Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.179
Filtrar
1.
Brief Bioinform ; 25(6)2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39431517

RESUMEN

Protein degradation through the ubiquitin proteasome system at the spatial and temporal regulation is essential for many cellular processes. E3 ligases and degradation signals (degrons), the sequences they recognize in the target proteins, are key parts of the ubiquitin-mediated proteolysis, and their interactions determine the degradation specificity and maintain cellular homeostasis. To date, only a limited number of targeted degron instances have been identified, and their properties are not yet fully characterized. To tackle on this challenge, here we develop a novel deep-learning framework, namely MetaDegron, for predicting E3 ligase targeted degron by integrating the protein language model and comprehensive featurization strategies. Through extensive evaluations using benchmark datasets and comparison with existing method, such as Degpred, we demonstrate the superior performance of MetaDegron. Among functional features, MetaDegron allows batch prediction of targeted degrons of 21 E3 ligases, and provides functional annotations and visualization of multiple degron-related structural and physicochemical features. MetaDegron is freely available at http://modinfor.com/MetaDegron/. We anticipate that MetaDegron will serve as a useful tool for the clinical and translational community to elucidate the mechanisms of regulation of protein homeostasis, cancer research, and drug development.


Asunto(s)
Proteolisis , Ubiquitina-Proteína Ligasas , Ubiquitina-Proteína Ligasas/metabolismo , Humanos , Biología Computacional/métodos , Aprendizaje Profundo , Programas Informáticos , Bases de Datos de Proteínas , Degrones
2.
Cell Biol Int ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39364680

RESUMEN

Since suppressor/enhancer of Lin-12-like (SEL1L) was cloned in 1997, various pieces of evidence from lower species suggest it plays a significant role in protein degradation via the ubiquitin-proteasome system. The relevance of SEL1L in many aspects of malignant transformation and tumorigenic events has been the subject of research, which has shown compelling in vitro and in vivo findings relating its altered expression to changes in tumor aggressiveness. The Endoplasmic Reticulum (ER) in tumor cells is crucial for preserving cellular proteostasis by inducing the unfolded protein response (UPR), a stress response. A crucial component of the UPR is ER-associated degradation (ERAD), which guards against ER stress-induced apoptosis and the removal of unfolded or misfolded proteins by the ubiquitin-proteasome system. As a protein stabilizer of HMG-CoA reductase degradation protein 1 (HRD1), one of the main components of ERAD, SEL1L plays an important role in ER homeostasis. Notably, the expression levels of these two proteins fluctuate independently in various cancer types, yet changes in their expression affect the levels of other associated proteins during cancer pathogenesis. Recent studies have also outlined the function of SEL1L in cancer medication resistance. This review explores the value of targeting SEL1L as a novel treatment approach for cancer, focusing on the molecular processes of SEL1L and its involvement in cancer etiology.

3.
Biochem Biophys Res Commun ; 735: 150811, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39406020

RESUMEN

Cullin-RING E3 ubiquitin ligases (CRLs) constitute the largest family of ubiquitin ligase and play important roles in regulation of proteostasis. Here we presented the cryo-EM structure of CRL1FBXO4, a member of Cullin-1 E3 ligase. CRL1FBXO4 adopts a homodimer architecture. Structural analysis revealed that in the CRL1FBXO4 protomer, the substrate recognition subunit FBXO4 interacts both the adaptor protein SKP1, and the scaffold protein CUL1 via hydrophobic and electrostatic interactions. Two FBXO4 forms a domain-swapped dimer in the CRL1FBXO4 structure, which constitutes the basis for the dimerization of CRL1FBXO4. Inspired by the cryo-EM density, we modeled the architecture of whole CRL1FBXO4 as a symmetrical dimer, which provides insights into CRL1FBXO4-medaited turnover of oncogene proteins.

