Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Prod Res ; : 1-10, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712560

RESUMEN

Conventional extraction methods have mislaid their best possible performance because of the slow extraction process using demand in inexperienced and innovative technologies. Concerning this view, several eco-friendly novel techniques alienate to develop by us for the entire extraction of nutrients and phytocompounds from plant sources. The specific organic, inorganic chemical compounds have been explored using ultra sonication and GC-MS assisted techniques. The results are evident to facilitate the ultrasonic and GC-MS supported extraction descent that is less solvent consumed, green analytical methods suitable for complete speedy bioactive compounds drawing out. This study has revealed the occurrence of nutrients, phytochemicals, with biological value, and also the GC-MS analysis exposed 20 peaks through 20 individual chemical compounds, and all the compounds are deliberated as energetic medicinal bioactive compounds. Likewise the FE-SEM is used to find out the topographical characteristics of biomaterial and the FTIR analysis.

2.
Heliyon ; 10(7): e28309, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38560218

RESUMEN

In the present investigation, with an effort to provide appropriate material for future applications, we have touched on two viable advancement targets: the production of silver nanoparticles (Ag-NPs) employing an ultrasonic approach and the use of Ag-NPs in environmental remediation. A green economical method was involved to prepare Ag-NPs using butyl acrylate as a stabilizer. The following techniques were used for analysing Ag-NPs: energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), powder X-ray diffraction (XRD), and Fourier transformed infrared (FT-IR) spectroscopy. X-ray diffraction (XRD) analysis for the lattice characteristics showed that Ag-NPs have a face-centered structure with an average crystallite size of 9.51-11.83 nm. FE-SEM and TEM analysis were used for morphological investigations, and revealed that Ag-NPs had a spherical shape with an average particle size of 16.27 nm. The EDX profile displayed a strong signal at ∼3.0 keV, which indicated that the samples comprised silver. UV-Visible spectrophotometer with the absorption maximum occurring between 401 and 411 nm further confirmed the formation of Ag-NPs. The dye degradation effect of synthesized Ag-NPs on methylene blue and Rhodamine B was analyzed to assess their ability for environmental remediation, and results showed that around 100% of the dye degradation effect. This study has provided a most plausible mechanism for the dye degradation.

3.
Food Res Int ; 170: 113051, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37316032

RESUMEN

In this study, zein-soy isoflavone complex (ZSI) emulsifiers were fabricated using ultrasound-assisted dynamic high-pressure micro fluidization to stabilise highinternal phase pickering emulsions. Ultrasound-assisted dynamic high-pressure micro-fluidization enhanced surface hydrophobicity, zeta potential, and soy isoflavone binding capacity, while it decreased particle size, especially during ultrasound and subsequent microfluidization. The treated ZSI could produce small droplet clusters and gel-like structures, with excellent viscoelasticity, thixotropy and creaming stability owing to their neutral contact angles. Ultrasound and subsequent micro fluidization treatment of the ZSI complexes were highly effective in preventing droplet flocculation and coalescence after long-term storage or centrifugation due to their higher surface load, thicker multi-layer interfacial structure, and stronger electronic repulsion between the oil droplets. This study provides insights and extends our current knowledge of how non-thermal technology affects the interfacial distribution of plant based particles and the physical stability of emulsions.


Asunto(s)
Isoflavonas , Zeína , Emulsiones , Ultrasonografía , Emulsionantes , Cetonas
4.
J Environ Manage ; 340: 117960, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37119622

