulating subset of memory T cells. These appear to be the most protective population of memory T cells at barrier surfaces. Long-term retention and survival of tissue-resident memory CD8+ T cells (Trm) is determined by tissue-derived signals, such as keratinocyte-mediated activation of transforming growth factor ß (TGFß) in the epidermis. We found that T cell clones compete for limited amounts of active TGFß and pre-existing Trm could be replaced with newly recruited effector T cells in the epidermis. On the other hand, when effector T cells transition into Trm, the presence of cutaneous cognate antigen increases the fitness of individual Trm clones in the epidermal niche. Thus, antigen-specific Trm are more efficiently retained than bystander Trm that have not encountered cognate antigens when they compete with newly recruited effector T cells for limited active TGFß. Therefore, competition between T cells for active TGFß represents a selective pressure that promotes the accumulation of antigen-specific Trm cells in the epidermal niche. Furthermore, our model implies that the epidermis offers a finite niche for maintaining Trm. Although the epidermal niche of Trm cannot represent the capacity of T cell-mediated immune memory in our body, these findings might suggest a challenge for the accommodation of memory T cells specific to multiple pathogens throughout a lifetime.


Asunto(s)
Linfocitos T CD8-positivos , Células T de Memoria , Células Epidérmicas , Epidermis , Factor de Crecimiento Transformador beta
7.
Front Oncol ; 12: 806963, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35155243

RESUMEN

Transforming Growth Factor ß (TGFß) is a key mediator of immune evasion in pancreatic ductal adenocarcinoma (PDAC), and the addition of TGFß inhibitors in select immunotherapy regimens shows early promise. Though the TGFß target SMAD4 is deleted in approximately 55% of PDAC tumors, the effects of SMAD4 loss on tumor immunity have yet to be fully explored. Using a combination of genomic databases and PDAC specimens, we found that tumors with loss of SMAD4 have a comparatively poor T-cell infiltrate. SMAD4 loss was also associated with a reduction in several chemokines with known roles in T-cell recruitment, which was recapitulated using knockdown of SMAD4 in PDAC cell lines. Accordingly, JURKAT T-cells were poorly attracted to conditioned media from PDAC cells with knockdown of SMAD4 and lost their ability to produce IFNγ. However, while exogenous TGFß modestly reduced PD-L1 expression in SMAD4-intact cell lines, SMAD4 and PD-L1 positively correlated in human PDAC samples. PD-L1 status was closely related to tumor-infiltrating lymphocytes, particularly IFNγ-producing T-cells, which were more abundant in SMAD4-expressing tumors. Low concentrations of IFNγ upregulated PD-L1 in tumor cells in vitro, even when administered alongside high concentrations of TGFß. Hence, while SMAD4 may have a modest inhibitory effect on PD-L1 in tumor cells, SMAD4 indirectly promotes PD-L1 expression in the pancreatic tumor microenvironment by enhancing T-cell infiltration and IFNγ biosynthesis. These data suggest that pancreatic cancers with loss of SMAD4 represent a poorly immunogenic disease subtype, and SMAD4 status warrants further exploration as a predictive biomarker for cancer immunotherapy.

8.
Cytokine ; 150: 155772, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34814016

RESUMEN

T-cells, as the main immune cells in fighting against cancer cells, are usually overwhelmed by many factors. Tumor microenvironment (TME) changes are one of the factors that can limit T-cells functions. On the other hand, platelets which are known as the main source of transforming growth factor-ß (TGF-ß) in TME, are seemingly insignificant immune cells that can affect T-cell functions. There is a hypothesis that platelets might prevent tumor growth by stimulating cellular immunity, especially T-cells in pre-cancer status while they can inhibit T-cells and stimulate tumor growth in the advanced stage of cancer. Therefore, platelets could act as a double-edged sword in the activation of T-cells under pre-cancer and advanced stages of cancer conditions. In this review, the interaction between platelets and T cells in pre-cancer and advanced stages of cancer and the role of TGF-ß signaling in different stages of cancer will be discussed.


