Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 391
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39125640

RESUMEN

Wastewater treatment plants (WWTPs) are the final stage of the anthropogenic water cycle where a wide range of chemical and biological markers of human activity can be found. In COVID-19 disease contexts, wastewater surveillance has been used to infer community trends based on viral abundance and SARS-CoV-2 RNA variant composition, which has served to anticipate and establish appropriate protocols to prevent potential viral outbreaks. Numerous studies worldwide have provided reliable and robust tools to detect and quantify SARS-CoV-2 RNA in wastewater, although due to the high dilution and degradation rate of the viral RNA in such samples, the detection limit of the pathogen has been a bottleneck for the proposed protocols so far. The current work provides a comprehensive and systematic study of the different parameters that may affect the detection of SARS-CoV-2 RNA in wastewater and hinder its quantification. The results obtained using synthetic viral RNA as a template allow us to consider that 10 genome copies per µL is the minimum RNA concentration that provides reliable and consistent values for the quantification of SARS-CoV-2 RNA. RT-qPCR analysis of wastewater samples collected at the WWTP in Salamanca (western Spain) and at six pumping stations in the city showed that below this threshold, positive results must be confirmed by sequencing to identify the specific viral sequence. This allowed us to find correlations between the SARS-CoV-2 RNA levels found in wastewater and the COVID-19 clinical data reported by health authorities. The close match between environmental and clinical data from the Salamanca case study has been confirmed by similar experimental approaches in four other cities in the same region. The present methodological approach reinforces the usefulness of wastewater-based epidemiology (WBE) studies in the face of future pandemic outbreaks.


Asunto(s)
COVID-19 , ARN Viral , SARS-CoV-2 , Aguas Residuales , Aguas Residuales/virología , COVID-19/epidemiología , COVID-19/virología , COVID-19/diagnóstico , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , ARN Viral/genética , ARN Viral/análisis , Humanos , España/epidemiología , Brotes de Enfermedades
2.
Methods Mol Biol ; 2824: 281-318, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39039419

RESUMEN

Rift Valley fever virus (RVFV; genus Phlebovirus, family Phenuiviridae, order Bunyavirales) is a mosquito-borne zoonotic pathogen endemic in Africa. Its negative-stranded genomic RNA (vRNA) is divided into three segments termed L, M, and S. Both vRNAs and antigenomic cRNAs are encapsidated by viral nucleoprotein (N) to form nucleocapsids, which constitute the template for genome transcription and replication. Based on a number of electron microscopy and structural studies, the viral RNAs of negative-strand RNA viruses, including phleboviruses, are commonly considered to be entirely and uniformly covered by N protein. However, high resolution data supporting this notion was missing to date.Here, we describe a method how to globally map all N-RNA interactions of RVFV by using iCLIP (individual-nucleotide resolution UV cross-linking and immunoprecipitation). The protocol is based on covalent cross-linking of direct protein-RNA interactions by UV irradiation. Following sample lysis, a selective isolation of N in complex with its RNA targets is achieved by immunoprecipitation. Then, N-RNA complexes are separated by SDS-PAGE, and after membrane transfer, RNA is isolated and subjected to library preparation and high-throughput sequencing. We explain how the standard iCLIP protocol can be adapted to RVFV N-RNA interaction studies. The protocol describes mapping of all N interactions with the vRNAs and cRNAs derived either from RVFV particles or from infected cells.


Asunto(s)
Genoma Viral , Nucleoproteínas , ARN Viral , Virus de la Fiebre del Valle del Rift , Virus de la Fiebre del Valle del Rift/genética , ARN Viral/genética , ARN Viral/metabolismo , Nucleoproteínas/metabolismo , Nucleoproteínas/genética , Mapeo Nucleótido/métodos , Inmunoprecipitación/métodos , Humanos , Fiebre del Valle del Rift/virología , Fiebre del Valle del Rift/metabolismo , Animales
3.
Sci Total Environ ; 946: 174379, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38955270

