Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
Life Sci ; 357: 123059, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39278618

RESUMEN

The complex heterogeneity of tumor microenvironment (TME) of triple-negative breast cancer (TNBC) presents a significant obstacle to cytotoxic immune response and successful treatment, building up one of the most hostile oncological phenotypes. Among the most abundant TME components, tumor-associated macrophages (TAMs) have pivotal pro-tumoral functions, involving discordant roles for the nuclear factor kappa-B (NF-κB) transcription factors and directing to higher levels of pathway complexity. In both resting macrophages and TAMs, we recently revealed the existence of the uncharacterized NF-κB p65/p52 dimer. In the present study, we demonstrated its enhanced active nuclear localization in TAMs and validated selected immune target genes as directly regulated by dimer binding on DNA sequences. We demonstrated by ChIP-qPCR that p65/p52 enrichment on HSPG2 and CSF-1 regulatory regions is strictly dependent on macrophage polarization and tumor environment. Our data provide novel mechanisms of transcriptional regulation in TAMs, orchestrated by the varied and dynamic nature of NF-κB combinations, which needs to be considered when targeting this pathway in cancer therapies. Our results offer p65/p52, together with identified regulatory regions on genes impacting macrophage behavior and tumor biology, as novel molecular targets for TNBC, aimed at modulating TAMs functions towards anti-tumoral phenotypes and thus improving cancer treatment outcomes.

2.
J Transl Med ; 22(1): 833, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256832

RESUMEN

BACKGROUND: Family with sequence similarity 109, member B (FAM109B) is involved in endocytic transport and affects genetic variation in brain methylation. It is one of the important genes related to immune cell-associated diseases. In the tumor immune system, methylation can regulate tumor immunity and influence the maturation and functional response of immune cells. Whether FAM109B is involved in tumor progression and its correlation with the tumor immune microenvironment has not yet been disclosed. METHODS: A comprehensive pan-cancer analysis of FAM109B expression, prognosis, immunity, and TMB was conducted. The expression, clinical features, and prognostic value of FAM109B in low-grade gliomas (LGG) were evaluated using TCGA, CGGA, and Gravendeel databases. The expression of FAM109B was validated by qRT-PCR, immunohistochemistry (IHC), and Western blotting (WB). The relationship between FAM109B and methylation, Copy Number Variation (CNV), prognosis, immune checkpoints (ICs), and common chemotherapy drug sensitivity in LGG was explored through Cox regression, Kaplan-Meier curves, and Spearman correlation analysis. FAM109B levels and their distribution were studied using the TIMER database and single-cell analysis. The potential role of FAM109B in gliomas was further investigated through in vitro and in vivo experiments. RESULTS: FAM109B was significantly elevated in various tumor types and was associated with poor prognosis. Its expression was related to aggressive progression and poor prognosis in low-grade glioma patients, serving as an independent prognostic marker for LGG. Glioma grade was negatively correlated with FAM109B DNA promoter methylation. Immune infiltration and single-cell analysis showed significant expression of FAM109B in tumor-associated macrophages (TAMs). The expression of FAM109B was closely related to gene mutations, immune checkpoints (ICs), and chemotherapy drugs in LGG. In vitro studies showed increased FAM109B expression in LGG, closely related to cell proliferation. In vivo studies showed that mice in the sh-FAM109B group had slower tumor growth, slower weight loss, and longer survival times. CONCLUSIONS: FAM109B, as a novel prognostic biomarker for low-grade gliomas, exhibits specific overexpression in TAMs and may be a potential therapeutic target for LGG patients.


Asunto(s)
Neoplasias Encefálicas , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Glioma , Clasificación del Tumor , Macrófagos Asociados a Tumores , Glioma/genética , Glioma/patología , Glioma/metabolismo , Humanos , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/patología , Macrófagos Asociados a Tumores/inmunología , Metilación de ADN/genética , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/inmunología , Pronóstico , Carcinogénesis/genética , Carcinogénesis/patología , Variaciones en el Número de Copia de ADN/genética , Microambiente Tumoral , Línea Celular Tumoral , Femenino , Masculino , Ratones Desnudos , Ratones , Estimación de Kaplan-Meier , Bases de Datos Genéticas
3.
Cells ; 13(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39272982