Asunto(s)
Neoplasias , Factor de Crecimiento Transformador beta , Plaquetas/patología , Humanos , Neoplasias/patología , Linfocitos T/patología , Microambiente Tumoral
9.
Biomed Pharmacother ; 145: 112402, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34773763

RESUMEN

PAI-1 and CTGF are overexpressed in kidney diseases and cause fibrosis of the lungs, liver, and kidneys. We used a rat model of unilateral ureteral obstruction (UUO) to investigate whether 6-BIO, a glycogen synthase kinase-3ß inhibitor, attenuated fibrosis by inhibiting PAI-1 and CTGF in vivo. Additionally, TGFß-induced cellular fibrosis was observed in vitro using the human kidney proximal tubular epithelial cells (HK-2), and rat interstitial fibroblasts (NRK49F). Expression of fibrosis-related proteins and signaling molecules such as PAI-1, CTGF, TGFß, αSMA, SMAD, and MAPK were determined in HK-2 and NRK49F cells using immunoblotting. To identify the transcription factors that regulate the expression of PAI-1 and CTGF the promoter activities of AP-1 and SP-1 were analyzed using luciferase assays. Confocal microscopy was used to observe the co-localization of AP-1 and SP-1 to PAI-1 and CTGF. Expression of PAI-1, CTGF, TGFß, and α-SMA increased in UUO model as well as in TGFß-treated HK-2 and NRK49F cells. Furthermore, UUO and TGFß treatment induced the activation of P-SMAD2/3, SMAD4, P-ERK 1/2, P-P38, and P-JNK MAPK signaling pathways. PAI-1, CTGF, AP-1 and SP-1 promoter activity increased in response to TGFß treatment. However, treatment with 6-BIO decreased the expression of proteins and signaling pathways associated with fibrosis in UUO model as well as in TGFß-treated HK-2 and NRK49F cells. Moreover, 6-BIO treatment attenuated the expression of PAI-1 and CTGF as well as the promoter activities of AP-1 and SP-1, thereby regulating the SMAD and MAPK signaling pathways, and subsequently exerting anti-fibrotic effects on kidney cells.


Asunto(s)
Indoles/farmacología , Enfermedades Renales/tratamiento farmacológico , Túbulos Renales Proximales/efectos de los fármacos , Oximas/farmacología , Animales , Línea Celular , Factor de Crecimiento del Tejido Conjuntivo/efectos de los fármacos , Factor de Crecimiento del Tejido Conjuntivo/genética , Inhibidores Enzimáticos/farmacología , Fibrosis , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Humanos , Enfermedades Renales/patología , Túbulos Renales Proximales/patología , Masculino , Inhibidor 1 de Activador Plasminogénico/efectos de los fármacos , Inhibidor 1 de Activador Plasminogénico/genética , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Factor de Transcripción Sp1/efectos de los fármacos , Factor de Transcripción Sp1/genética , Factor de Transcripción AP-1/efectos de los fármacos , Factor de Transcripción AP-1/genética
10.
Adv Exp Med Biol ; 1348: 139-159, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34807418

RESUMEN

Repair and healing of injured and diseased tendons has been traditionally fraught with apprehension and difficulties, and often led to rather unsatisfactory results. The burgeoning research field of growth factors has opened new venues for treatment of tendon disorders and injuries, and possibly for treatment of disorders of the aorta and major arteries as well. Several chapters in this volume elucidate the role of transforming growth factor ß (TGFß) in pathogenesis of several heritable disorders affecting soft tissues, such as aorta, cardiac valves, and tendons and ligaments. Several members of the bone morphogenetic group either have been approved by the FDA for treatment of non-healing fractures or have been undergoing intensive clinical and experimental testing for use of healing bone fractures and tendon injuries. Because fibroblast growth factors (FGFs) are involved in embryonic development of tendons and muscles among other tissues and organs, the hope is that applied research on FGF biological effects will lead to the development of some new treatment strategies providing that we can control angiogenicity of these growth factors. The problem, or rather question, regarding practical use of imsulin-like growth factor I (IGF-I) in tendon repair is whether IGF-I acts independently or under the guidance of growth hormone. FGF2 or platelet-derived growth factor (PDGF) alone or in combination with IGF-I stimulates regeneration of periodontal ligament: a matter of importance in Marfan patients with periodontitis. In contrast, vascular endothelial growth factor (VEGF) appears to have rather deleterious effects on experimental tendon healing, perhaps because of its angiogenic activity and stimulation of matrix metalloproteinases-proteases whose increased expression has been documented in a variety of ruptured tendons. Other modalities, such as local administration of platelet-rich plasma (PRP) and/or of mesenchymal stem cells have been explored extensively in tendon healing. Though treatment with PRP and mesenchymal stem cells has met with some success in horses (who experience a lot of tendon injuries and other tendon problems), the use of PRP and mesenchymal stem cells in people has been more problematic and requires more studies before PRP and mesenchymal stem cells can become reliable tools in management of soft tissue injuries and disorders.