RESUMEN

Lactose in cheese whey wastewater (CWW) makes it difficult to degrade under normal conditions. The effect of ultra-sonication (US), ozonation and enzymatic hydrolysis on increasing the bioavailability of organic matter in CWW and biogas production were evaluated. The pre-treatment conditions were: specific energy input varied from 2130 to 8773KJ/KgTS for a sonication time of 4.5-18.5 min, Ozone (O3) dosages ranging from 0.03 to 0.045gO3/gTS were applied for 4-16 min, pH (3.8-7.1), temperature (35°C-55°C), enzyme dosage (0.18-0.52%), was operated from 7.75 to 53 min for enzymatic hydrolysis by ß-galactosidase. The results of the US reported a maximum sCOD solubilisation of 77.15% after 18.5 min of operation, while the corresponding values for ozonation and enzymatic methods were 64.8% at 16 min and 54.79%, respectively. The organic matter degradation rates evaluated in terms of protein and lactose hydrolysis were 68.78%,46.03%; 47.83%,16.15% and 54.22%,86.2%respectively, for US, ozonation and enzymatic methods. The cumulative methane yield for sonicated, ozonised and enzymatically hydrolysed samples were 412.4 ml/g VS, 361.2 ml/g VS and 432.3mlCH4/gVS, respectively. Regardless of the lower COD solubilisation rates attained, enzymatic pre-treatment showed maximum methane generation compared to US and ozonation. This could be attributable to the increased activity of ß-galactosidase in hydrolysing whey lactose. The energy calculations revealed that the pre-conditioning of organic-rich CWW with enzymatic hydrolysis is more effective and efficient, yielding a net energy gain (gross output energy-input energy) of 9166.7 KJ and an energy factor (ratio of output to input energy) of 6.67. The modified Gompertz model well simulated all experimental values.


Asunto(s)
Queso , Ozono , Suero Lácteo/metabolismo , Aguas del Alcantarillado , Ultrasonido/métodos , Anaerobiosis , Lactosa , Aguas Residuales , beta-Galactosidasa/metabolismo , Metano , Reactores Biológicos
5.
J Food Sci Technol ; 60(2): 464-473, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36712213

RESUMEN

Wheat bran (WB), a low-cost industrial by-product, is a vital source of high-quality proteins, minerals, vitamins, and several bioactive compounds. The present study encompasses the identification of appropriate bran streams of a commercial roller flour mill (CRFM) essentially based on hector liter weight, (HLW), optimization of WB protein isolation process, amino acid characterization, rendering more emphasis on simple water-soluble albumins, having higher commercial viability, and its application in food formulation. Total WB protein was 16.18% protein, the sum of the extracted proteins viz. albumin (2.43%), a prolamin (2.47%), glutelin (5.25%), globulin (1.92%), and insoluble proteins (4.09%) was 12.08%. Following albumin extraction, residual WB was subjected to ultra-sonication which further increased albumin protein yield from 2.43 to 3.07%. The extracted WB albumin isolate (WBAI) was utilized to develop high protein bread having significantly high volume and protein content, compared to control bread. The structural and sensorial attributes of the developed bread were superior compared to control bread. Thus, WBAI has a tremendous scope as a natural, affordable potential inexpensive food improver/fortificant to address protein-energy malnutrition (PEM). The process has the great advantage of being eco-friendly, besides, residual bran can still be used as cattle feed, enhancing profitability and viability.

6.
Molecules ; 27(9)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35566186

RESUMEN

Optimum extraction conditions are vital in quality control methods to enable accurate quantification of the compounds of interest. An ultra-sonication method was developed for the extraction of seven major compounds found in Mondia whitei. Extraction temperature, time, power, frequency, percentage of ethanol in water and solvent to sample ratio were screened to access their significance on the percentage recovery of the compounds of interest. These parameters were screened using Descriptive screening design. Extraction temperature, solvent to sample ratio and the interaction between temperature and percentage ethanol in water were found to have a significant effect on the response. These parameters were then optimized using central composite design. The optimum conditions were found to be 66.1% ethanol in water, 70 °C temperature and 3 mL: 5 mg solvent to sample ratio. This method was successfully applied in the development of a quality control method for the seven compounds in Mondia whitei samples.


