Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Metabolites ; 14(8)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39195548

RESUMEN

As an unhealthy dietary habit, a high-salt diet can affect the body's endocrine system and metabolic processes. As one of the most important metabolites, bile acids can prevent atherosclerosis and reduce the risk of developing cardiovascular diseases. Therefore, in the present study, we aimed to reveal the bile acid metabolism changes in salt-sensitive hypertension-induced vascular endothelial injury. The model was established using a high-salt diet, and the success of this procedure was confirmed by detecting the levels of the blood pressure, vascular regulatory factors, and inflammatory factors. An evaluation of the histological sections of arterial blood vessels and kidneys confirmed the pathological processes in these tissues of experimental rats. Bile acid metabolism analysis was performed to identify differential bile acids between the low-salt diet group and the high-salt diet group. The results indicated that the high-salt diet led to a significant increase in blood pressure and the levels of endothelin-1 (ET-1) and tumor necrosis factor-α (TNF-α). The high-salt diet causes disorders in bile acid metabolism. The levels of four differential bile acids (glycocholic acid, taurolithocholic acid, tauroursodeoxycholic acid, and glycolithocholic acid) significantly increased in the high-salt group. Further correlation analysis indicated that the levels of ET-1 and TNF-α were positively correlated with these differential bile acid levels. This study provides new evidence for salt-sensitive cardiovascular diseases and metabolic changes caused by a high-salt diet in rats.

2.
Front Microbiol ; 15: 1423428, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104587

RESUMEN

Objective: Tangbi capsule (TBC) is a traditional Chinese medicine prescription, which has the potential to improve the vascular insufficiency of lower extremities and limb numbness in diabetes. However, the potential mechanism remains unknown. This study aims to investigate the pharmacological effects and mechanism of TBC on rats with diabetic lower extremities arterial disease (LEAD). Methods: The mechanism of TBC on diabetic LEAD was investigated through metabolomics and transcriptomics analysis, and the main components of TBC were determined by mass spectrometry. The efficacy and mechanism of TBC on diabetic LEAD rats were investigated through in vitro experiments, histopathology, blood flow monitoring, western blot, and real-time polymerase chain reaction. Results: Mass spectrometry analysis identified 31 active chemical components in TBC including (2R)-2,3-Dihydroxypropanoic acid, catechin, citric acid, miquelianin, carminic acid, salicylic acid, formononetin, etc. In vitro analysis showed that TBC could reduce endothelial cell apoptosis and promote angiogenesis. Histopathological analysis showed that TBC led to an obvious improvement in diabetic LEAD as it improved fibrous tissue proliferation and reduced arterial wall thickening. In addition, TBC could significantly increase the expression levels of HIF-1α, eNOS, and VEGFA proteins and genes while reducing that of calpain-1 and TGF-ß, suggesting that TBC can repair vascular injury. Compared with the model group, there were 47 differentially expressed genes in the whole blood of TBC groups, with 25 genes upregulated and 22 downregulated. Eighty-seven altered metabolites were identified from the serum samples. Combining the changes in differentially expressed genes and metabolites, we found that TBC could regulate arginine biosynthesis, phenylalanine metabolism, pyrimidine metabolism, arachidonic acid metabolism, pyrimidine metabolism, arachidonic acid metabolism, nucleotide metabolism, vitamin B6 metabolism and other metabolic pathways related to angiogenesis, immune-inflammatory response, and cell growth to improve diabetic LEAD. Conclusion: TBC improved vascular endothelial injury, apoptosis, lipid accumulation, liver and kidney function, and restored blood flow in the lower extremities of diabetic LEAD rats. The mechanism of TBC in the treatment of diabetic LEAD may be related to the modulation of inflammatory immunity, lipid metabolism, and amino acid metabolism. This study presented preliminary evidence to guide the use of TBC as a therapy option for diabetic LEAD.

3.
J Orthop Surg Res ; 19(1): 393, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970109

RESUMEN

BACKGROUND: To aim of this study is to assess the mechanism through which Desertliving Cistanche modulates the PI3K/AKT signaling pathway in the treatment of hyperlipidemic osteoporosis in ovariectomized rats. METHODS: We randomly assigned specific-pathogen-free (SPF) rats into five groups (n = 10 per group). The normal control group received a standard diet, while the model group, atorvastatin group, diethylstilbestrol group, and treatment group were fed a high-fat diet. Four weeks later, bilateral ovariectomies were conducted, followed by drug interventions. After six weeks of treatment, relevant indicators were compared and analyzed. RESULTS: Compared to the normal control group, rats in the model group exhibited blurred trabecular morphology, disorganized osteocytes, significantly elevated levels of bone-specific alkaline phosphatase (BALP), bone Gla-protein (BGP), total cholesterol (TC), tumor necrosis factor-α (TNF-α), and receptor activator of NF-κB ligand (RANKL). Also, the model group revealed significantly reduced levels of ultimate load, fracture load, estradiol (E2), bone mineral density (BMD), osteoprotegerin (OPG), and phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt) in femoral tissue. The atorvastatin group presented with higher TC and TNF-α levels compared to the normal control group. Conversely, the treatment group demonstrated enhanced trabecular morphology, denser structure, smaller bone marrow cavities, and reduced BALP, BGP, TC, TNF-α, and RANKL levels. Furthermore, the treatment group exhibited higher levels of E2, BMD, OPG, and PI3K and Akt in bone tissue compared to the model group. The treatment group also had lower TC and TNF-α levels than the atorvastatin group. Biomechanical analysis indicated that after administration of Desertliving Cistanche, the treatment group had reduced body mass, increased ultimate and fracture load of the femur, denser bone structure, smaller bone marrow cavities, and altered periosteal arrangement compared to the model group. CONCLUSION: Our study revealed that Desertliving Cistanche demonstrated significant efficacy in preventing and treating postmenopausal hyperlipidemic osteoporosis in rats.