RESUMEN

BACKGROUND: Periostin (POSTN) is a type of matrix protein that functions by binding to other matrix proteins, cell surface receptors, or other molecules, such as cytokines and proteases. POSTN has four major splicing variants (PN1-4), which are primarily expressed in fibroblasts and cancer. We have reported that we should inhibit pathological POSTN (PN1-3), but not physiological POSTN (PN4). In particular, pathological POSTN with exon 17 is present in both stroma and cancer, but it is unclear whether the stroma or cancer pathological POSTN should be suppressed. METHODS AND RESULTS: We transplanted 4T1 cells (breast cancer) secreting POSTN with exon 17 into 17KO mice lacking POSTN exon 17 to suppress stromal POSTN with exon 17. The results show that 17KO mice had smaller primary tumors and fewer metastases. Furthermore, to suppress cancer POSTN with exon 17, 4T1 cells transfected with POSTN exon 17 skipping oligo or control oligo were transplanted from the tail vein into the lungs. The results show that POSTN exon 17 skipping oligo significantly suppressed lung metastasis. CONCLUSIONS: These findings suggest that it is important to suppress POSTN exon 17 in both stroma and cancer. Antibody targeting POSTN exon 17 may be a therapeutic candidate for breast cancer.


Asunto(s)
Moléculas de Adhesión Celular , Exones , Células del Estroma , Animales , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/genética , Exones/genética , Ratones , Femenino , Línea Celular Tumoral , Células del Estroma/metabolismo , Células del Estroma/patología , Humanos , Empalme Alternativo/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Ratones Noqueados , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/metabolismo , Ratones Endogámicos BALB C , Periostina
4.
Cancers (Basel) ; 16(16)2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39199647

RESUMEN

Pancreatic cancer demonstrates an ever-increasing incidence over the last years and represents one of the top causes of cancer-associated mortality. Cells of the tumor microenvironment (TME) interact with cancer cells in pancreatic ductal adenocarcinoma (PDAC) tumors to preserve cancer cells' metabolism, inhibit drug delivery, enhance immune suppression mechanisms and finally develop resistance to chemotherapy and immunotherapy. New strategies target TME genetic alterations and specific pathways in cell populations of the TME. Complex molecular interactions develop between PDAC cells and TME cell populations including cancer-associated fibroblasts, myeloid-derived suppressor cells, pancreatic stellate cells, tumor-associated macrophages, tumor-associated neutrophils, and regulatory T cells. In the present review, we aim to fully explore the molecular landscape of the pancreatic cancer TME cell populations and discuss current TME targeting strategies to provide thoughts for further research and preclinical testing.

5.
Biochim Biophys Acta Rev Cancer ; 1879(5): 189166, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39111710

RESUMEN

Cancer incidence and mortality are increasing and impacting global life expectancy. Metabolic reprogramming in the tumor microenvironment (TME) is intimately related to tumorigenesis, progression, metastasis and drug resistance. Tumor cells drive metabolic reprogramming of other cells in the TME through metabolic induction of cytokines and metabolites, and metabolic substrate competition. Consequently, this boosts tumor cell growth by providing metabolic support and facilitating immunosuppression and angiogenesis. The metabolic interplay in the TME presents potential therapeutic targets. Here, we focus on the metabolic reprogramming of four principal cell subsets in the TME: CAFs, TAMs, TILs and TECs, and their interaction with tumor cells. We also summarize medications and therapies targeting these cells' metabolic pathways, particularly in the context of immune checkpoint blockade therapy.


Asunto(s)
Redes y Vías Metabólicas , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Redes y Vías Metabólicas/efectos de los fármacos , Animales , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Fibroblastos Asociados al Cáncer/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/efectos de los fármacos , Macrófagos Asociados a Tumores/inmunología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología
6.
Mol Cancer ; 23(1): 150, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068459

RESUMEN

Tumor-associated macrophages (TAMs) are pivotal in cancer progression, influencing tumor growth, angiogenesis, and immune evasion. This review explores the spatial and temporal heterogeneity of TAMs within the tumor microenvironment (TME), highlighting their diverse subtypes, origins, and functions. Advanced technologies such as single-cell sequencing and spatial multi-omics have elucidated the intricate interactions between TAMs and other TME components, revealing the mechanisms behind their recruitment, polarization, and distribution. Key findings demonstrate that TAMs support tumor vascularization, promote epithelial-mesenchymal transition (EMT), and modulate extracellular matrix (ECM) remodeling, etc., thereby enhancing tumor invasiveness and metastasis. Understanding these complex dynamics offers new therapeutic targets for disrupting TAM-mediated pathways and overcoming drug resistance. This review underscores the potential of targeting TAMs to develop innovative cancer therapies, emphasizing the need for further research into their spatial characteristics and functional roles within the TME.