Asunto(s)
Plasma Rico en Plaquetas , Traumatismos de los Tendones , Animales , Caballos , Humanos , Factor de Crecimiento Derivado de Plaquetas , Traumatismos de los Tendones/terapia , Tendones , Factor A de Crecimiento Endotelial Vascular
11.
J Photochem Photobiol B ; 209: 111946, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32659645

RESUMEN

The skin keeps the human body healthy from extrinsic stimuli such as ultraviolet (UV) irradiation. However, chronic exposure of these stimuli reduces the number of proteins that constitute the extracellular matrix (ECM) and causes wrinkle formation. The amount of collagen, the main protein that constitutes connective tissue, is reduced in the human skin due to UV radiation. When human dermal fibroblasts were damaged by UVB, UVB increased the MMPs expressions and degraded type I collagen and other ECM proteins. Oyster (Crassostrea gigas) hydrolysate (OH) is known to have anticancer, antioxidant, and anti-apoptotic effects. To scrutinize the anti-wrinkle effect of the OH in the viewpoint of the balance between collagen degradation and synthesis, we conducted the study in UVB damaged human dermal fibroblasts. We determined type I procollagen, MMPs and related proteins using ELISA kit, qRT-PCR and western blot. In our study, we discovered that OH inhibits collagen degradation by regulating MAPKs, AP-1 and MMPs expression. Also, we found that OH promotes collagen production by enhancing TGFß receptor II expression and Smad3 phosphorylation. These results showed that OH regulates collagen degradation and stimulates collagen synthesis. Through this study, we found that OH is effective in inhibiting wrinkle formation and restore photo-aged human skin. It indicates that OH can be one of the functional materials in the fields of anti-wrinkle research.


Asunto(s)
Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Envejecimiento de la Piel/efectos de los fármacos , Piel/efectos de los fármacos , Proteínas Smad/metabolismo , Factor de Transcripción AP-1/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Rayos Ultravioleta , Animales , Colágeno/metabolismo , Humanos , Hidrólisis , Sistema de Señalización de MAP Quinasas/efectos de la radiación , Ostreidae , Piel/enzimología , Piel/metabolismo , Piel/efectos de la radiación , Envejecimiento de la Piel/efectos de la radiación
12.
J Biol Chem ; 294(43): 15781-15794, 2019 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-31488543

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a chronic disease characterized by the pathological remodeling of air sacs as a result of excessive accumulation of extracellular matrix (ECM) proteins, but the mechanism governing the robust protein expression is poorly understood. Our recent findings demonstrate that alternative polyadenylation (APA) caused by NUDT21 reduction is important for the increased expression of fibrotic mediators and ECM proteins in lung fibroblasts by shortening the 3'-untranslated regions (3'-UTRs) of mRNAs and stabilizing their transcripts, therefore activating pathological signaling pathways. Despite the importance of NUDT21 reduction in the regulation of fibrosis, the underlying mechanisms for the depletion are unknown. We demonstrate here that NUDT21 is depleted by TGFß1. We found that miR203, which is increased in IPF, was induced by TGFß1 to target the NUDT21 3'-UTR, thus depleting NUDT21 in human and mouse lung fibroblasts. TGFß1-mediated NUDT21 reduction was attenuated by the miR203 inhibitor antagomiR203 in fibroblasts. TGFß1 transgenic mice revealed that TGFß1 down-regulates NUDT21 in fibroblasts in vivo Furthermore, TGFß1 promoted differential APA of fibrotic genes, including FGF14, RICTOR, TMOD2, and UCP5, in association with increased protein expression. This unique differential APA signature was also observed in IPF fibroblasts. Altogether, our results identified TGFß1 as an APA regulator through NUDT21 depletion amplifying pulmonary fibrosis.