Asunto(s)
Apocynaceae , Sonicación , Etanol , Extractos Vegetales , Solventes , Sonicación/métodos , Agua
7.
J Hazard Mater ; 426: 128061, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-34953260

RESUMEN

The detection of air pollutant nitrogen dioxide (NO2) is of great importance arising from its great harm to the ecological environment and human health. However, the detection range of most NO2 sensors is ppm-level, and it is still challenging to achieve lower concentration (ppb-level) NO2 detection. Herein, 2D tin diselenide nanoflakes decorated with 1D zinc oxide nanowires (SnSe2/ZnO) heterojunctions were first reported by facile hydrothermal and ultra-sonication methods. The response of the fabricated SnSe2/ZnO sensor enhances 3.41 times on average compared with that of pure SnSe2 sensor to 50-150 ppb NO2 with a high detection sensitivity (22.57 ppm-1) at room temperature. In addition, the SnSe2/ZnO sensor has complete recovery, negligible cross-sensitivity, and small relative standard deviation (6.98%) during the 1 month sensing test, which can meet the requirements for NO2 detection in environmental monitoring. The enhanced NO2 sensing performance can be attributed to the n-n heterojunction constructed between SnSe2 and ZnO. The as-prepared sensor based on SnSe2/ZnO hybrid significantly promotes the development of the low detection limit of the NO2 sensor at room temperature.


Asunto(s)
Nanocables , Óxido de Zinc , Humanos , Límite de Detección , Dióxido de Nitrógeno , Temperatura
8.
Ultrason Sonochem ; 78: 105746, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34507263

RESUMEN

Polypyrrole (PPY) spherical particles synthesized using carbon dots as an efficient catalyst were strongly embedded on fluorinated nonwoven fabric by ultrasonication to form a membrane with high hydrophilicity. An optimal amount of PPY adhered to the membrane after 30 min of sonication enhanced the overall membrane area with high hydrophilicity. Oil with high hydrophobicity was repelled by the resulting membrane, whereas water was freely penetrated and diffused from the membrane. The membrane exhibited good reusability and efficiency for the recovery of oil from a cooking oil-water mixture within 30 s. The incorporation of PPY in the fluorinated fabric imparts significant antibacterial properties against two common pathogens, Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive). The anti-biofouling membrane could pave the way for its potential application to separate spilled oil from contaminated waters, comprising different microorganisms and living species. The novelty of this manuscript is described in a new system, the fabrication of PPY membranes with two important properties: biocidal and oil/water separation.


Asunto(s)
Ultrasonido , Antiinfecciosos/farmacología , Escherichia coli , Polímeros , Pirroles
9.
J Food Biochem ; 45(1): e13561, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33179282

RESUMEN

Green tea contains bioactive compounds, such as polyphenols, responsible for its health-promoting effects, including antiobesity and antidiabetic effects. We previously reported that ultra-sonication extraction (UE) could efficiently increase the extraction yield of green tea compounds. In the present study, we found that the extract obtained using UE contained higher phenolic and flavonoid contents than that obtained using the conventional method. We therefore considered the extract as a bioactive metabolite-rich functional green tea extract (BMF-GTE), and tested its glucose-lowering effect by generating an adipocyte cell line stably expressing 7myc-GLUT4-GFP. We found that BMF-GTE treatment increased GLUT4 translocation to the plasma membrane. Moreover, BMF-GTE administration attenuated weight gain in mice fed a high-fat diet (HFD). Importantly, HFD-induced glucose tolerance was ameliorated in the mice receiving BMF-GTE. Therefore, we conclude that BMF-GTE worked against obesity and diabetes, at least partially, by enhancing GLUT4 translocation in adipocytes. PRACTICAL APPLICATIONS: As green tea is one of the most consumed beverages worldwide, its health effects have been widely tested. In our previous studies, we found that ultra-sonication extraction (UE) has the potential to increase the aqueous extraction yield of green tea compounds compared to conventional extraction techniques. In this study, we examined the biological effect of bioactive metabolite-rich functional green tea extract (BMF-GTE) obtained using UE; we observed that administering BMF-GTE lowered the body weight and increased insulin sensitivity in mice fed a high-fat diet, potentially by facilitating the membrane translocation of GLUT4 in adipocytes. Therefore, this study suggests that the extract obtained with UE had antiobesity and antidiabetic properties, indicative of a potential application of UE in maximizing the beneficial effects of green tea on human health.