4.
Pathol Res Pract ; 263: 155611, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39357191

RESUMEN

Cancer continues to threaten human health regardless of novel therapeutic options. Over the last two decades, targeted therapy has emerged as a significant advancement in treating malignancies, surpassing standard chemoradiotherapy and surgical procedures. Gynecological malignancies, including cervical, endometrial, and ovarian carcinoma, have a bad prognosis in advanced or metastatic stages and are difficult to treat. The advancements in understanding the molecular pathways behind cancer development offer valuable insights into promising targeted medicines, and researchers have always searched for a superior and safe technique to target cancer-related oncoproteins because of the limited therapeutic benefit, drug resistance, and off-target effects of current targeted treatments. Recently, proteolysis-targeting chimeras (PROTACs) have been developed to selectively degrade proteins using the natural ubiquitin-proteasome system (UPS). These approaches have garnered significant attention in the field of cancer research. The rapid progress in PROTACs has also eased the targeting of various oncoproteins in gynecological cancer. Therefore, this review aims to elucidate the mechanism and research advancements of PROTACs and provide a comprehensive overview of their use in gynecological tumors.

5.
J Med Virol ; 96(10): e29945, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39370874

RESUMEN

Borna disease virus 1 (BoDV-1) is a neurotropic RNA virus that has been linked to fatal BoDV-1 encephalitis (BVE) in humans. Ferroptosis represents a newly recognized kind of programmed cell death that marked by iron overload and lipid peroxidation. Various viral infections are closely related to ferroptosis. However, the link between BoDV-1 infection and ferroptosis, as well as its role in BVE pathogenesis, remains inadequately understood. Herein, we used primary rat cortical neurons, human microglial HMC3 cells, and Sprague‒Dawley rats as models. BoDV-1 infection induced ferroptosis, as ferroptosis characteristics were detected (iron overload, reactive oxygen species buildup, decreased antioxidant capacity, lipid peroxidation, and mitochondrial damage). Analysis via qRT-PCR and Western blot demonstrated that BoDV-1-induced ferroptosis was mediated through Nrf2/HO-1/SLC7a11/GPX4 antioxidant pathway suppression. Nrf2 downregulation was due to BoDV-1 infection promoting Nrf2 ubiquitination and degradation. Following BoDV-1-induced ferroptosis, the PTGS2/PGE2 signaling pathway was activated, and various intracellular lipid peroxidation products and damage-associated molecular patterns were released, contributing to BVE occurrence and progression. More importantly, inhibiting ferroptosis or the ubiquitin‒proteasome system effectively alleviated BVE. Collectively, these findings demonstrate the interaction between BoDV-1 infection and ferroptosis and reveal BoDV-1-induced ferroptosis as an underlying pathogenic mechanism of BVE.


Asunto(s)
Enfermedad de Borna , Virus de la Enfermedad de Borna , Ferroptosis , Peroxidación de Lípido , Factor 2 Relacionado con NF-E2 , Neuronas , Ratas Sprague-Dawley , Virus de la Enfermedad de Borna/fisiología , Animales , Ratas , Humanos , Neuronas/virología , Neuronas/patología , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Enfermedad de Borna/virología , Enfermedad de Borna/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Ciclooxigenasa 2/metabolismo , Ciclooxigenasa 2/genética , Microglía/virología , Microglía/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Hemo-Oxigenasa 1/metabolismo , Hemo-Oxigenasa 1/genética , Línea Celular , Encefalitis/virología , Encefalitis/patología , Células Cultivadas
6.
Int J Oncol ; 65(6)2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39450547