Asunto(s)
Regiones no Traducidas 3'/genética , Pulmón/patología , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Células Cultivadas , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Regulación hacia Abajo/genética , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis , Humanos , Ratones Endogámicos C57BL , Ratones Transgénicos , MicroARNs/genética , MicroARNs/metabolismo , Modelos Biológicos , Poliadenilación/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
13.
J Biol Chem ; 293(52): 20214-20226, 2018 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-30377255

RESUMEN

Conophylline is a Vinca alkaloid from leaves of the tropical plant Ervatamia microphylla and has been shown to mimic the effect of the growth and differentiation factor activin A on pancreatic progenitor cells. However, activin A stimulates fibrosis of pancreatic stellate cells, whereas conophylline inhibits it, suggesting that this compound may serve as an antifibrotic drug. Here we investigated the effects of conophylline on human foreskin fibroblasts, especially focusing on extracellular matrix (ECM) proteins. A gene microarray analysis revealed that conophylline remarkably suppressed expression of the gene for hyaluronan synthase 2 (HAS2) and of its antisense RNA, whereas the expression of collagen genes was unaffected. Of note, immunostaining experiments revealed that conophylline substantially inhibits incorporation of versican and collagens into the ECM in cells treated with transforming growth factor ß (TGFß), which promotes collagen synthesis, but not in cells not treated with TGFß. Moreover, a protein biosynthesis assay disclosed that conophylline decreases collagen biosynthesis, concomitant with a decrease in total protein biosynthesis, indicating that conophylline-mediated inhibition of fibrosis is not specific to collagen synthesis. Conophylline affected neither TGFß-induced nuclear translocation of SMAD family member 2/3 (SMAD2/3) nor phosphorylation of SMAD2. However, conophylline substantially inhibited phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), suggesting that conophylline inhibits HAS2 expression via TGFß-mediated activation of the ERK1/2 pathway. Taken together, our results indicate that conophylline may be a useful inhibitor of ECM formation in fibrosis.


Asunto(s)
Matriz Extracelular/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Alcaloides de la Vinca/farmacología , Células Cultivadas , Colágeno/metabolismo , Fibroblastos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Humanos , Hialuronano Sintasas/biosíntesis , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Versicanos/metabolismo
14.
Int J Mol Sci ; 19(10)2018 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-30322036

RESUMEN

Diabetes is a global epidemic and affects millions of individuals in the United States. Devising novel treatments for diabetes continues to be a great medical challenge. Postnatal beta cell growth or compensation is largely attributed to beta cell proliferation, which declines continuously with age. To boost beta cell proliferation to regenerate an adequate functional mass, there is a need to understand the signaling pathways that regulate beta cell proliferation for creating practical strategies to promote the process. Transforming growth factor ß (TGFß) belongs to a signaling superfamily that governs pancreatic development and the regeneration of beta cells after pancreatic diseases. TGFß exerts its functions by activation of downstream Smad proteins and through its crosstalk with other pathways. Accumulating data demonstrate that the TGFß receptor signaling pathway also participates in the control of beta cell proliferation. This review details the role of the TGFß receptor signaling pathway in beta cell proliferation physiologically and in the pathogenesis of diabetes.