Asunto(s)
Dieta Alta en Grasa , , Adipocitos , Animales , Dieta Alta en Grasa/efectos adversos , Ratones , Obesidad/tratamiento farmacológico , Obesidad/etiología , Extractos Vegetales/farmacología , Sonicación
10.
Molecules ; 25(23)2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33291776

RESUMEN

This study aimed to produce and optimize a Cordyceps militaris-based oil-in-water (O/W) nanoemulsion (NE) encapsulated in sea buckthorn oil (SBT) using an ultrasonication process. Herein, a nonionic surfactant (Tween 80) and chitosan cosurfactant were used as emulsifying agents. The Cordyceps nanoemulsion (COR-NE) was characterized using Fourier-transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), and field-emission transmission electron microscope (FE-TEM). The DLS analyses revealed that the NE droplets were 87.0 ± 2.1 nm in diameter, with a PDI value of 0.089 ± 0.023, and zeta potential of -26.20 ± 2. The small size, low PDI, and stable zeta potential highlighted the excellent stability of the NE. The NE was tested for stability under different temperature (4 °C, 25 °C, and 60 °C) and storage conditions for 3 months where 4 °C did not affect the stability. Finally, in vitro cytotoxicity and anti-inflammatory activity were assessed. The results suggested that the NE was not toxic to RAW 264.7 or HaCaT (human keratinocyte) cell lines at up to 100 µL/mL. Anti-inflammatory activity in liposaccharides (LPS)-induced RAW 264.7 cells was evident at 50 µg/mL and showed inhibition of NO production and downregulation of pro-inflammatory gene expression. Further, the NE exhibited good antioxidant (2.96 ± 0.10 mg/mL) activity and inhibited E. coli and S. aureus bacterial growth. Overall, the COR-NE had greater efficacy than the free extract and added significant value for future biomedical and cosmetics applications.


Asunto(s)
Antiinfecciosos/farmacología , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Cordyceps/química , Emulsiones/química , Nanopartículas/química , Animales , Antiinfecciosos/química , Antiinflamatorios/química , Antioxidantes/química , Línea Celular , Escherichia coli/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Células HaCaT , Humanos , Ratones , Óxido Nítrico/química , Aceites Volátiles/química , Tamaño de la Partícula , Polisorbatos/química , Células RAW 264.7 , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Staphylococcus aureus/efectos de los fármacos
11.
Carbohydr Polym ; 248: 116744, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32919552

RESUMEN

This work aimed to produce and characterize cellulose nanofibers obtained from cassava peel with a combination of pre-treatments with acid hydrolysis or TEMPO-mediated oxidation and ultrasonic disintegration. All nanofibers presented nanometric diameter (5-16 nm) and high negative zeta potential values (around -30 mV). Oscillatory rheology showed a gel-like behavior of the aqueous suspensions of nanofibers (1.0-1.8 % w/w), indicating their use as reinforcement for nanocomposite or as a thickening agent. Additionally aqueous suspensions of nanofibers obtained by acid hydrolysis presented higher gel strength than those produced by TEMPO-mediated oxidation. However, ultrasound application increased even more viscoelastic properties. Flow curves showed that suspensions of nanofibers obtained by acid hydrolysis presented a thixotropy behavior and viscosity profile with three regions. Therefore our results showed that it is possible to tune mechanical properties of cellulose nanofibers choosing and modifying chemical and physical process conditions in order to allow a number of applications.