Asunto(s)
Neoplasias , Microambiente Tumoral , Macrófagos Asociados a Tumores , Humanos , Microambiente Tumoral/inmunología , Neoplasias/patología , Neoplasias/inmunología , Neoplasias/metabolismo , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/patología , Animales , Transición Epitelial-Mesenquimal , Neovascularización Patológica/patología
7.
Front Pharmacol ; 15: 1382256, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957393

RESUMEN

Hepatocellular carcinoma (HCC) is one of the cancers that seriously threaten human health. Immunotherapy serves as the mainstay of treatment for HCC patients by targeting the programmed cell death protein 1/programmed cell death 1 ligand 1 (PD-1/PD-L1) axis. However, the effectiveness of anti-PD-1/PD-L1 treatment is limited when HCC becomes drug-resistant. Tumor-associated macrophages (TAMs) are an important factor in the negative regulation of PD-1 antibody targeted therapy in the tumor microenvironment (TME). Therefore, as an emerging direction in cancer immunotherapy research for the treatment of HCC, it is crucial to elucidate the correlations and mechanisms between TAMs and PD-1/PD-L1-mediated immune tolerance. This paper summarizes the effects of TAMs on the pathogenesis and progression of HCC and their impact on HCC anti-PD-1/PD-L1 immunotherapy, and further explores current potential therapeutic strategies that target TAMs in HCC, including eliminating TAMs in the TME, inhibiting TAMs recruitment to tumors and functionally repolarizing M2-TAMs (tumor-supportive) to M1-TAMs (antitumor type).

8.
Eur J Med Res ; 29(1): 357, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970071

RESUMEN

BACKGROUND AND PURPOSE: PD-1/PD-L1 inhibitors have become a promising therapy. However, the response rate is lower than 30% in patients with cervical cancer (CC), which is related to immunosuppressive components in tumor microenvironment (TME). Tumor-associated macrophages (TAMs), as one of the most important immune cells, are involved in the formation of tumor suppressive microenvironment. Therefore, it will provide a theoretical basis for curative effect improvement about the regulatory mechanism of TAMs on PD-L1 expression. METHODS: The clinical data and pathological tissues of CC patients were collected, and the expressions of PD-L1, CD68 and CD163 were detected by immunohistochemistry. Bioinformatics was used to analyze the macrophage subtypes involved in PD-L1 regulation. A co-culture model was established to observe the effects of TAMs on the morphology, migration and invasion function of CC cells, and the regulatory mechanism of TAMs on PD-L1. RESULTS: PD-L1 expression on tumor cells could predict the poor prognosis of patients. And there was a strong correlation between PD-L1 expression with CD163+TAMs infiltration. Similarly, PD-L1 expression was associated with M1/M2-type TAMs infiltration in bioinformatics analysis. The results of cell co-culture showed that M1/M2-type TAMs could upregulate PD-L1 expression, especially M2-type TAMs may elevate the PD-L1 expression via PI3K/AKT pathway. Meanwhile, M1/M2-type TAMs can affect the morphological changes, and enhance migration and invasion abilities of CC cells. CONCLUSIONS: PD-L1 expression in tumor cells can be used as a prognostic factor and is closely related to CD163+TAMs infiltration. In addition, M2-type TAMs can upregulate PD-L1 expression in CC cells through PI3K/AKT pathway, enhance the migration and invasion capabilities, and affect the tumor progression.


Asunto(s)
Antígeno B7-H1 , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Macrófagos Asociados a Tumores , Neoplasias del Cuello Uterino , Humanos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/inmunología , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/inmunología , Femenino , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Microambiente Tumoral/inmunología , Regulación hacia Arriba , Antígenos de Diferenciación Mielomonocítica/metabolismo , Antígenos de Diferenciación Mielomonocítica/genética , Persona de Mediana Edad , Antígenos CD/metabolismo , Antígenos CD/genética , Pronóstico , Regulación Neoplásica de la Expresión Génica , Movimiento Celular , Receptores de Superficie Celular
9.
Chem Biol Interact ; 396: 111038, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38719169