Asunto(s)
Células Secretoras de Insulina/citología , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Adulto , Animales , Ciclo Celular , Proliferación Celular , Humanos , Células Secretoras de Insulina/metabolismo , Transducción de Señal
15.
Cancer ; 123(23): 4566-4573, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28832978

RESUMEN

BACKGROUND: Targeting the vascular endothelial growth factor (VEGF) pathway has improved outcomes in metastatic renal cell carcinoma (RCC); however, resistance inevitably occurs. CD105 (endoglin) is an angiogenic pathway that is strongly upregulated after VEGF inhibition, potentially contributing to resistance. The authors tested whether TRC105, a monoclonal antibody against endoglin, impacted disease control in patients with previously treated RCC who were receiving bevacizumab. METHODS: Eligible patients with metastatic RCC who had previously received 1 to 4 prior lines of therapy, including VEGF-targeted agents, were randomized 1:1 to receive bevacizumab 10 mg/kg intravenously every 2 weeks (arm A) or the same plus TRC105 10 mg/kg intravenously every 2 weeks (arm B). The primary endpoint was progression-free survival (PFS) at 12 and 24 weeks. Correlative studies included serum transforming growth factor ß (TGFß) and CD105 levels as well as tissue immunostaining for TGFß receptors. RESULTS: Fifty-nine patients were enrolled (28 on arm A and 31 on arm B), and 1 patient on each arm had a confirmed partial response. The median PFS for bevacizumab alone was 4.6 months compared with 2.8 for bevacizumab plus TRC105 (P = .09). Grade ≥ 3 toxicities occurred in 16 patients (57%) who received bevacizumab compared with 19 (61%) who received bevacizumab plus TRC105 (P = .9). Baseline serum TGFß levels below the median (<10.6 ng/mL) were associated with longer median PFS (5.6 vs 2.1 months; P = .014). CONCLUSIONS: TRC105 failed to improve PFS when added to bevacizumab. TGFß warrants further study as a biomarker in RCC. Cancer 2017;123:4566-4573. © 2017 American Cancer Society.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma Papilar/tratamiento farmacológico , Carcinoma de Células Renales/tratamiento farmacológico , Neoplasias Renales/tratamiento farmacológico , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Monoclonales/administración & dosificación , Bevacizumab/administración & dosificación , Carcinoma Papilar/secundario , Carcinoma de Células Renales/secundario , Femenino , Estudios de Seguimiento , Humanos , Neoplasias Renales/patología , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Pronóstico , Tasa de Supervivencia
16.
BMC Biol ; 15(1): 19, 2017 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-28257634

RESUMEN

BACKGROUND: Growth/differentiation factor 8 (GDF8) and GDF11 are two highly similar members of the transforming growth factor ß (TGFß) family. While GDF8 has been recognized as a negative regulator of muscle growth and differentiation, there are conflicting studies on the function of GDF11 and whether GDF11 has beneficial effects on age-related dysfunction. To address whether GDF8 and GDF11 are functionally identical, we compared their signaling and structural properties. RESULTS: Here we show that, despite their high similarity, GDF11 is a more potent activator of SMAD2/3 and signals more effectively through the type I activin-like receptor kinase receptors ALK4/5/7 than GDF8. Resolution of the GDF11:FS288 complex, apo-GDF8, and apo-GDF11 crystal structures reveals unique properties of both ligands, specifically in the type I receptor binding site. Lastly, substitution of GDF11 residues into GDF8 confers enhanced activity to GDF8. CONCLUSIONS: These studies identify distinctive structural features of GDF11 that enhance its potency, relative to GDF8; however, the biological consequences of these differences remain to be determined.


Asunto(s)
Proteínas Morfogenéticas Óseas/química , Factores de Diferenciación de Crecimiento/química , Miostatina/química , Miostatina/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Proteínas Morfogenéticas Óseas/metabolismo , Células Cultivadas , Cristalografía por Rayos X , Folistatina/metabolismo , Genes Reporteros , Factores de Diferenciación de Crecimiento/antagonistas & inhibidores , Factores de Diferenciación de Crecimiento/metabolismo , Humanos , Inyecciones Intravenosas , Ligandos , Luciferasas/metabolismo , Ratones , Modelos Moleculares , Mioblastos/metabolismo , Miocardio/metabolismo , Miostatina/antagonistas & inhibidores , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Alineación de Secuencia , Transducción de Señal , Proteínas Smad/metabolismo , Homología Estructural de Proteína , Relación Estructura-Actividad
17.
Cancer Sci ; 106(10): 1394-401, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26250694