12.
Foods ; 9(8)2020 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-32823760

RESUMEN

Amaranth is an excellent source of various bioactive compounds that could be beneficial in the prevention of some human diseases. This study investigated the extraction and characterization of bioactive compounds from amaranth using ultra-sonication and agitation at 30, 50 and 70 °C. Color L* values showed significant (p < 0.05) differences at 70 °C between ultra-sonication and agitation. Ultra-sonication temperature had significant effect on L* and a* values whereas agitation temperature did not have a significant effect on L*, a* and b* values. No significant (p < 0.05) differences were found in terms of total phenol, total flavonoid, DPPH•+, ABTS+ scavenging activity, betacyanins, betaxanthin and betanicaicd between ultra-sonication and agitation. However, temperature had a significant (p < 0.05) effect on total phenol (8.64-10.598 mg/g), DPPH+scavenging activity (84.36-94.44%), betacyanins (4585.95-5325.32 mg/100 g), betaxanthin (1312.56-1524.06 mg/100 g) and betalamic acid (1408.15-1790.22 mg/100 g) in ultra-sonication. Higher temperature (70 °C) showed greater amount of arbutin and hydroxybenzoic acid than those of lower temperature (30 °C) for both extraction methods. Meanwhile, temperature did not affect vanillic acid, p-coumaric acid and ferulic acid for both samples. Fourier-transformed infrared (FTIR) spectrometry showed that ultra-sonication and agitation resulted in similar effect on the structure of amaranth extracts. Higher temperature was correlated with bioactive compounds, which were observed by principal component analysis (PCA). Therefore, agitation at 70 °C could be used as an alternative for ultra-sonication to improve the bioactive compounds and antioxidant activities of amaranth. In addition, agitation and ultra-sonication techniques might be served as an alternative of conventional technique.

13.
Molecules ; 25(4)2020 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-32079068

RESUMEN

Thymol and the corresponding brominated derivatives constitute important biological active molecules as antibacterial, antioxidant, antifungal, and antiparasitic agents. However, their application is often limited, because their pronounced fragrance, their poor solubility in water, and their high volatility. The encapsulation of different thymol derivatives into biocompatible lignin-microcapsules is presented as a synergy-delivering remedy. The adoption of lignosulfonate as an encapsulating material possessing relevant antioxidant activity, as well as general biocompatibility allows for the development of new materials that are suitable for the application in various fields, especially cosmesis. To this purpose, lignin microcapsules containing thymol, 4-bromothymol, 2,4-dibromothymol, and the corresponding O-methylated derivatives have been efficiently prepared through a sustainable ultrasonication procedure. Actives could be efficiently encapsulated with efficiencies of up to 50%. To evaluate the applicability of such systems for topical purposes, controlled release experiments have been performed in acetate buffer at pH 5.4, to simulate skin pH: all of the capsules show a slow release of actives, which is strongly determined by their inherent lipophilicity.


Asunto(s)
Antiinfecciosos/farmacología , Antioxidantes/farmacología , Cápsulas/química , Preparaciones de Acción Retardada/síntesis química , Lignina/análogos & derivados , Timol/farmacología , Animales , Antiinfecciosos/química , Antioxidantes/química , Tampones (Química) , Composición de Medicamentos/métodos , Liberación de Fármacos , Halogenación , Humanos , Concentración de Iones de Hidrógeno , Cinética , Lignina/química , Tamaño de la Partícula , Solubilidad , Soluciones , Sonicación , Timol/química
14.
Environ Geochem Health ; 42(3): 849-861, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31093815

RESUMEN

Eutrophication has become great concern in recent years due to the fact that rivers, lakes, and reservoirs are the main drinking water source. Studies have been performed to enhance the removal of algae with ClO2 pre-oxidation, but there was high potential in the formation of chlorite and chlorate. In this study, ultra-sonication was employed to assist algae removal and control disinfection by-products formation in ClO2 pre-oxidation processes. It was found that solo ultra-sonication for 10 min (algae removal 86.11 ± 2.16%) could achieve similar algae removal efficiency as that with solo ClO2 (0.5 mg/L) pre-oxidation for 10 min (algae removal 87.10 ± 3.50%). In addition, no formations of chlorite and chlorate were detected in solo ultra-sonication process. Five-minutes ultra-sonication followed by 5-min 0.5 mg/L ClO2 treatment (total treatment time 10 min; algae removal 93.55 ± 3.22%) provided a better performance on algae removal compared to the solo ClO2 (0.5 mg/L) pre-oxidation for 10 min. Moreover, chlorite was undetectable. It suggests that the utilization of ultra-sonication in ClO2 pretreatment for algae removal has highly prevented the formations of chlorite and chlorate.