RESUMEN

Colorectal cancer (CRC) is widely prevalent and represents a significant contributor to global cancer­related mortality. There remains a pressing demand for advancements in CRC treatment modalities. The E3 ubiquitin ligase is a critical enzyme involved in modulating protein expression levels via posttranslational ubiquitin­mediated proteolysis, and it is reportedly involved in the progression of various cancers, making it a target of recent interest in anticancer therapy. In the present study, using comprehensive expression analysis involving spatial transcriptomic analysis with single­cell RNA sequencing in clinical CRC datasets, the ubiquitin­associated protein Shank­associated RH domain interactor (SHARPIN) was identified, located on amplified chromosome 8q, which could promote CRC progression. SHARPIN was found to be upregulated in tumor cells, with elevated expression observed in tumor tissues. This heightened expression of SHARPIN was positively associated with lymphatic invasion and served as an independent predictor of a poor prognosis in patients with CRC. In vitro and in vivo analyses using SHARPIN­overexpressing or ­knockout CRC cells revealed that SHARPIN overexpression upregulated MDM2, resulting in the downregulation of p53, while SHARPIN silencing or knockout downregulated MDM2, leading to p53 upregulation, which affects cell cycle progression, tumor cell apoptosis and tumor growth in CRC. Furthermore, SHARPIN was found to be overexpressed in several cancer types, exerting significant effects on survival outcomes. In conclusion, SHARPIN represents a newly identified novel gene with the potential to promote tumor growth following apoptosis inhibition and cell cycle progression in part by inhibiting p53 expression via MDM2 upregulation; therefore, SHARPIN represents a potential therapeutic target for CRC.


Asunto(s)
Neoplasias Colorrectales , Regulación Neoplásica de la Expresión Génica , Proteína p53 Supresora de Tumor , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Masculino , Ratones , Femenino , Animales , Proliferación Celular/genética , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Línea Celular Tumoral , Pronóstico , Persona de Mediana Edad , Apoptosis/genética , Regulación hacia Arriba , Ubiquitinas
7.
Trends Mol Med ; 2024 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-39477759

RESUMEN

Proteasome functional insufficiency (PFI) is implicated in neurodegeneration and heart failure, where aberrant protein aggregation is common and impairs the ubiquitin (Ub)-proteasome system (UPS), exacerbating increased proteotoxic stress (IPTS) and creating a vicious circle. Breaking this circle represents a key to treating these diseases. Protein kinase (PK)-A and PKG can activate the proteasome and promote proteasomal degradation of misfolded proteins. PKA does so by phosphorylating Ser14-RPN6/PSMD11, but how PKG activates the proteasome remains unknown. Emerging evidence supports a strategy to treat diseases with IPTS by augmenting cAMP/PKA and cGMP/PKG. Conceivably, targeted activation of PKA and PKG at proteasome nanodomains would minimize the undesired effects from their actions on other targets. In this review, we discuss PKA and PKG regulation of proteostasis via the UPS.

8.
Life Sci ; 358: 123160, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39433087

RESUMEN

AIMS: The knowledge of the molecular players that regulate the generation of endoderm cells is imperative to obtain homogenous population of pancreatic ß-cells from stem cells. The Ubiquitin proteasome system (UPS) has been envisaged as a crucial intracellular protein degradation system, but its role in the generation of ß-cells remains elusive. Hence, it would be appropriate to unravel the potential role of UPS in endoderm specification and utilize the understanding to generate ß-cells from pluripotent stem cells. MATERIALS AND METHODS: The pluripotent stem cells (mESCs, miPSCs and hIPSCs) were subjected to differentiation towards pancreatic ß-cells and assessed the proteasomal activity during endodermal differentiation. Pharmacologic agents MG132 and IU-1 were employed to inhibit and activate proteasomal activity respectively at the definitive endoderm stage to investigate its impact on the generation of ß-cells. The expression of stage-specific genes were analyzed at transcript and protein levels. We also explored the role of unfolded protein response and UPS-regulated signalling pathways in endodermal differentiation. KEY FINDINGS: We observed decreased proteasomal activity specifically during endoderm, but not during the generation of other lineages. Extraneous proteasomal inhibition enhanced the expression of endodermal genes while increasing the proteasomal activity hindered definitive endodermal differentiation. Proteasomal inhibition at the definitive endodermal stage culminated in an enriched generation of insulin-positive cells. Elevated endodermal gene expression was consistent in mESCs and hIPSCs upon proteasomal inhibition. Mechanistic insight revealed the proteasome-inhibited enhanced endodermal differentiation to be via modulating the YAP pathway. SIGNIFICANCE: Our study unravels the specific involvement of UPS in endoderm cell generation from pluripotent stem cells and paves the way for obtaining potential definitive endodermal cells for plausible cellular therapy in the future.

