Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(14)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39063855

RESUMEN

Due to the intricate and volatile nature of the service environment surrounding prestressing anchoring materials, stress corrosion poses a significant challenge to the sustained stability of underground reinforcement systems. Consequently, it is imperative to identify effective countermeasures against stress corrosion failure in cable bolts within deep underground environments, thereby ensuring the safety of deep resource extraction processes. In this study, the influence of various coatings on the stress corrosion resistance of cable bolts was meticulously examined and evaluated using specifically designed stress-corrosion-testing systems. The specimens were subjected to loading using four-point bending frames and exposed to simulated underground corrosive environments. A detailed analysis and comparison of the failure patterns and mechanisms of specimens coated with different materials were conducted through the meticulous observation of fractographic features. The results revealed stark differences in the stress corrosion behavior of coated and uncoated bolts. Notably, epoxy coatings and chlorinated rubber coatings exhibited superior anti-corrosion capabilities. Conversely, galvanized layers demonstrated the weakest effect due to their sacrificial anti-corrosion mechanism. Furthermore, the effectiveness of the coatings was found to be closely linked to the curing agent and additives used. The findings provide valuable insights for the design and selection of coatings that can enhance the durability and reliability of cable bolts in deep underground environments.

2.
Sensors (Basel) ; 24(7)2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38610280

RESUMEN

Rockfalls are an important factor affecting underground engineering safety. However, there has been limited progress in understanding and predicting these disasters in the past few years. Therefore, a large-scale three-dimensional experimental simulation apparatus to study failure mechanisms of rockfalls occurring during underground engineering was developed. This apparatus, measuring 4 m × 4 m × 3.3 m in size, can achieve vertical and horizontal symmetric loading. It not only simulates the structure and stress environment of a rock mass but also simulates the stepwise excavation processes involved in underground engineering. A complete simulation experiment of rockfalls in an underground engineering context was performed using this apparatus. Dynamic evolution characteristics of block displacement, temperature, natural vibration frequency, and acoustic emissions occurring during rockfalls were studied during the simulation. These data indicate there are several indicators that could be used to predict rockfalls in underground engineering contexts, leading to better prevention and control.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...