RESUMEN

Angiogenesis plays an important role in tumor growth and metastasis and has been reported to be inversely correlated with overall survival of osteosarcoma patients. It has been shown that apurinic/apyrimidinic endonuclease 1 (APE1), a dually functional protein possessing both base excision repair and redox activities, is involved in tumor angiogenesis, although these mechanisms are not fully understood. Our previous study showed that the expression of transforming growth factor ß (TGFß) was significantly reduced in APE1-deficient osteosarcoma cells. Transforming growth factor ß promotes cancer metastasis through various mechanisms including immunosuppression, angiogenesis, and invasion. In the current study, we initially revealed that APE1, TGFß, and microvessel density (MVD) have pairwise correlation in osteosarcoma tissue samples, whereas TGFß, tumor size, and MVD were inversely related to the prognosis of the cohort. We found that knocking down APE1 in osteosarcoma cells resulted in TGFß downregulation. In addition, APE1-siRNA led to suppression of angiogenesis in vitro based on HUVECs in Transwell and Matrigel tube formation assays. Reduced secretory protein level of TGFß of culture medium also resulted in decreased phosphorylation of Smad3 of HUVECs. In a mouse xenograft model, siRNA-mediated silencing of APE1 downregulated TGFß expression, tumor size, and MVD. Collectively, the current evidence indicates that APE1 regulates angiogenesis in osteosarcoma by controlling the TGFß pathway, suggesting a novel target for anti-angiogenesis therapy in human osteosarcoma.


Asunto(s)
Neoplasias Óseas/irrigación sanguínea , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Neovascularización Patológica/patología , Osteosarcoma/irrigación sanguínea , Factor de Crecimiento Transformador beta/metabolismo , Animales , Neoplasias Óseas/patología , Línea Celular Tumoral , Movimiento Celular , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Femenino , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica/patología , Neovascularización Patológica/enzimología , Osteosarcoma/patología , Fosforilación , Pronóstico , Interferencia de ARN , ARN Interferente Pequeño , Transducción de Señal , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/biosíntesis , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Eur J Med Chem ; 95: 249-66, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25817775

RESUMEN

Targeting TGFß/Smad signaling is an attractive strategy for several therapeutic applications given its role as a key player in many pathologies, including cancer, autoimmune diseases and fibrosis. The class of b-annelated 1,4-dihydropyridines (DHPs) represents promising novel pharmacological tools as they interfere with this pathway in a novel fashion, i.e. through induction of TGFß receptor type II degradation. In the present work, >40 rationally designed, novel DHPs were synthesized and evaluated for TGFß inhibition, substantially expanding the current understanding of the SAR profile. Key findings include that the 2-position tolerates a wide variety of polar functionalities, suggesting that this region could possibly be solvent-exposed within the (thus far) unknown cellular target. A structural explanation for pathway selectivity is provided based on a diverse series of 4″-substituted DHPs, including molecular electrostatic potential (MEP) calculations. Moreover, the absolute configuration for the chiral 4-position was determined by X-ray crystal analysis and revealed that the bioactive (+)-enantiomers are (R)-configured. Another key objective was to establish a 3D-QSAR model which turned out to be robust (r(2) = 0.93) with a good predictive power (r(2)pred = 0.69). This data further reinforces the hypothesis that this type of DHPs exerts its novel TGFß inhibitory mode of action through binding a distinct target and that unspecific activities that would derive from intrinsic properties of the ligands (e.g., lipophilicity) play a negligible role. Therefore, the present study provides a solid basis for further ligand-based design of additional analogs or DHP scaffold-derived compounds for hit-to-lead optimization, required for more comprehensive pharmacological studies in vivo.