Asunto(s)
Cistanche , Hiperlipidemias , Osteoporosis , Ovariectomía , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Animales , Ovariectomía/efectos adversos , Femenino , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Hiperlipidemias/complicaciones , Hiperlipidemias/metabolismo , Osteoporosis/etiología , Osteoporosis/metabolismo , Ratas , Ratas Sprague-Dawley , Densidad Ósea/efectos de los fármacos , Distribución Aleatoria
4.
Artículo en Inglés | MEDLINE | ID: mdl-39039329

RESUMEN

As one of the most commonly used antidiabetic medications clinically, liraglutide is involved in the protection of vascular endothelium, and whether it can relieve high glucose-induced vascular endothelial damage was unknown. This study aims to address the response of liraglutide (LIRA) on human umbilical vein endothelial cells, as well as to elucidate its possible underlying mechanism. We established a vascular endothelial cell injury model by exposing human umbilical vein endothelial cells (HUVECs) to high glucose, and used LIRA pretreatment before HG treatment to address the endothelial protective effect of LIRA. Our results suggest that LIRA prevented HG-induced HUVEC apoptosis, oxidative stress, inflammasome activation, and pyroptosis. Furthermore, silencing of tribbles homolog 3 (TRIB3) could markedly reduce HG-induced HUVEC apoptosis, ROS level, the expressions of TXNIP, cleaved caspase3, NLRP3, and caspase1, indicating TRIB3 inhibition protected HUVECs against HG-induced vascular endothelial injury. In addition, LIRA restrained NF-κB/IκB-α signaling pathway activation in HUVECs. Thus, LIRA appears to mitigate HG-induced apoptosis, oxidative stress, inflammasome activation, and pyroptosis in HUVECs via regulating the TRIB3/NF-κB/IκB-α signaling pathway. Our study provides new insight into the mechanisms underlying the protective activity of LIRA against the vascular endothelial injury in diabetic vascular complication.

5.
Angiogenesis ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060773

RESUMEN

As a vital component of blood vessels, endothelial cells play a key role in maintaining overall physiological function by residing between circulating blood and semi-solid tissue. Various stress stimuli can induce endothelial injury, leading to the onset of corresponding diseases in the body. In recent years, the importance of mitochondria in vascular endothelial injury has become increasingly apparent. Mitochondria, as the primary site of cellular aerobic respiration and the organelle for "energy information transfer," can detect endothelial cell damage by integrating and receiving various external stress signals. The generation of reactive oxygen species (ROS) and mitochondrial dysfunction often determine the evolution of endothelial cell injury towards necrosis or apoptosis. Therefore, mitochondria are closely associated with endothelial cell function, helping to determine the progression of clinical diseases. This article comprehensively reviews the interconnection and pathogenesis of mitochondrial-induced vascular endothelial cell injury in cardiovascular diseases, renal diseases, pulmonary-related diseases, cerebrovascular diseases, and microvascular diseases associated with diabetes. Corresponding therapeutic approaches are also provided. Additionally, strategies for using clinical drugs to treat vascular endothelial injury-based diseases are discussed, aiming to offer new insights and treatment options for the clinical diagnosis of related vascular injuries.