RESUMEN

Peritoneal metastasis is an important cause of high mortality and poor prognosis in colorectal cancer (CRC) patients. Therefore, the development of compounds with unique anti-CRC Peritoneal metastasis activities is urgently needed to improve the survival of CRC patients. Hydroxygenkwanin (HGK),a natural flavonoid compound, have been shown to display anti-inflammatory, antioxidant, antitumor, and immunoregulatory effects. Here, we employed CRC peritoneal metastasis mouse model with MC38 cells to examine the antitumor activity of HGK. The result showed that HGK not only inhibited peritoneal metastasis, but also significantly increased the proportion of M1-like macrophages while decreasing the proportion of M2-like macrophages within the tumor microenvironment (TME). Furthermore, we demonstrated that the inhibitory effect of HGK on peritoneal metastasis of CRC depended on macrophages in vitro and in vivo. Moreover, we revealed that HGK promoted the polarization of TAMs into M1-like macrophages and inhibited their polarization into M2-like macrophages in a LPS- or IL-4-induced bone marrow-derived macrophages (BMDMs) model and co-culture system. Finally, we also investigated the regulatory mechanism of HGK on TAMs polarization that HGK may active p-STAT5, p-NF-κB signaling in M1-like macrophages and inhibit p-STAT6, JMJD3, PPARγ expression in M2-like macrophages. Taken together, our findings suggest that HGK is a natural candidate for effective prevention of peritoneal metastasis in colorectal cancer, which provides a potential strategy for clinical treatment of colorectal cancer.


Asunto(s)
Neoplasias Colorrectales , Ratones Endogámicos C57BL , Neoplasias Peritoneales , Macrófagos Asociados a Tumores , Animales , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Ratones , Neoplasias Peritoneales/secundario , Neoplasias Peritoneales/tratamiento farmacológico , Neoplasias Peritoneales/prevención & control , Macrófagos Asociados a Tumores/efectos de los fármacos , Macrófagos Asociados a Tumores/metabolismo , Línea Celular Tumoral , Transducción de Señal/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , FN-kappa B/metabolismo , Humanos , Masculino
10.
Cell Cycle ; 23(6): 682-692, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38794797

RESUMEN

Pumilio RNA-binding family member 1 (PUM1) has been implicated in both the progression of colorectal cancer and the regulation of inflammation. The role of PUM1 in the polarization of tumor-associated macrophages (TAMs) into the M2 phenotype has not yet been reported in hepatocellular carcinoma. Using the PUM1-knockout mice model, flow cytometry, and IHC, we validated the role of PUM1 in hepatocellular carcinoma (HCC) TAMs. One-way analysis of variance (ANOVA) or student's t-tests was used to compare the experimental groups. We found that PUM1 inhibited anti-tumor immunity in HCC through TAM-mediated inhibition of CD8+ T cells. We also showed that PUM1 promotes the transformation of TAMs into pro-tumorigenic M2-like phenotypes by activating cAMP signaling pathway. This study emphasized the potential of PUM1 as a target for immunotherapy in HCC through TAMs. The present study revealed the molecular mechanism underlying the pro-tumor role of PUM1 in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Macrófagos , Ratones Noqueados , Proteínas de Unión al ARN , Animales , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Ratones , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/patología , Ratones Endogámicos C57BL , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Humanos , Transducción de Señal , Línea Celular Tumoral
11.
Cancer Immunol Immunother ; 73(5): 76, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38554213

RESUMEN

BACKGROUND: Tumor microenvironment actually reduces antitumor effect against the immune attack by exclusion of CD8+T cells. Progranulin (PGRN) is a multifunctional growth factor with significant pathological effects in multiple tumors; however, its role in immunity evasion of breast cancer (BCa) is not completely understood. METHODS: We depleted GRN (PGRN gene) genetically in mice or specifically in PY8119 murine BCa cell line, and mouse models of orthotopic or subcutaneous transplantation were used. Chimeric mice-deficient of PGRN (Grn-/-) in bone marrow (BM) compartment was also generated. Association of PGRN expression with chemokine production or BCa development was investigated by histological and immunological assays. RESULTS: We found PGRN was involved in exhaustion of cytotoxic CD8+T cell in BCa with the increasing expressions of M2 markers and intercellular cell adhesion molecule-1 (ICAM-1) on macrophages. Specifically, ablation of PGRN in PY8119 cells reduced tumor burden, accompanied by the infiltrating of cytotoxic CD8+T cells into tumor nests. Moreover, our result revealed that blockade of PD-1 in PGRN-depleted tumors exhibited better antitumor effect in vivo and significantly decreased tumor burden. CONCLUSION: These findings suggest that inhibition of PGRN may act as a potential immune-therapeutic strategy by recovering infiltration of CD8+T cell in BCa tissue and thereby enhancing the response to anti-PD-1 therapy.