9.
Expert Rev Mol Med ; 26: e19, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39320846

RESUMEN

ATXN3 is a ubiquitin hydrolase (or deubiquitinase, DUB), product of the ATXN3 gene, ubiquitously expressed in various cell types including peripheral and neuronal tissues and involved in several cellular pathways. Importantly, the expansion of the CAG trinucleotides within the ATXN3 gene leads to an expanded polyglutamine domain in the encoded protein, which has been associated with the onset of the spinocerebellar ataxia type 3, also known as Machado-Joseph disease, the most common dominantly inherited ataxia worldwide. ATXN3 has therefore been under intensive investigation for decades. In this review, we summarize the main functions of ATXN3 in proteostasis, DNA repair and transcriptional regulation, as well as the emerging role in regulating chromatin structure. The mentioned molecular functions of ATXN3 are also reviewed in the context of the pathological expanded form of ATXN3.


Asunto(s)
Ataxina-3 , Enfermedad de Machado-Joseph , Péptidos , Humanos , Ataxina-3/metabolismo , Ataxina-3/genética , Enfermedad de Machado-Joseph/metabolismo , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/patología , Péptidos/metabolismo , Péptidos/genética , Animales , Reparación del ADN , Regulación de la Expresión Génica , Proteostasis , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Expansión de Repetición de Trinucleótido
10.
Calcif Tissue Int ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283327

RESUMEN

Muscle atrophy is a common complication of chronic kidney disease (CKD). Irisin, a novel muscle cytokine, protects against muscle atrophy, but its specific role in CKD-associated muscle atrophy requires further elucidation. Because the ubiquitin-proteasome system (UPS) plays an important role in CKD muscle atrophy, our study will explore whether irisin affects UPS and alleviate CKD-associated muscle atrophy. In this study, an adenine-fed mouse model of CKD and urotension II (UII)-induced C2C12 myotubes were used as in vivo and in vitro models of muscle atrophy. The results showed that renal function, mouse weight, and the cross-sectional area (CSA) of skeletal muscles were significantly improved in CKD mice treated with irisin. Moreover, irisin effectively mitigated the decreases in phosphorylated Forkhead box O 3a (p-FOXO3A) levels and increases in the levels of E3 ubiquitin ligases, such as muscle RING finger 1 (MuRF1) and muscle atrophy F-box (MAFbx/atrogin1), in both the muscles of CKD mice and UII-induced C2C12 myotubes. In addition, irisin significantly increased the expression levels of myogenic differentiation factor D (MyoD) in the muscles of CKD mice. Our study is the first to demonstrate that irisin ameliorates skeletal muscle atrophy by inhibiting UPS upregulation and improving satellite cell differentiation in CKD.

11.
Int J Biol Macromol ; 280(Pt 2): 135764, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39299429

RESUMEN

Chronic hepatitis B virus (HBV) infection continues to pose a significant global health challenge. However, therapeutic measures for a cure are lacking in clinical practice. Manganese, an essential trace element, has garnered attention due to its potential to activate innate immune pathways and its significant role in antiviral and antitumor immunity. Yet, the specific impact of manganese on chronic hepatitis B has been largely unexplored. Our research reveals that manganese substantially inhibits HBV replication in hepatocellular carcinoma cells at non-toxic levels. This suppression occurs independently of well-known anti-HBV innate immune pathways, such as the cGAS-STING pathway. Mechanistically, manganese decreases HBV transcription by diminishing the levels of liver-specific transcription factors. Furthermore, it activates the mTOR pathway, enhancing HBsAg ubiquitination through the upregulation of the ubiquitin ligase ß-TrCP and increasing proteasome activity via the augmentation of its subunits, leading to a ubiquitin-dependent degradation of HBsAg. Significantly, our study also uncovers a notable clinical correlation between manganese levels and chronic hepatitis B infection. These findings position manganese as a critical element in diminishing HBV replication, offering a new direction in the management of chronic hepatitis B.