6.
Exp Cell Res ; 440(1): 114103, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38848951

RESUMEN

Elevated homocysteine (Hcy) levels have been recognized as significant risk factor for cardiovascular and cerebrovascular diseases, closely related to endothelial injury. While expression of Ciliary Neurotrophic Factor (CNTF) significantly increases during Hcy-induced vascular endothelial cell injury, the precise molecular pathways through which CNTF operates remain to be clarified. To induce vascular endothelial cell injury, human umbilical vein endothelial cells (HUVECs) were treated with Hcy. Cell viability and apoptosis in HUVECs were assessed using the CCK-8 assay and flow cytometry. Western blot analysis determined the expression levels of the JAK2-STAT3 pathway, inflammation-related factors (IL-1ß, NLRP3, ICAM-1, VCAM-1), and apoptosis-related factors (cleaved Caspase-3 and Bax). Immunofluorescence staining and western blotting were employed to examine CD31 and α-SMA expression. Knockdown of CNTF was achieved using lentiviral interference, and its effects on inflammation and cell injury were evaluated. Chromatin immunoprecipitation (ChIP) and dual luciferase reporter analysis were conducted to investigate the interaction between the MAFK and CNTF promoters. Our results indicated that Hcy induced high expression of CNTF and activated the JAK2-STAT3 signaling pathway, thereby upregulating factors associated with inflammation and cell apoptosis. Inhibiting CNTF alleviated Hcy-induced inflammation and cell injury. MAFK was identified as a transcription factor promoting CNTF transcription, and its overexpression exacerbated inflammation and cell injury in Hcy-treated HUVECs through the CNTF-JAK2-STAT3 axis, which could be reversed by knocking down CNTF. Activation of MAFK leads to CNTF upregulation, which activates the JAK2-STAT3 signaling pathway, regulating inflammation and inducing injury in Hcy-exposed vascular endothelial cells. Targeting CNTF or its upstream regulator MAFK may represent potential therapeutic strategies for mitigating endothelial dysfunction associated with hyperhomocysteinemia and cardiovascular diseases.


Asunto(s)
Apoptosis , Factor Neurotrófico Ciliar , Homocisteína , Células Endoteliales de la Vena Umbilical Humana , Inflamación , Janus Quinasa 2 , Factor de Transcripción STAT3 , Transducción de Señal , Janus Quinasa 2/metabolismo , Humanos , Factor de Transcripción STAT3/metabolismo , Homocisteína/farmacología , Homocisteína/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Inflamación/metabolismo , Inflamación/patología , Factor Neurotrófico Ciliar/metabolismo , Factor Neurotrófico Ciliar/genética , Apoptosis/efectos de los fármacos , Células Cultivadas , Supervivencia Celular/efectos de los fármacos
7.
Int J Gen Med ; 17: 2701-2709, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38895048

RESUMEN

Background: In Asia, Hanta virus (HTNV) results in severe hemorrhagic fever with renal syndrome (HFRS). The efficacy of sivelestat in treating children with HTNV-induced HFRS remains unclear. Methods: An ambispective cohort study was performed on children diagnosed with HFRS and hospitalized at the Children's Hospital Affiliated to Xi'an Jiaotong University from August 2018 to 2023. Patients who received neutrophil elastin-inhibitor infusion between August 2019 and August 2023 were assigned to the sivelestat group, while patients who did not were assigned to the control group. The independent sample t test was used for inter-group analysis. The Chi-square test and Fisher's exact probability test were used for categorical variables. Spearman correlation test was used to evaluate the correlation between two sets of continuous variables. Kaplan-Meier survival curve and Log -Rank test was used to evaluate the difference in cumulative probability of survival between the two groups. Results: No significant differences were observed between the two groups in gender, age, contact history, body mass index, HFRS severity, clinical indexes at admission. Compared to the control group, the sivelestat group exhibited a significant decrease in the interleukin-8 level at 48 h (28.5±3 vs 34.5±3.5) and 72 h (21.3±4.5 vs 31.5±5.6) (P<0.05), as well as the ICAM-1 level at 48 h (553±122 vs 784±187) and 72 h (452±130 vs 623±85) (P<0.05). The concentration of VCAM-1 in the sivelestat group exhibited a consistent downward trend. Moreover, the level of VCAM-1 was significantly lower than that in the control group at 24 h (1760±289 vs 2180±445), 48 h (1450±441 vs 1890±267), and 72 h (1149±338 vs 1500±396) (P<0.05). Kaplan-Meier curve analysis revealed a statistically significant difference in the cumulative probability of survival between two groups (P = 0.041). In the secondary outcomes, the sivelestat group demonstrated a decrease in the utilization rate of mechanical ventilation and continuous renal replacement therapy (CRRT). Conclusion: Sivelestat may suppress neutrophil-mediated inflammatory response to reduce endothelial and organ damage, and improve clinical outcomes in children with severe hemorrhagic fever and renal syndrome.

8.
Food Chem Toxicol ; 188: 114682, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657941

RESUMEN

Butylated hydroxyanisole (BHA) is one of the most commonly used antioxidants and is widely used in food, but whether it causes vascular damage has not been clearly studied. The present study demonstrated for the first time that BHA reduced the viability of human umbilical vein endothelial cells (HUVECs) and mouse brain microvascular endothelial cells (BEND3) in a dose- and time-dependent manner. Moreover, BHA inhibited the migration and proliferation of vascular endothelial cells (ECs). Further analysis revealed that in ECs, the ferroptosis inhibitor ferrostatin-1 (Fer-1) reversed the BHA-induced increase in Fe2+ and malonaldehyde (MDA) levels. Acridine orange staining demonstrated that BHA increased lysosomal permeability. At the protein level, BHA increased the expression of transcription factor EB (TFEB) and decreased the expression of glutathione peroxidase (GPX4), solute carrier family 7 member 11 (SLC7A11, xCT), and ferritin heavy chain 1 (FTH1). Moreover, these effects of BHA could be reversed by knocking down TFEB. In vivo experiments confirmed that BHA caused elevated pulse wave velocity (PWV) and reduced acetylcholine-dependent vascular endothelial diastole. In conclusion, BHA degrades GPX4, xCT, and FTH1 through activation of the TFEB-mediated lysosomal pathway and promotes ferroptosis, ultimately leading to vascular endothelial cell injury.