Asunto(s)
Molécula 1 de Adhesión Intercelular , Neoplasias , Animales , Ratones , Linfocitos T CD8-positivos , Línea Celular Tumoral , Molécula 1 de Adhesión Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Progranulinas/genética , Microambiente Tumoral
12.
Front Immunol ; 15: 1327281, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38455041

RESUMEN

Gastric cancer (GC) is a malignant neoplasm originating from the epithelial cells of the gastric mucosa. The pathogenesis of GC is intricately linked to the tumor microenvironment within which the cancer cells reside. Tumor-associated macrophages (TAMs) primarily differentiate from peripheral blood monocytes and can be broadly categorized into M1 and M2 subtypes. M2-type TAMs have been shown to promote tumor growth, tissue remodeling, and angiogenesis. Furthermore, they can actively suppress acquired immunity, leading to a poorer prognosis and reduced tolerance to chemotherapy. Exosomes, which contain a myriad of biologically active molecules including lipids, proteins, mRNA, and noncoding RNAs, have emerged as key mediators of communication between tumor cells and TAMs. The exchange of these molecules via exosomes can markedly influence the tumor microenvironment and consequently impact tumor progression. Recent studies have elucidated a correlation between TAMs and various clinicopathological parameters of GC, such as tumor size, differentiation, infiltration depth, lymph node metastasis, and TNM staging, highlighting the pivotal role of TAMs in GC development and metastasis. In this review, we aim to comprehensively examine the bidirectional communication between GC cells and TAMs, the implications of alterations in the tumor microenvironment on immune escape, invasion, and metastasis in GC, targeted therapeutic approaches for GC, and the efficacy of potential GC drug resistance strategies.


Asunto(s)
Comunicación Celular , Exosomas , Neoplasias Gástricas , Humanos , Exosomas/metabolismo , Macrófagos , Neoplasias Gástricas/patología , Microambiente Tumoral
13.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38474078

RESUMEN

Carbon ion beams have the unique property of higher linear energy transfer, which causes clustered damage of DNA, impacting the cell repair system. This sometimes triggers apoptosis and the release in the cytoplasm of damaged DNA, leading to type I interferon (IFN) secretion via the activation of the cyclic GMP-AMP synthase-stimulator of interferon genes pathway. Dendritic cells phagocytize dead cancer cells and damaged DNA derived from injured cancer cells, which together activate dendritic cells to present cancer-derived antigens to antigen-specific T cells in the lymph nodes. Thus, carbon ion radiation therapy (CIRT) activates anti-cancer immunity. However, cancer is protected by the tumor microenvironment (TME), which consists of pro-cancerous immune cells, such as regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages. The TME is too robust to be destroyed by the CIRT-mediated anti-cancer immunity. Various modalities targeting regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages have been developed. Preclinical studies have shown that CIRT-mediated anti-cancer immunity exerts its effects in the presence of these modalities. In this review article, we provide an overview of CIRT-mediated anti-cancer immunity, with a particular focus on recently identified means of targeting the TME.


Asunto(s)
Radioterapia de Iones Pesados , Células Supresoras de Origen Mieloide , Neoplasias , Humanos , Neoplasias/patología , Linfocitos T Reguladores , ADN , Microambiente Tumoral
14.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38474108

RESUMEN

The majority of patients with Diffuse Large B-cell Lymphoma (DLBCL) will respond to first-line treatment and be cured. However, the disease is heterogeneous, and biomarkers able to discriminate patients with suboptimal prognosis are needed. M2 CD163-positive tumor-associated macrophages (TAMs) were shown to be implicated in DLBCL disease activity regulation. Serum-soluble CD163 (sCD163) functions as a scavenger receptor for haptoglobin-hemoglobin complexes and is mostly expressed by monocytes and macrophages. Its levels are used to determine macrophage activation. We aimed to determine serum sCD163 in a sample of DLBCL patients and study eventual correlations with parameters of disease activity or survival. Serum sCD163 levels were measured in 40 frozen sera from patients diagnosed with DLBCL and 30 healthy individuals (HIs) using an enzyme-linked immunosorbent assay (ELISA). Statistical analyses were performed using SPSS version 28. The results showed that patients who achieved complete response after standard-of-care immunochemotherapy and were alive and disease-free after 12 months of follow-up but had elevated sCD163 levels (above median) at diagnosis presented a significantly worse overall survival compared to those with initial serum sCD163 levels below the median (p = 0.03). Consequently, serum sCD163 levels in patients with DLBCL may constitute a marker of long-term response to chemoimmunotherapy.