Asunto(s)
Compuestos de Cloro/química , Desinfección/métodos , Eutrofización , Óxidos/química , Sonicación/métodos , Purificación del Agua/métodos , Cloratos/química , Cloruros/química , Cloroformo/química , Oxidación-Reducción , Agua
15.
Molecules ; 24(21)2019 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-31684021

RESUMEN

Objectives: The study aimed to prepare carbamazepine in solid lipid nanoparticle form (CBZ-SLN) in order to enhance its anticonvulsant effect. Method: Eight formulations of CBZ-SLNs were prepared by homogenization and ultra-sonication techniques. Results: The prepared CBZ-SLN showed a high entrapment efficiency% (39.66 ± 2.42%-71.91 ± 1.21%), a small particle size (45.11 ± 6.72-760.7 ± 5.25 nm), and a negative zeta potential (from -21.5 ± 1.02 to -38.4 ± 1.32 mv). The in vitro release study showed the slow release of CBZ from SLNs compared to CBZ aqueous dispersion (p < 0.05). The infrared spectroscopy and the thermal analysis revealed the compatibility of the drug with other ingredients and the presence of drug in the more soluble amorphous estate, respectively. The in vivo study on mice revealed that the CBZ-SLN had a higher anticonvulsant efficacy than CBZ aqueous dispersion after a lethal and chronic dose of pentylenetetrazole (PTZ) (p < 0.05). The histopathological examination of the hippocampus revealed a decrease in the percentage of degeneration in mice treated with the CBZ-SLN compared to the PTZ and CBZ groups. Conclusion: CBZ can be formulated as SLN with higher anticonvulsant activity than free CBZ aqueous dispersion.


Asunto(s)
Anticonvulsivantes/farmacología , Carbamazepina/farmacología , Composición de Medicamentos , Epilepsia/tratamiento farmacológico , Animales , Anticonvulsivantes/química , Carbamazepina/química , Modelos Animales de Enfermedad , Humanos , Lípidos/química , Lípidos/farmacología , Ratones , Nanopartículas/química , Pentilenotetrazol/farmacología
16.
Foods ; 8(11)2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-31752440

RESUMEN

Influence of the combined effect of ultra-sonication (US) and high-voltage cold plasma treatment (HVCP) on the quality parameters of fresh carrot juice has been studied. During the treatment of ultra-sonication, carrot juice was subjected to a 0.5 inch probe for 3 min by adjusting the pulse duration 5 s on and off at 20 kHz frequency, amplitude level 80%. The ultrasound intensity was measured by using a thermocouple and was 46 Wcm-2. The temperature was maintained at 10 °C by an automatic control unit. During the treatment of HVCP, carrot juice was then subjected to dielectric barrier discharge (DBD) plasma discharge at 70 kV voltage for 4 min. Significant increases were observed when HVCP treated carrot juice was tested against total carotenoids, lycopene, and lutein when compared to the control treatments. Moreover, this increase was raised to its highest in all pigments, chlorogenic acid, sugar contents, and mineral profile, as the results of ultra-sonication when combined with high voltage atmospheric cold plasma (US-HVCP). Whereas, a significant decreased was observed in Mg, total plate count, yeast, and mold after US-HVCP treatment. Furthermore, results indicated that the combined effect of US-HVCP treatment has improved the quality and led to a higher concentration of lycopene, lutein, chlorogenic acid, and mineral compounds (Na, K, and P). Therefore, the findings of the current study suggested that US-HVCP treatment is a novel combined technique that could provide better quality and more stability during the processing of carrot juice with better physicochemical properties and bio-available nutrients, so this novel processing technique could serve as an alternative to traditional processes.