Asunto(s)
Hidroxianisol Butilado , Células Endoteliales de la Vena Umbilical Humana , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Animales , Humanos , Ratones , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Hidroxianisol Butilado/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Ferroptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Movimiento Celular/efectos de los fármacos , Ferritinas/metabolismo , Ferritinas/genética , Ciclohexilaminas , Oxidorreductasas , Fenilendiaminas
9.
Nutr Metab Cardiovasc Dis ; 34(6): 1528-1537, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38508990

RESUMEN

BACKGROUND AND AIMS: Hyperuricemia frequently accompanies dyslipidemia, yet the precise mechanism remains elusive. Leveraging cellular metabolomics analyses, this research probes the potential mechanisms wherein hyperuricemia provokes endothelial cell abnormalities, inducing disordered bile metabolism and resultant lipid anomalies. METHODS AND RESULTS: We aimed to identify the differential metabolite associated with lipid metabolism through adopting metabolomics approach, and thereafter adequately validating its protective function on HUVECs by using diverse assays to measure cellular viability, reactive oxygen species, migration potential, apoptosis and gene and protein levels of inflammatory factors. Taurochenodeoxycholic acid (TCDCA) (the differential metabolite of HUVECs) and the TCDCA-involved primary bile acid synthesis pathway were found to be negatively correlated with high UA levels based on the results of metabolomics analysis. It was noted that compared to the outcomes observed in UA-treated HUVECs, TCDCA could protect against UA-induced cellular damage and oxidative stress, increase proliferation as well as migration, and decreases apoptosis. In addition, it was observed that TCDCA might protect HUVECs by inhibiting UA-induced p38 mitogen-activated protein kinase/nuclear factor kappa-B p65 (p38MAPK/NF-κB p65) pathway gene and protein levels, as well as the levels of downstream inflammatory factors. CONCLUSION: The pathogenesis of hyperuricemia accompanying dyslipidemia may involve high uric acid levels eliciting inflammatory reactions and cellular damage in human umbilical vein endothelial cells (HUVECs), mediated through the p38MAPK/NF-κB signaling pathway, subsequently impinging on cellular bile acid synthesis and reducing bile acid production.


Asunto(s)
Apoptosis , Movimiento Celular , Dislipidemias , Células Endoteliales de la Vena Umbilical Humana , Hiperuricemia , Metabolómica , Estrés Oxidativo , Transducción de Señal , Humanos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Hiperuricemia/sangre , Hiperuricemia/metabolismo , Dislipidemias/sangre , Apoptosis/efectos de los fármacos , Células Cultivadas , Estrés Oxidativo/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Ácido Úrico/sangre , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Factor de Transcripción ReIA/metabolismo , Mediadores de Inflamación/metabolismo , Ácidos y Sales Biliares/metabolismo , Proliferación Celular/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos
10.
Front Biosci (Landmark Ed) ; 29(1): 44, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38287826

RESUMEN

BACKGROUND: Current studies have demonstrated that disintegrin and metalloproteinase 17 (ADAM17) plays a critical role in the pathogenesis of sepsis. MicroRNA (miR)-145 is known to control immune responses as an anti-inflammatory modulatory molecule. However, a fundamental understanding of how miR-145 regulates ADAM17 and, more broadly, sepsis-induced inflammatory response remains unknown. METHODS: We used western blotting and quantitative real-time PCR (qRT-PCR) to measure expression levels of ADAM17 and miR-145. Enzyme-linked immunosorbent assays (ELISA) were performed to measure cytokine production. To determine if ADAM17 is a target gene of miR-145, bioinformatics analyses and luciferase reporter assays were conducted. The impacts of ADAM17 and miR-145 on sepsis-induced inflammatory responses were accessed in vitro using human umbilical endothelial cells (HUVECs) treated with lipopolysaccharide (LPS). Sepsis-induced inflammatory response was measured in vivo using a polymicrobial septic mouse model induced by cecal ligation and puncture (CLP) with pre-injection of a miR-145 agomir. RESULTS: In HUVECs treated with LPS, miR-145 expression was downregulated and miR-145 negatively regulated ADAM17 expression through direct binding to the ADAM17 transcript 3'-UTR. MiR-145 overexpression markedly reduced LPS-induced inflammatory cytokine production by targeting ADAM17 in HUVECs. In comparison to CLP-induced septic mice treated with a control agomir, treatment with a miR-145 agomir significantly reduced the expression of ADAM17, numerous downstream cytokines such as IL-6, TNF-α, IL-1ß and MCP-1, and the endothelial injury factors ICAM-1, VCAM-1. The miR-145 agomir also alleviated acute lung and kidney injury and improved the survival rate of septic mice. CONCLUSIONS: This study showed that miR-145, by specifically targeting ADAM17, negatively regulates sepsis-induced inflammatory responses and vascular endothelial injury, and ultimately improved organ injury and survival during sepsis. The underlying mechanism for the regulation of ADAM17 expression by miR-145 and sepsis-induced inflammatory reactions may offer sepsis patients a novel therapeutic option.