12.
Artículo en Inglés | MEDLINE | ID: mdl-39344415

RESUMEN

Ubiquitination is a post-translational modification that plays important roles in regulating protein stability, function, localization, and protein-protein interactions. Proteins are ubiquitinated via a process involving specific E1 activating enzymes, E2 conjugating enzymes, and E3 ligases. Simultaneously, protein ubiquitination is opposed by deubiquitinating enzymes (DUBs). DUB-mediated deubiquitination can change protein function or fate and recycle ubiquitin to maintain the free ubiquitin pool. Approximately 100 DUBs have been identified in the mammalian genome, and characterized into seven classes (USP, OTU, UCH, MJD, JAMM, MINDY and ZUP classes). Of these 100 DUBs, there has only been relatively limited investigation of 19 specifically in skeletal muscle cells, in vitro or in vivo, using overexpression, knockdown, and knockout models. To date, evidence indicates roles for individual DUBs in regulating aspects of myogenesis, protein turnover, muscle mass, and muscle metabolism. However, the exact mechanism by which these DUBs act (i.e. the specific targets of these DUBs and the type of ubiquitin chains they target) is still largely unknown, underscoring how little we know about DUBs in skeletal muscle. This review endeavors to comprehensively summarize the current state of knowledge of the function of DUBs in skeletal muscle and highlight the opportunities for gaining a greater understanding through further research into this important area of skeletal muscle and ubiquitin biology.

13.
Plant Cell Environ ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39267466

RESUMEN

As part of the cellular stress response in plants, the ubiquitin-proteasome system (UPS) plays a crucial role in regulating the protein stability of stress-related transcription factors. Previous study has indicated that CaSAP14 is functionally involved in enhancing pepper plant tolerance to dehydration stress by modulating the expression of downstream genes. However, the comprehensive regulatory mechanism underlying CaSAP14 remains incompletely understood. Here, we identified a RING-type E3 ligase, CaFIRF1, which interacts with and ubiquitinates CaSAP14. Pepper plants with silenced CaFIRF1 exhibited a dehydration-tolerant phenotype when subjected to dehydration stress, while overexpression of CaFIRF1 in pepper and Arabidopsis resulted in reduced dehydration tolerance. Co-silencing of CaFIRF1 and CaSAP14 in pepper increased sensitivity to dehydration, suggesting that CaFIRF1 acts upstream of CaSAP14. A cell-free degradation analysis demonstrated that silencing of CaFIRF1 led to decreased CaSAP14 protein degradation, implicating CaFIRF1 in the regulation of CaSAP14 protein via the 26S proteasomal degradation pathway. Our findings suggest a mechanism by which CaFIRF1 mediates the ubiquitin-dependent proteasomal degradation of CaSAP14, thereby influencing the response of pepper plants to dehydration stress.

14.
Int J Mol Sci ; 25(16)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39201486

RESUMEN

Spinal muscular atrophy (SMA) is one of the most frequent causes of death in childhood. The disease's molecular basis is deletion or mutations in the SMN1 gene, which produces reduced survival motor neuron protein (SMN) levels. As a result, there is spinal motor neuron degeneration and a large increase in muscle atrophy, in which the ubiquitin-proteasome system (UPS) plays a significant role. In humans, a paralogue of SMN1, SMN2 encodes the truncated protein SMNΔ7. Structural differences between SMN and SMNΔ7 affect the interaction of the proteins with UPS and decrease the stability of the truncated protein. SMN loss affects the general ubiquitination process by lowering the levels of UBA1, one of the main enzymes in the ubiquitination process. We discuss how SMN loss affects both SMN stability and the general ubiquitination process, and how the proteins involved in ubiquitination could be used as future targets for SMA treatment.