RESUMEN

Understanding the decay characteristics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater and ambient waters is important for multiple applications including assessment of risk of exposure associated with handling wastewater samples, public health risk associated with recreation in wastewater polluted ambient waters and better understanding and interpretation of wastewater-based epidemiology (WBE) results. We evaluated the decay rates of infectious SARS-CoV-2 and viral RNA in wastewater and ambient waters under temperature regimes representative of seasonal fluctuations. Infectious virus was seeded in autoclaved primary wastewater effluent, final dechlorinated wastewater effluent, lake water, and marine water at a final concentration of 6.26 ± 0.07 log10 plaque forming units per milliliter. Each suspension was incubated at either 4°, 25°, and 37 °C. Samples were initially collected on an hourly basis, then approximately every other day for 15 days. All samples were analyzed for infectious virus via a plaque assay using the Vero E6 cell line, and viral gene copy levels were quantified with the US CDC's N1 and N2 reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) assays. The infectious virus decayed significantly faster (p ≤ 0.0214) compared to viral RNA, which persisted for the duration of the study irrespective of the incubation conditions. The initial loss (within 15 min of seeding) as well as decay of infectious SARS-CoV-2 was significantly faster (p ≤ 0.0387) in primary treated wastewater compared to other water types, but viral RNA did not degrade appreciably in this matrix until day 15. Overall, temperature was the most important driver of decay, and after 24 h, no infectious SARS-CoV-2 was detected at 37 °C in any water type. Moreover, the CDC N2 gene assay target decayed significantly (p ≤ 0.0174) faster at elevated temperatures compared to CDC N1, which has important implications for RT-qPCR assay selection for WBE approach.


Asunto(s)
ARN Viral , SARS-CoV-2 , Aguas Residuales , Aguas Residuales/virología , SARS-CoV-2/genética , COVID-19/transmisión , COVID-19/epidemiología , Microbiología del Agua , Monitoreo del Ambiente/métodos , Chlorocebus aethiops
4.
Viruses ; 16(7)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39066259

RESUMEN

Viruses often pose a significant threat to the host through the exploitation of cellular machineries for their own benefit. In the context of immune responses, myriad host factors are deployed to target viral RNAs and inhibit viral protein translation, ultimately hampering viral replication. Understanding how "non-self" RNAs interact with the host translation machinery and trigger immune responses would help in the development of treatment strategies for viral infections. In this review, we explore how interferon-stimulated gene products interact with viral RNA and the translation machinery in order to induce either global or targeted translation inhibition.


Asunto(s)
Interferones , Biosíntesis de Proteínas , ARN Viral , Virosis , Animales , Humanos , Interacciones Huésped-Patógeno , Interferones/inmunología , Interferones/metabolismo , Interferones/genética , ARN Viral/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virosis/inmunología , Virosis/virología , Virosis/genética , Replicación Viral , Virus/inmunología , Virus/genética , Virus/efectos de los fármacos
5.
Biosens Bioelectron ; 261: 116519, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38917515

RESUMEN

Different types of pathogenic viruses that have common transmission path can be co-infected, inducing distinct disease procession in comparison to that infection of one. Also, in the post COVID-19 time, more types of respiratory infectious virus are becoming prevalent and are concurrent. Those bring an urgent need for detection of co-existing viruses. Here, we propose a visualized lateral flow assay for logic determination of co-existing viral RNA fragments. In the presence of specific viral RNA inputs, DNAzyme is de-blocked according to defined logic, and catalyzes the hydrolysis of hairpin-structural substrate. One of cleaved substrates contains DNAzyme domain to realize dual signal amplification, which obtains copious of the other cleaved substrates. The cleaved substrates act as linking strands for bridging DNA-modified gold nanoparticles onto lateral flow strip to induce coloration on test line. "AND", "OR" and "INHIBIT" controlled lateral flow assays are respectively demonstrated for co-existing viral RNA detection, and the visual results can be obtained by the same kind of prepared strip, without need of re-fabricating strips according to logic systems. The work provides a flexible, convenient, visual and logic-processing strategy for simultaneous analysis of co-existing viruses.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , Oro , Nanopartículas del Metal , ARN Viral , SARS-CoV-2 , ARN Viral/análisis , Técnicas Biosensibles/métodos , ADN Catalítico/química , Humanos , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/genética , Oro/química , Nanopartículas del Metal/química , COVID-19/virología
6.
Infect Genet Evol ; 122: 105613, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38844190

RESUMEN

The appearance of SARS-CoV-2 in 2019 triggered a significant economic and health crisis worldwide, with heterogeneous molecular mechanisms that contribute to its development are not yet fully understood. Although substantial progress has been made in elucidating the mechanisms behind SARS-CoV-2 infection and therapy, it continues to rank among the top three global causes of mortality due to infectious illnesses. Non-coding RNAs (ncRNAs), being integral components across nearly all biological processes, demonstrate effective importance in viral pathogenesis. Regarding viral infections, ncRNAs have demonstrated their ability to modulate host reactions, viral replication, and host-pathogen interactions. However, the complex interactions of different types of ncRNAs in the progression of COVID-19 remains understudied. In recent years, a novel mechanism of post-transcriptional gene regulation known as "competing endogenous RNA (ceRNA)" has been proposed. Long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and viral ncRNAs function as ceRNAs, influencing the expression of associated genes by sequestering shared microRNAs. Recent research on SARS-CoV-2 has revealed that disruptions in specific ceRNA regulatory networks (ceRNETs) contribute to the abnormal expression of key infection-related genes and the establishment of distinctive infection characteristics. These findings present new opportunities to delve deeper into the underlying mechanisms of SARS-CoV-2 pathogenesis, offering potential biomarkers and therapeutic targets. This progress paves the way for a more comprehensive understanding of ceRNETs, shedding light on the intricate mechanisms involved. Further exploration of these mechanisms holds promise for enhancing our ability to prevent viral infections and develop effective antiviral treatments.