Asunto(s)
Proteína ADAM17 , MicroARNs , Sepsis , Animales , Humanos , Ratones , Proteína ADAM17/genética , Apoptosis , Citocinas/genética , Citocinas/metabolismo , Células Endoteliales/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Sepsis/complicaciones , Sepsis/genética , Sepsis/metabolismo
11.
Cell Signal ; 116: 111064, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38266744

RESUMEN

Abnormal inflammation of vascular endothelial cells occurs frequently in diabetic retinopathy (DR). Sphingomyelin phosphodiesterase acid-like 3B (SMPDL3B) is a lipid raft enzyme and plays an anti-inflammatory role in various diseases but its function in DR-related vascular endothelial dysfunction remains unknown. We first found that SMPDL3B expression was upregulated from week 10 to 18 in the retinal tissues of db/db mice. Particularly, the high expression of SMPDL3B was mainly observed in retinal vascular endothelium of DR mice. To interfere retinal SMPDL3B expression, adeno-associated viruses 2 (AAV-2) containing SMPDL3B specific shRNA (1233-1253 bp) were injected into the vitreous cavity of db/db mice. SMPDL3B silencing exacerbated the spontaneous DR by further activating the NF-κB/NLRP3 pro-inflammatory pathway. In vitro, human retinal microvascular endothelial cells (HRVECs) were infected with SMPDL3B-shRNA lentiviruses and then stimulated with 30 mM glucose (HG) for 24 h. SMPDL3B-silenced HRVECs secreted more interleukin-1ß and had enhanced nuclear p65 translocation. Notably, HG treatment induced the palmitoylation of SMPDL3B. Zinc finger DHHC-type palmitoyltransferase 5 (ZDHHC5) is a palmitoyltransferase that catalyzes the palmitoylation of its substrates, HG exposure increased the interaction between ZDHHC5 and SMPDL3B in HRVECs. 2-BP, a palmitoylation inhibitor, accelerated the protein degradation of SMPDL3B, whereas palmostatin B, a depalmitoylation inhibitor, decreased its turnover rate in HRVECs. Collectively, the present study suggests a compensatory increase of SMPDL3B in HG-treated HRVECs and the retinal tissues of DR mice, indicating that SMPDL3B may be a potential target for DR treatment.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Animales , Humanos , Ratones , Diabetes Mellitus/metabolismo , Retinopatía Diabética/metabolismo , Células Endoteliales/metabolismo , Ratones Endogámicos , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , ARN Interferente Pequeño/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo
12.
Biomed Pharmacother ; 170: 116072, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38147739

RESUMEN

In recent years, the widespread prevalence of diabetes has become a major killer that threatens the health of people worldwide. Of particular concern is hyperglycemia-induced vascular endothelial injury, which is one of the factors that aggravate diabetic vascular disease. During the process of diabetic vascular endothelial injury, apoptosis is an important pathological manifestation and autophagy is a key regulatory mechanism. Autophagy and apoptosis interact with each other. Hence, the crosstalk mechanism between the two processes is an important means of regulating diabetic vascular endothelial injury. This article reviews the research progress in apoptosis in the context of diabetic vascular endothelial injury and discusses the crosstalk mechanism of autophagy and apoptosis and its role in this injury. The purpose is to guide the prevention and treatment of diabetic vascular endothelial injury in the future.


Asunto(s)
Diabetes Mellitus Experimental , Hiperglucemia , Animales , Humanos , Apoptosis , Autofagia/fisiología , Proteínas Reguladoras de la Apoptosis , Hiperglucemia/complicaciones
13.
Int J Nanomedicine ; 18: 7505-7521, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38106448

RESUMEN

Introduction: Extracellular protein nanoparticles (PNs) and ions perform synergistical functions in the control of transmembrane osmotic pressure (OP) under isotonic conditions. Intravenous injection may disrupt the ion balance and alter PN levels in blood plasma, changing transmembrane OP and damaging vascular endothelial cells. Methods: Na ions were injected into AngII-induced HUVECs to simulate cell injury in vitro, and tail vein infusion of Na ions into hypertensive rats was performed to assess vascular damage. Optical measurements using an intermediate filament (IF) tension probe were conducted to detect indicators related to transmembrane OP. Immunofluorescence, Western blotting and small interfering RNA (siRNA) transfection were employed to investigate inflammasomes and the relationship between Abl2 and inflammation. Results: Electrolyte injections with sodium ions (but not glucose and hydroxyethyl starch) induced the production of ASC and NLRP3 inflammasomes in Ang II-induced HUVECs; this in turn resulted in the disorder of calcium signals, and changes in transmembrane OP and cell permeability. Moreover, injection of Na ions into Ang II-induced HUVECs activated the mechanosensitive protein Abl2, involved in inflammation-induced transmembrane OP changes. A drug combination was identified that could induce OP recovery and block hyperpermeability induced by cytoplasmic inflammatory corpuscles in vivo and in vitro. Conclusion: Changes in extracellular PNs and ions following chemical stimuli (Ang II) participate in the regulation of transmembrane OP. Furthermore, injection of Na ions causes vascular endothelial injury in Ang II-induced cells in vitro and hypertension rats in vivo, suggesting it is not safe for hypertensive patients, and we propose a new drug combination as a solution.