Asunto(s)
Atrofia Muscular Espinal , Proteína 1 para la Supervivencia de la Neurona Motora , Ubiquitinación , Humanos , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/terapia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patología , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Animales , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo , Enzimas Activadoras de Ubiquitina
15.
Sci Rep ; 14(1): 20159, 2024 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-39215164

RESUMEN

Capacitation is an essential post-testicular maturation event endowing spermatozoa with fertilizing capacity within the female reproductive tract, significant for fertility, reproductive health, and contraception. By using a human-relevant large animal model, the domestic boar, this study focuses on furthering our understanding of the involvement of the ubiquitin-proteasome system (UPS) in sperm capacitation. The UPS is a universal, evolutionarily conserved, cellular proteome-wide degradation and recycling machinery, that has been shown to play a significant role in reproduction during the past two decades. Herein, we have used a bottom-up proteomic approach to (i) monitor the capacitation-related changes in the sperm protein levels, and (ii) identify the targets of UPS regulation during sperm capacitation. Spermatozoa were capacitated under proteasomal activity-permissive and inhibiting conditions and extracted sperm proteins were subjected to high-resolution mass spectrometry. We report that 401 individual proteins differed at least two-fold in abundance (P < 0.05) after in vitro capacitation (IVC) and 13 proteins were found significantly different (P < 0.05) between capacitated spermatozoa with proteasomal inhibition compared to the vehicle control. These proteins were associated with biological processes including sperm capacitation, sperm motility, metabolism, binding to zona pellucida, and proteasome-mediated catabolism. Changes in RAB2A, CFAP161, and TTR during IVC were phenotyped by immunocytochemistry, image-based flow cytometry, and Western blotting. We conclude that (i) the sperm proteome is subjected to extensive remodeling during sperm capacitation, and (ii) the UPS has a narrow range of distinct protein substrates during capacitation. This knowledge highlights the importance of the UPS in sperm capacitation and offers opportunities to identify novel pharmacological targets to modulate sperm fertilizing ability for the benefit of human reproductive health, assisted reproductive therapy, and contraception, as well as reproductive management in food animal agriculture.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Proteómica , Capacitación Espermática , Espermatozoides , Ubiquitina , Capacitación Espermática/fisiología , Animales , Masculino , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Porcinos , Espermatozoides/metabolismo , Espermatozoides/fisiología , Proteómica/métodos , Proteoma/metabolismo
16.
Autophagy ; : 1-17, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39113571

RESUMEN

Aging is often accompanied by a decline in proteostasis, manifested as an increased propensity for misfolded protein aggregates, which are prevented by protein quality control systems, such as the ubiquitin-proteasome system (UPS) and macroautophagy/autophagy. Although the role of the UPS and autophagy in slowing age-induced proteostasis decline has been elucidated, limited information is available on how these pathways can be activated in a collaborative manner to delay proteostasis-associated aging. Here, we show that activation of the UPS via the pharmacological inhibition of USP14 (ubiquitin specific peptidase 14) using IU1 improves proteostasis and autophagy decline caused by aging or proteostatic stress in Drosophila and human cells. Treatment with IU1 not only alleviated the aggregation of polyubiquitinated proteins in aging Drosophila flight muscles but also extended the fly lifespan with enhanced locomotive activity via simultaneous activation of the UPS and autophagy. Interestingly, the effect of this drug disappeared when proteasomal activity was inhibited, but was evident upon proteostasis disruption by foxo mutation. Overall, our findings shed light on potential strategies to efficiently ameliorate age-associated pathologies associated with perturbed proteostasis.Abbreviations: AAAs: amino acid analogs; foxo: forkhead box, sub-group O; IFMs: indirect flight muscles; UPS: ubiquitin-proteasome system; USP14: ubiquitin specific peptidase 14.