17.
Carbohydr Polym ; 225: 115240, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31521287

RESUMEN

Pectin was extracted from the waste custard apple peel using ultrasound technique and optimized the extraction process by RSM. The various significant process parameters such as liquid-solid ratio, ultra-sonication time, temperature and pH of solution were studied in the range of 10-25 mL g-1, 10-30 min, 50-80 °C, and 1-3, respectively. The maximum yield of pectin (8.93%) was attained at the optimum condition of 23.52 mL g-1 of liquid-solid ratio, 18.04  min of ultra-sonication time, 63.22 °C of temperature and 2.3 pH of solution. The extracted and commercially available fresh pectin (for comparison purposes) were characterized by various analytical techniques namely, FTIR, DSC, XRD, SEM, and NMR to evaluate their functional groups, thermal properties, crystallinities, morphological and structural characteristics, respectively. The extracted pectin was a toxic free compound as determined by its anti nutritional property study and about 20 mg/mL of antioxidant presented in it.

18.
J Dairy Sci ; 102(8): 6928-6942, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31202661

RESUMEN

Innovative processing technologies, such as ultrasonication, can change the properties of milk, allowing for the improvement or development of dairy foods. Yet taking bench-scale equipment to pilot plant scale has been challenging. Raw milk, standardized to 3% fat and warmed to inlet temperatures of 42 or 54°C, was exposed to continuous, high-intensity, low-frequency ultrasonication (16/20 kHz, 1.36 kW/pass) at flow rates of 0.15, 0.30, and 0.45 L/min that resulted in resident times within the reaction cell of 6, 3, and 2 min per pass, respectively. Multiple passes (3, 5, and 7, respectively) were required to obtain a total exposure time of 14 to 18 min. Evaluation of fat droplet sizes, enzyme coagulation properties, and microstructure of milk and milk gels, as well as determining compositional and lipid properties, were conducted to determine the potential of the ultrasound system to effectively modify milk. Laser scanning particle sizing and confocal microscopy showed that the largest droplets (2.26 ± 0.13 µm) found in raw milk were selectively reduced in size with a concomitant increase in the number of submicron droplets (0.37 ± 0.06 µm), which occurred sooner when exposed to shorter bursts of ultrasonication (0.45 L/min flow rates) and at an inlet temperature of 54°C. Ultrasound processing with milk entering at 42°C resulted in faster gelling times and firmer curds at 30 min; however, extended processing at inlet temperature of 54°C reduced curd firmness and lengthened coagulation time. This showed that ultrasonication altered protein-protein and protein-lipid interactions, thus the strength of the enzyme-set curds. Scanning electron microscopy revealed a denser curd matrix with less continuous and more irregular shaped and clustered strands, whereas transmission electron microscopy showed submicron lipid droplets embedded within the protein strands of the curd matrix. Processing at inlet temperature of 54°C with flow rates of 0.30 and 0.45 L/min also reduced the total aerobic bacterial count by more than 1 log cfu/mL, and the number of psychrophiles below the limit of detection (10 cfu/mL) for this study. Ultrasonication exposures of 14 to 18 min had minimal effect on the milk composition, fatty acid profiles, and lipid heat capacity and enthalpy. The findings show that this continuous ultrasound system, which is conducive to commercial scale-up, modifies the physical and functional properties of milk under the parameters used in this study and has potential use in dairy processing.


Asunto(s)
Bovinos/metabolismo , Glicoproteínas/ultraestructura , Leche/química , Animales , Carga Bacteriana/veterinaria , Industria Lechera , Femenino , Manipulación de Alimentos/instrumentación , Manipulación de Alimentos/métodos , Glucolípidos/química , Glicoproteínas/química , Calor , Gotas Lipídicas , Lípidos/química , Leche/enzimología , Leche/microbiología , Sonicación/veterinaria , Termodinámica
19.
Ultrason Sonochem ; 51: 12-19, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30514481