Asunto(s)
Hipertensión , Inflamasomas , Humanos , Ratas , Animales , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Inyecciones Intravenosas , Presión Osmótica , Inflamasomas/metabolismo , Angiotensina II/farmacología , Hipertensión/inducido químicamente , Inflamación/metabolismo , Sodio/metabolismo , Iones/metabolismo , Combinación de Medicamentos , Presión Sanguínea
14.
Biomed Pharmacother ; 166: 115228, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37557013

RESUMEN

As a widely used lipid-lowering drug in clinical practice, atorvastatin is widely recognized for its role in protecting vascular endothelium in the cardiovascular system. However, a clear mechanistic understanding of its action is lacking. Here, we found that atorvastatin counteracted angiotensin II-induced vascular endothelial injury in mice with hypertension. Mechanistically, atorvastatin up-regulated WWP2, a E6AP C-terminus (HECT)-type E3 ubiquitin ligase with an essential role in regulating protein ubiquitination and various biological processes, thereby rescuing vascular endothelial injury. By ubiquitinating ATP5A (ATP synthase mitochondrial F1 complex subunit alpha), WWP2 degraded ATP5A via the proteasome pathway, stabilizing Bcl-2/Bax in the mitochondrial pathway of apoptosis. Moreover, atorvastatin further ameliorated death of vascular endothelial cells and improved vascular endothelial functions under WWP2 overexpression, whereas WWP2 knockout abrogated these beneficial effects of atorvastatin. Furthermore, we generated endothelial cell-specific WWP2 knockout mice, and this WWP2-mediated mechanism was faithfully recapitulated in vivo. Thus, we propose that activation of a WWP2-dependent pathway that is pathologically repressed in damaged vascular endothelium under hypertension is a major mechanism of atorvastatin. Our findings are also pertinent to develop novel therapeutic strategies for vascular endothelial injury-related cardiovascular diseases.


Asunto(s)
Células Endoteliales , Hipertensión , Ratones , Animales , Atorvastatina/farmacología , Células Endoteliales/metabolismo , Ubiquitinación , Ubiquitina-Proteína Ligasas/metabolismo , Ratones Noqueados , Hipertensión/tratamiento farmacológico
15.
Hum Cell ; 36(6): 1915-1927, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37584829

RESUMEN

The protein PIAS1 functions as a type of ubiquitin-protease, which is known to play an important regulatory role in various diseases, including cardiovascular diseases and cancers. Its mechanism of action primarily revolves around regulating the transcription, translation, and modification of target proteins. This study investigates role and mechanism of PIAS1 in the RUNX3/TSP-1 axis and confirms its therapeutic effects on diabetes-related complications in animal models. A diabetic vascular injury was induced in human umbilical vein endothelial cells (HUVECs) by stimulation with H2O2 and advanced glycation end product (AGE), and a streptozotocin (STZ)-induced mouse model of diabetes was constructed, followed by detection of endogenous PIAS1 expression and SUMOylation level of RUNX3. Effects of PIAS1 concerning RUNX3 and TSP-1 on the HUVEC apoptosis and inflammation were evaluated using the ectopic expression experiments. Down-regulated PIAS1 expression and SUMOylation level of RUNX3 were identified in the H2O2- and AGE-induced HUVEC model of diabetic vascular injury and STZ-induced mouse models of diabetes. PIAS1 promoted the SUMOylation of RUNX3 at the K148 site of RUNX3. PIAS1-mediated SUMOylation of RUNX3 reduced RUNX3 transactivation activity, weakened the binding of RUNX3 to the promoter region of TSP-1, and caused downregulation of TSP-1 expression. PIASI decreased the expression of TSP-1 by inhibiting H2O2- and AGE-induced RUNX3 de-SUMOylation, thereby arresting the inflammatory response and apoptosis of HUVECs. Besides, PIAS1 reduced vascular endothelial injury and atherosclerotic plaque formation in mouse models of diabetes by inhibiting the RUNX3/TSP-1 axis. Our study proved that PIAS1 suppressed vascular endothelial injury and atherosclerotic plaque formation in mouse models of diabetes via the RUNX3/TSP-1 axis.