17.
Sci China Life Sci ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39190125

RESUMEN

Viral pathogens not only threaten the health and life of humans and animals but also cause enormous crop yield losses and contribute to global food insecurity. To defend against viral pathogens, plants have evolved an intricate immune system to perceive and cope with such attacks. Although most of the fundamental studies were carried out in model plants, more recent research in crops has provided new insights into the antiviral strategies employed by crop plants. We summarize recent advances in understanding the biological roles of cellular receptors, RNA silencing, RNA decay, hormone signaling, autophagy, and ubiquitination in manipulating crop host-mediated antiviral responses. The potential functions of circular RNAs, the rhizosphere microbiome, and the foliar microbiome of crops in plant-virus interactions will be fascinating research directions in the future. These findings will be beneficial for the development of modern crop improvement strategies.

18.
Cells ; 13(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39195252

RESUMEN

Embryonic stem cells (ESCs) are remarkable for the high activity level of ubiquitin-proteasome system-the molecular machinery of protein degradation in the cell. Various forms of the proteasome complexes comprising different subunits and interacting regulators are responsible for the substrate selectivity and degradation. Immunoproteasomes are amongst these forms which play an important role in antigen presentation; however, a body of recent evidence suggests their functions in pluripotent stem cells. Previous studies have established three consecutive phases of pluripotency, featured by epiblast cells and their cultured counterparts: naïve, formative, and primed phase. In this work, we report that immunoproteasomes and their chaperone co-regulators are suppressed in the naïve state but are readily upregulated in the formative phase of the pluripotency continuum, featured by epiblast-like cells (EpiLCs). Our data lay ground for the further investigation of the biological functions of immunoproteasome in the regulation of proteostasis during early mammalian development.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Animales , Complejo de la Endopetidasa Proteasomal/metabolismo , Ratones , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Diferenciación Celular , Estratos Germinativos/metabolismo , Células Madre Embrionarias de Ratones/metabolismo
19.
Front Nutr ; 11: 1445080, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39188976

RESUMEN

Metabolic disorders include obesity, nonalcoholic fatty liver disease, insulin resistance and type 2 diabetes. It has become a major health issue around the world. Ubiquitin-proteasome system (UPS) is essential for nearly all cellular processes, functions as a primary pathway for intracellular protein degradation. Recent researches indicated that dysfunctions in the UPS may result in the accumulation of toxic proteins, lipotoxicity, oxidative stress, inflammation, and insulin resistance, all of which contribute to the development and progression of metabolic disorders. An increasing body of evidence indicates that specific dietary polyphenols ameliorate metabolic disorders by preventing lipid synthesis and transport, excessive inflammation, hyperglycemia and insulin resistance, and oxidative stress, through regulation of the UPS. This review summarized the latest research progress of natural polyphenols improving metabolic disorders by regulating lipid accumulation, inflammation, oxidative stress, and insulin resistance through the UPS. In addition, the possible mechanisms of UPS-mediated prevention of metabolic disorders are comprehensively proposed. We aim to provide new angle to the development and utilization of polyphenols in improving metabolic disorders.

20.
Biochem Biophys Res Commun ; 733: 150423, 2024 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-39053108

RESUMEN

Autophagy and the ubiquitin-proteasome system (UPS) are two major protein quality control mechanisms maintaining cellular proteostasis. In Saccharomyces cerevisiae, the de novo synthesis of saturated fatty acids is performed by a multienzyme complex known as fatty acid synthase (FAS). A recent study reported that yeast FAS is preferentially degraded by autophagy under nitrogen starvation. In this study, we examined the fate of FAS during nitrogen starvation when autophagy is dysfunctional. We found that the UPS compensates for FAS degradation in the absence of autophagy. Additionally, we discovered that the UPS-dependent degradation of Fas2 requires the E3 ubiquitin ligase Ubr1. Our findings highlight the complementary relationship between autophagy and the UPS.


Asunto(s)
Autofagia , Nitrógeno , Complejo de la Endopetidasa Proteasomal , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Ubiquitina-Proteína Ligasas , Ubiquitina , Saccharomyces cerevisiae/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Nitrógeno/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteolisis , Ácido Graso Sintasas/metabolismo , Ácido Graso Sintasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...