RESUMEN

The present study was conducted to evaluate the influence of ultrasound on bioactive compounds and biological activities of blue butterfly pea flower (Clitoria ternatea L.). For this purpose, optimized conditions (temperature 50 °C, time 150 min, solid to liquid ratio 1 g:15 ml, 70% amplitude and 240 W, 20 kHz frequency, 3 s on and 3 s off) of ultrasound (US) and conventional extraction (AGE: Agitation, water bath for 150 min, 50 °C at 150 rmp) were used. The results showed significant (p < 0.05) effect of US and AGE on total phenolics (TPCs), flavonoids (TFCs) and antioxidant activities (DPPH, ABTS, FRAP, reducing activity, Cu2+ and H2O2) of butterfly pea flower extract (BPFE). The results showed an increased trend in yield, TPCs, TFCs and antioxidant activities of US treated BPFE with comparison to AGE. However, insignificant (p > 0.05) effect of US and AGE over TFlaCs and PACs were observed. Moreover, the results of Fourier-transform infrared spectroscopy (FTIR) showed little changes in spectrum and US does not affect the functional group of bioactive compounds structure. Additionally, extracts (500-2000 µg/ml) protect pBR322 plasmid DNA damage induced by (1 mM H2O2 and 1 mM FeSO4), plasma oxidation (induced by 250 µM CuCl2) and inhibit erythrocyte hemolysis (induced by 200 mM AAPH, 34.6 to 66.73%). Sonication can be applied successfully for the extraction of bioactive compounds from plant materials with high biological activities.


Asunto(s)
Fraccionamiento Químico/métodos , Clitoria/química , Extractos Vegetales/aislamiento & purificación , Ondas Ultrasónicas , Animales , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Eritrocitos/citología , Eritrocitos/efectos de los fármacos , Hemólisis/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Fenoles/aislamiento & purificación , Fenoles/farmacología , Extractos Vegetales/farmacología , Proantocianidinas/aislamiento & purificación , Proantocianidinas/farmacología , Temperatura , Xantina Oxidasa/antagonistas & inhibidores
20.
Colloids Surf B Biointerfaces ; 175: 150-157, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30530000

RESUMEN

The aim of the present study was to enhance the skin delivery of metformin by making solid lipid nanoparticles containing metformin using the ultra-sonication method. To achieve the optimum skin delivery for metformin, the effects of the ratio of two surfactants (Tween:Span) on nanoparticles properties and their performance were investigated. Photon correlation spectroscopy, scanning electron microscopy (SEM), Powder X-ray Diffractometer (PXRD), Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) were used to characterize the solid state of metformin in solid lipid nanoparticles. Generally, the particle size of nanoparticles decreased by the addition of co-emulsifier (Span®60). Results showed that all formulations made by binary mixtures of surfactants had low particle size, low Polydispersity index and high zeta potential. It was interesting to note that the smallest nanoparticles (203.8 ± 15.356) was obtained when the HLB of the binary surfactants (HLB of 11.67) was closer to the HLB of beeswax (HLB of 12) used in the preparation of SLN. It was also found that by decreasing the HLB of the system from 14.9 to 10.06 the zeta potential of SLNs increased from -0.651 ± 0.315 to -6.18 ± 0.438 mV. But, a further reduction in the HLB from 10.06 to 8.45 caused a reduction in the zeta potential from -6.18 to -3.596 ± 0.255. Results showed that the highest entrapment efficiency of 45.98 ± 9.20% was obtained for formulation with larger particle size and with the highest HLB value (HLB 14.9). DSC study showed that metformin in SLN is in an amorphous form. FT-IR spectra of Met-SLN showed that the prominent functional groups existed in the formulations which could be an indication of good entrapment of metformin in a lipid matrix. FT-IR results also ruled out any chemical interaction between the drug and the excipients. The amounts of metformin detected in the skin layers and the receptor chamber at all sampling times were higher for nanogel compared to metformin gel. This is an indication of a better performance of Metformin nanogel ex-vivo and could be developed further for clinical studies.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Geles , Lípidos/química , Metformina/administración & dosificación , Nanopartículas/química , Administración Cutánea , Animales , Rastreo Diferencial de Calorimetría , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/química , Masculino , Metformina/química , Microscopía Electrónica de Rastreo , Nanopartículas/ultraestructura , Tamaño de la Partícula , Ratas Wistar , Piel/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Tensoactivos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...