16.
Mol Cell Biochem ; 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37392343

RESUMEN

Cytokine release syndrome (CRS) is an acute systemic inflammatory reaction in which hyperactivated immune cells suddenly release a large amount of cytokines, leading to exaggerated inflammatory responses, multiple organ dysfunction, and even death. Although palliative treatment strategies have significantly reduced the overall mortality, novel targeted treatment regimens with superior therapy efficacy are urgently needed. Vascular endothelial cells (ECs) are important target cells of systemic inflammation, and their destruction is considered to be the initiating event underlying many serious complications of CRS. Mesenchymal stem/stromal cells (MSCs) are multipotent cells with self-renewing differentiation capacity and immunomodulatory properties. MSC transplantation can effectively suppress the activation of immune cells, reduce the bulk release of cytokines, and repair damaged tissues and organs. Here, we review the molecular mechanisms underlying CRS-induced vascular endothelial injury and discuss potential treatments using MSCs. Preclinical studies demonstrate that MSC therapy can effectively repair endothelium damage and thus reduce the incidence and severity of ensuing CRS-induced complications. This review highlights the therapeutic role of MSCs in fighting against CRS-induced EC damage, and summarizes the possible therapeutic formulations of MSCs for improved efficacy in future clinical trials.

17.
Int J Biol Macromol ; 249: 125918, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37495002

RESUMEN

The injury of vascular endothelial cells caused by high glucose (HG) is one of the driving factors of vascular complications of diabetes. Oral administration is the most common route of administration for the treatment of diabetes and its vascular complications. Essential oil extracts from Chinese medicine possess potential therapeutic effects on vascular endothelial injury. However, low solubility and volatility of essential oils generally result in poor oral absorption. Development of nanocarriers for essential oils is a promising strategy to overcome the physiological barriers of oral absorption. In this study, a nanoemulsion composed of bovine serum albumin (BSA)-dextran sulfate (DS) conjugate and sodium deoxycholate (SD) was constructed. The nanoemulsions were verified with promoted oral absorption and prolonged circulation time. After the primary evaluation of the nanoemulsion, essential oil from Alpinia zerumbet Fructus (EOFAZ)-loaded nanoemulsion (denoted as EOFAZ@BD5/S) was prepared and characterized. Compared to the free EOFAZ, EOFAZ@BD5/S increased the protective effects on HG-induced HUVEC injury in vitro and ameliorative effects on the vascular endothelium disorder and tunica media fibroelastosis in a T2DM mouse model. Collectively, this study provides a nanoemulsion for the oral delivery of essential oils, which holds strong promise in the treatment of diabetes-induced vascular endothelial injury.


Asunto(s)
Alpinia , Aceites Volátiles , Ratones , Animales , Aceites Volátiles/farmacología , Células Endoteliales , Dextranos/farmacología , Frutas , Emulsiones/farmacología
18.
Front Endocrinol (Lausanne) ; 14: 1191426, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37441493

RESUMEN

Vascular endothelial injury in diabetes mellitus (DM) is the major cause of vascular disease, which is closely related to the occurrence and development of a series of vascular complications and has a serious negative impact on a patient's health and quality of life. The primary function of normal vascular endothelium is to function as a barrier function. However, in the presence of DM, glucose and lipid metabolism disorders, insulin resistance, inflammatory reactions, oxidative stress, and other factors cause vascular endothelial injury, leading to vascular endothelial lesions from morphology to function. Recently, numerous studies have found that autophagy plays a vital role in regulating the progression of vascular endothelial injury. Therefore, this article compares the morphology and function of normal and diabetic vascular endothelium and focuses on the current regulatory mechanisms and the important role of autophagy in diabetic vascular endothelial injury caused by different signal pathways. We aim to provide some references for future research on the mechanism of vascular endothelial injury in DM, investigate autophagy's protective or injurious effect, and study potential drugs using autophagy as a target.


Asunto(s)
Diabetes Mellitus , Resistencia a la Insulina , Lesiones del Sistema Vascular , Humanos , Calidad de Vida , Estrés Oxidativo , Autofagia
19.
Zhongguo Zhong Yao Za Zhi ; 48(11): 3022-3031, 2023 Jun.
Artículo en Chino | MEDLINE | ID: mdl-37381960