Asunto(s)
Linfoma de Células B Grandes Difuso , Monocitos , Humanos , Pronóstico , Macrófagos/patología , Biomarcadores , Antígenos de Diferenciación Mielomonocítica , Linfoma de Células B Grandes Difuso/patología
15.
Cancers (Basel) ; 16(3)2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38339310

RESUMEN

Chemokines are small molecules that function as chemotactic factors which regulate the migration, infiltration, and accumulation of immune cells. Here, we comprehensively assess the structural and functional role of chemokines, examine the effects of chemokines that are present in the pancreatic ductal adenocarcinoma (PDAC) tumor microenvironment (TME), specifically those produced by cancer cells and stromal components, and evaluate their impact on immune cell trafficking, both in promoting and suppressing anti-tumor responses. We further explore the impact of chemokines on patient outcomes in PDAC and their role in the context of immunotherapy treatments, and review clinical trials that have targeted chemokine receptors and ligands in the treatment of PDAC. Lastly, we highlight potential strategies that can be utilized to harness chemokines in order to increase cytotoxic immune cell infiltration and the anti-tumor effects of immunotherapy.

16.
Biomolecules ; 14(2)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38397421

RESUMEN

Tumor diseases become a huge problem when they embark on a path that advances to malignancy, such as the process of metastasis. Cancer metastasis has been thoroughly investigated from a biological perspective in the past, whereas it has still been less explored from a physical perspective. Until now, the intraluminal pathway of cancer metastasis has received the most attention, while the interaction of cancer cells with macrophages has received little attention. Apart from the biochemical characteristics, tumor treatments also rely on the tumor microenvironment, which is recognized to be immunosuppressive and, as has recently been found, mechanically stimulates cancer cells and thus alters their functions. The review article highlights the interaction of cancer cells with other cells in the vascular metastatic route and discusses the impact of this intercellular interplay on the mechanical characteristics and subsequently on the functionality of cancer cells. For instance, macrophages can guide cancer cells on their intravascular route of cancer metastasis, whereby they can help to circumvent the adverse conditions within blood or lymphatic vessels. Macrophages induce microchannel tunneling that can possibly avoid mechanical forces during extra- and intravasation and reduce the forces within the vascular lumen due to vascular flow. The review article highlights the vascular route of cancer metastasis and discusses the key players in this traditional route. Moreover, the effects of flows during the process of metastasis are presented, and the effects of the microenvironment, such as mechanical influences, are characterized. Finally, the increased knowledge of cancer metastasis opens up new perspectives for cancer treatment.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Señales (Psicología) , Neoplasias/metabolismo , Macrófagos/metabolismo , Fenómenos Mecánicos , Metástasis de la Neoplasia/patología
17.
Int Immunopharmacol ; 129: 111590, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38316083

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a highly invasive disease that can metastasize to distant organs such as the lung and liver. However, the exact mechanisms underlying PDAC metastasis remain unclear. Tumor-associated macrophages (TAMs) have been shown to play a critical role in cancer initiation, progression, outgrowth, and metastasis, likely through their interaction with cancer cells via extracellular vesicles known as exosomes. However, the precise mechanisms of this interaction are not fully understood. METHODS: In this study, we obtained TAMs from PDAC patients and isolated exosomes from their culture medium. We characterized these exosomes and analyzed their miRNA expression profiles using Multiplex miRNA assays with FirePlex particle technology. Additionally, we conducted in vitro co-culture experiments between PDAC cells and conditioned media or exosomes from TAMs to investigate the crosstalk between these cells via exosomes. Furthermore, we evaluated the in vivo lung metastasis of PDAC cells treated with TAM-derived exosomes in athymic nude mice. RESULTS: TAMs from PDAC patients promoted the invasiveness and migratory potential of PDAC cells, partially through the effects of TAM-derived exosomes. Specifically, we identified two microRNAs, miR-202-5p and miR-142-5p, which were transferred from TAM-derived exosomes to PDAC cells, resulting in the suppression of phosphatase and tensin homolog deleted on chromosome ten (PTEN) and promoting their invasiveness and migratory potential. We also found that distal metastasis was increased in PDAC cells treated with TAM-derived exosomes, partially through miR-202-5p and miR-142-5p. CONCLUSIONS: Exosomal transfer of miR-202-5p and miR-142-5p plays a significant role in conferring invasiveness and migratory potential to PDAC cells. Targeting exosome communication may represent a promising new therapeutic strategy for reducing cancer metastasis of PDACs.