Asunto(s)
Dihidropiridinas/química , Dihidropiridinas/farmacología , Diseño de Fármacos , Relación Estructura-Actividad Cuantitativa , Proteínas Smad/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Técnicas de Química Sintética , Dihidropiridinas/síntesis química , Células HEK293 , Humanos , Modelos Moleculares , Conformación Proteica , Factor de Crecimiento Transformador beta/química
19.
J Biol Chem ; 289(36): 25067-78, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25059663

RESUMEN

Epithelial-mesenchymal transition (EMT) is a fundamental cellular process that contributes to epithelial tissue morphogenesis during normal development and in tumor invasiveness and metastasis. The transcriptional regulator SnoN robustly influences EMT in response to the cytokine TGFß, but the mechanisms that regulate the fundamental role of SnoN in TGFß-induced EMT are not completely understood. Here we employ interaction proteomics to uncover the signaling protein TIF1γ as a specific interactor of SnoN1 but not the closely related isoform SnoN2. A 16-amino acid peptide within a unique region of SnoN1 mediates the interaction of SnoN1 with TIF1γ. Strikingly, although TIF1γ is thought to act as a ubiquitin E3 ligase, we find that TIF1γ operates as a small ubiquitin-like modifier (SUMO) E3 ligase that promotes the sumoylation of SnoN1 at distinct lysine residues. Importantly, TIF1γ-induced sumoylation is required for the ability of SnoN1 to suppress TGFß-induced EMT, as assayed by the disruption of the morphogenesis of acini in a physiologically relevant three-dimensional model of normal murine mammary gland (NMuMG) epithelial cells. Collectively, our findings define a novel TIF1γ-SnoN1 sumoylation pathway that plays a critical role in EMT and has important implications for our understanding of TGFß signaling and diverse biological processes in normal development and cancer biology.


Asunto(s)
Transición Epitelial-Mesenquimal/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Proto-Oncogénicas/genética , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/genética , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Western Blotting , Técnicas de Cultivo de Célula , Línea Celular , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Células HEK293 , Células Hep G2 , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/metabolismo , Ratones , Microscopía Fluorescente , Datos de Secuencia Molecular , Unión Proteica , Proteínas Proto-Oncogénicas/metabolismo , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Sumoilación/efectos de los fármacos , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Ubiquitina-Proteína Ligasas/metabolismo
20.
J Biol Chem ; 289(25): 17854-71, 2014 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-24798330

RESUMEN

The TGFß family member Nodal is central to control pluripotent stem cell fate, but its use as a stem cell differentiation factor is limited by low specific activity. During development, Nodal depends on growth and differentiation factor (Gdf)-1 and on the shared co-receptor Cryptic to specify visceral left-right axis asymmetry. We therefore asked whether the functionality of Nodal can be augmented by Gdf1. Because Nodal and Gdf1 coimmunoprecipitate each other, they were predicted to form heterodimers, possibly to facilitate diffusion or to increase the affinity for signaling receptors. Here, we report that Gdf1 suppresses an unexpected dependence of Nodal on serum proteins and that it is critically required for non-autonomous signaling in cells expressing Cryptic. Nodal, Gdf1, and their cleaved propeptides copurified as a heterodimeric low molecular weight complex that stimulated Activin receptor (Acvr) signaling far more potently than Nodal alone. Although heterodimerization with Gdf1 did not increase binding of Nodal to Fc fusions of co-receptors or Acvr extracellular domains, it was essential for soluble Acvr2 to inhibit Nodal signaling. This implies that Gdf1 potentiates Nodal activity by stabilizing a low molecular weight fraction that is susceptible to neutralization by soluble Acvr2. Finally, in differentiating human ES cells, endodermal markers were more efficiently induced by Nodal·Gdf1 than by Nodal, suggesting that Nodal·Gdf1 is an attractive new reagent to direct stem cell differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Embrión de Mamíferos/metabolismo , Células Madre Embrionarias/metabolismo , Endodermo/metabolismo , Factor 1 de Diferenciación de Crecimiento/metabolismo , Proteína Nodal/metabolismo , Multimerización de Proteína/fisiología , Transducción de Señal/fisiología , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Animales , Embrión de Mamíferos/citología , Células Madre Embrionarias/citología , Endodermo/citología , Factor 1 de Diferenciación de Crecimiento/genética , Células HEK293 , Células Hep G2 , Humanos , Ratones , Ratones Noqueados , Proteína Nodal/genética , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...