RESUMEN

This study aims to investigate the effect and mechanism of arctigenin(ARC) in the treatment of vascular endothelial injury in rats with pregnancy-induced hypertension(PIH). Fifty SD rats pregnant for 12 days were randomly assigned into a control group, a model group, an ARC group, a rapamycin(RAP, autophagy inducer) group, and an ARC+3-methyladenine(3-MA, autophagy inhibitor) group, with 10 rats in each group. The rats in the other groups except the control group were intraperitoneally injected with nitrosyl-L-arginine methyl ester(50 mg·kg~(-1)·d~(-1)) to establish the PIH model on the 13th day of pregnancy. On the 15th day of pregnancy, the rats in ARC, RAP, and ARC+3-MA groups were intraperitoneally injected with ARC(50 mg·kg~(-1)·d~(-1)), RAP(1 mg·kg~(-1)·d~(-1)), and 3-MA(15 mg·kg~(-1)·d~(-1))+ARC(50 mg·kg~(-1)·d~(-1)), respectively. The pregnant rats in the control group and the model group were intraperitoneally injected with the same amount of normal saline. The blood pressure and 24 h urine protein(24 h-UP) of pregnant rats in each group were measured before and after intervention. Cesarean section was performed to terminate pregnancy on day 21, and the body weight and body length of fetal rats were compared among groups. Hematoxylin-eosin(HE) staining was employed to observe the pathological changes of placenta. The expression of endothelin-1(ET-1) and endothelial nitric oxide synthase(eNOS) in placenta was detected by immunohistochemistry. The serum levels of ET-1 and nitric oxide(NO) were determined with corresponding kits. The expression of microtubule-associated protein 1 light chain 3(LC3), Beclin-1, NOD-like receptor protein 3(NLRP3), apoptosis-associated speck-like protein with CARD domain(ASC), caspase-1, interleukin(IL)-1ß, and IL-18 was determined by immunofluorescence and Western blot. The level of reactive oxygen species(ROS) in placenta was measured by fluorescence staining. The results showed that on day 12 of pregnancy, the blood pressure and 24 h-UP had no significant differences among groups. On days 15, 19, and 21, the blood pressure and 24 h-UP in the model group were higher than those in the control group(P<0.05). On days 19 and 21, the blood pressure and 24 h-UP in ARC group and RAP group were lower than those in the model group(P<0.05), and they were higher in the ARC+3-MA group than in the ARC group(P<0.05). On day 21, the model group had lower body weight and body length of fetal rats(P<0.05), higher serum level of ET-1, and lower serum level of NO(P<0.05) than the control group. Moreover, the placental tissue showed typical pathological damage, down-regulated expression of LC3-Ⅱ/LC3-Ⅰ, Beclin-1 and eNOS(P<0.05), up-regulated expression of ET-1, NLRP3, ASC, caspase-1, IL-1ß, and IL-18(P<0.05), and elevated ROS level. Compared with the model group, ARC and RAP groups showed increased body weight and body length of fetal rats(P<0.05), lowered serum level of ET-1, elevated serum level of NO(P<0.05), reduced pathological damage of placental tissue, up-regulated expression of LC3-Ⅱ/LC3-Ⅰ, Beclin-1, and eNOS(P<0.05), down-regulated expression of ET-1, NLRP3, ASC, caspase-1, IL-1ß, and IL-18(P<0.05), and lowered ROS level. Compared with ARC group, 3-MA reversed the effects of ARC on the above indicators. In conclusion, ARC can inhibit the activation of NLRP3 inflammasome and mitigate vascular endothelial damage in PIH rats by inducing autophagy of vascular endothelial cells.


Asunto(s)
Hipertensión Inducida en el Embarazo , Femenino , Embarazo , Animales , Ratas , Humanos , Ratas Sprague-Dawley , Hipertensión Inducida en el Embarazo/tratamiento farmacológico , Células Endoteliales , Inflamasomas , Interleucina-18 , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Beclina-1 , Cesárea , Especies Reactivas de Oxígeno , Placenta , Caspasa 1 , Autofagia
20.
BMC Pulm Med ; 23(1): 183, 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37231402

RESUMEN

BACKGROUND: To investigate the changes and clinical significance of vascular endothelial injury markers in type 2 diabetes mellitus (T2DM) complicated with pulmonary embolism (PE). METHODS: This prospective study enrolled patients with T2DM hospitalized in one hospital from January 2021 to June 2022. Soluble thrombomodulin (sTM) (ELISA), von Willebrand factor (vWF) (ELISA), and circulating endothelial cells (CECs) (flow cytometry) were measured. PE was diagnosed by computed tomography pulmonary angiography (CTPA). RESULTS: Thirty participants were enrolled in each group. The plasma levels of sTM (151.22 ± 120.57 vs. 532.93 ± 243.82 vs. 1016.51 ± 218.00 pg/mL, P < 0.001) and vWF (9.63 ± 2.73 vs. 11.50 ± 2.17 vs. 18.02 ± 3.40 ng/mL, P < 0.001) and the percentage of CECs (0.17 ± 0.46 vs. 0.30 ± 0.08 vs. 0.56 ± 0.18%, P < 0.001) gradually increased from the control group to the T2DM group to the T2DM + PE group. sTM (OR = 1.002, 95%CI: 1.002-1.025, P = 0.022) and vWF (OR = 1.168, 95%CI: 1.168-2.916, P = 0.009) were associated with T2DM + PE. sTM > 676.68 pg/mL for the diagnosis of T2DM + PE achieved an AUC of 0.973, while vWF > 13.75 ng/mL achieved an AUC of 0.954. The combination of sTM and vWF above their cutoff points achieved an AUC of 0.993, with 100% sensitivity and 96.7% specificity. CONCLUSIONS: Patients with T2DM show endothelial injury and dysfunction, which were worse in patients with T2DM and PE. High sTM and vWF levels have certain clinical predictive values for screening T2DM accompanied by PE.


Asunto(s)
Diabetes Mellitus Tipo 2 , Embolia Pulmonar , Humanos , Células Endoteliales , Diabetes Mellitus Tipo 2/complicaciones , Factor de von Willebrand/análisis , Estudios Prospectivos , Endotelio Vascular/química , Biomarcadores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...