Asunto(s)
Carcinoma Ductal Pancreático , MicroARNs , Neoplasias Pancreáticas , Humanos , Animales , Ratones , MicroARNs/genética , Ratones Desnudos , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/genética , Macrófagos , Línea Celular Tumoral
18.
Genes (Basel) ; 15(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38397187

RESUMEN

Tumor-associated macrophages (TAMs) are the major component of the tumor microenvironment (TME), where they sustain tumor progression and or-tumor immunity. Due to their plasticity, macrophages can exhibit anti- or pro-tumor functions through the expression of different gene sets leading to distinct macrophage phenotypes: M1-like or pro-inflammatory and M2-like or anti-inflammatory. NF-κB transcription factors are central regulators of TAMs in cancers, where they often drive macrophage polarization toward an M2-like phenotype. Therefore, the NF-κB pathway is an attractive therapeutic target for cancer immunotherapy in a wide range of human tumors. Hence, targeting NF-κB pathway in the myeloid compartment is a potential clinical strategy to overcome microenvironment-induced immunosuppression and increase anti-tumor immunity. In this review, we discuss the role of NF-κB as a key driver of macrophage functions in tumors as well as the principal strategies to overcome tumor immunosuppression by targeting the NF-κB pathway.


Asunto(s)
FN-kappa B , Neoplasias , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , Macrófagos/metabolismo , Neoplasias/genética , Neoplasias/terapia , Neoplasias/metabolismo , Subunidad p50 de NF-kappa B , Fenotipo , Microambiente Tumoral/genética
19.
Cancer Lett ; 584: 216610, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38244910

RESUMEN

Single-cell RNA sequencing (scRNA-seq) is an emerging technology used for cellular transcriptome analysis. The application of scRNA-seq has led to profoundly advanced oncology research, continuously optimizing novel therapeutic strategies. Intratumor heterogeneity extensively consists of all tumor components, contributing to different tumor behaviors and treatment responses. Tumor-associated macrophages (TAMs), the core immune cells linking innate and adaptive immunity, play significant roles in tumor progression and resistance to therapies. Moreover, dynamic changes occur in TAM phenotypes and functions subject to the regulation of the tumor microenvironment. The heterogeneity of TAMs corresponding to the state of the tumor microenvironment has been comprehensively recognized using scRNA-seq. Herein, we reviewed recent research and summarized variations in TAM phenotypes and functions from a developmental perspective to better understand the significance of TAMs in the tumor microenvironment.


Asunto(s)
Inmunidad Adaptativa , Macrófagos Asociados a Tumores , Humanos , Comunicación Celular , Fenotipo , Microambiente Tumoral/genética , Análisis de Secuencia de ARN
20.
Cell Commun Signal ; 22(1): 74, 2024 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-38279145

RESUMEN

The tumor microenvironment (TME) constitutes a complex microenvironment comprising a diverse array of immune cells and stromal components. Within this intricate context, tumor-associated macrophages (TAMs) exhibit notable spatial heterogeneity. This heterogeneity contributes to various facets of tumor behavior, including immune response modulation, angiogenesis, tissue remodeling, and metastatic potential. This review summarizes the spatial distribution of macrophages in both the physiological environment and the TME. Moreover, this paper explores the intricate interactions between TAMs and diverse immune cell populations (T cells, dendritic cells, neutrophils, natural killer cells, and other immune cells) within the TME. These bidirectional exchanges form a complex network of immune interactions that influence tumor immune surveillance and evasion strategies. Investigating TAM heterogeneity and its intricate interactions with different immune cell populations offers potential avenues for therapeutic interventions. Additionally, this paper discusses therapeutic strategies targeting macrophages, aiming to uncover novel approaches for immunotherapy. Video Abstract.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Macrófagos , Macrófagos Asociados a Tumores , Inmunoterapia , Células Asesinas Naturales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...