Asunto(s)
COVID-19 , Redes Reguladoras de Genes , SARS-CoV-2 , Humanos , COVID-19/virología , COVID-19/genética , SARS-CoV-2/genética , ARN Viral/genética , Interacciones Huésped-Patógeno/genética , MicroARNs/genética , ARN Circular/genética , ARN no Traducido/genética , ARN Largo no Codificante/genética
7.
Sci Total Environ ; 939: 173468, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38788933

RESUMEN

The instability of viral targets including SARS-CoV-2 in sewage is an important challenge in wastewater monitoring projects. The unrecognized interruptions in the 'cold-chain' transport from the sample collection to RNA quantification in the laboratory may undermine the accurate quantification of the virus. In this study, bovine serum albumin (BSA)-modified porous superabsorbent polymer (PSAP) beads were applied to absorb raw sewage samples as a simple method for viral RNA preservation. The preservation efficiency for SARS-CoV-2 and pepper mild mottle virus (PMMoV) RNA were examined during storage for 14 days at 4 °C or room temperature against the control (no beads applied). While a non-significant difference was observed at 4 °C (∼80 % retention for both control and PSAP-treated sewage), the reduction of SARS-CoV-2 RNA concentrations was significantly lower in sewage retrieved from PSAP beads (25-40 % reduction) compared to control (>60 % reduction) at room temperature. On the other hand, the recovery of PMMoV, known for its high persistence in raw sewage, from PSAP beads or controls were consistently above 85 %, regardless of the storage temperature. Our results demonstrate the applicability of PSAP beads to wastewater-based epidemiology (WBE) projects for preservation of SARS-CoV-2 RNA in sewage, especially in remote settings with no refrigeration capabilities.


Asunto(s)
Polímeros , ARN Viral , SARS-CoV-2 , Aguas del Alcantarillado , Aguas Residuales , Aguas Residuales/virología , Aguas Residuales/química , Aguas del Alcantarillado/virología , ARN Viral/análisis , Porosidad , Monitoreo del Ambiente/métodos , COVID-19/prevención & control
8.
Front Cell Infect Microbiol ; 14: 1372166, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38686097

RESUMEN

Background: Classical swine fever virus (CSFV) remains one of the most important pathogens in animal health. Pathogen detection relies on viral RNA extraction followed by RT-qPCR. Novel technologies are required to improve diagnosis at the point of care. Methods: A loop-mediated isothermal amplification (LAMP) PCR technique was developed, with primers designed considering all reported CSFV genotypes. The reaction was tested using both fluorometric and colorimetric detection, in comparison to the gold standard technique. Viral strains from three circulating CSFV genotypes were tested, as well as samples from infected animals. Other pathogens were also tested, to determine the LAMP specificity. Besides laboratory RNA extraction methods, a heating method for RNA release, readily available for adaptation to field conditions was evaluated. Results: Three primer sets were generated, with one of them showing better performance. This primer set proved capable of maintaining optimal performance at a wide range of amplification temperatures (60°C - 68°C). It was also able to detect CSFV RNA from the three genotypes tested. The assay was highly efficient in detection of samples from animals infected with field strains from two different genotypes, with multiple matrices being detected using both colorimetric and fluorometric methods. The LAMP assay was negative for all the unrelated pathogens tested, including Pestiviruses. The only doubtful result in both fluorometric and colorimetric LAMP was against the novel Pestivirus italiaense, ovine Italy Pestivirus (OVPV), which has proven to have cross-reaction with multiple CSFV diagnostic techniques. However, it is only possible to detect the OVPV in a doubtful result if the viral load is higher than 10000 viral particles. Conclusion: The results from the present study show that LAMP could be an important addition to the currently used molecular diagnostic techniques for CSFV. This technique could be used in remote locations, given that it can be adapted for successful use with minimal equipment and minimally invasive samples. The joined use of novel and traditional diagnostic techniques could prove to be a useful alternative to support the CSF control.


Asunto(s)
Virus de la Fiebre Porcina Clásica , Peste Porcina Clásica , Genotipo , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , ARN Viral , Sensibilidad y Especificidad , Virus de la Fiebre Porcina Clásica/genética , Virus de la Fiebre Porcina Clásica/aislamiento & purificación , Virus de la Fiebre Porcina Clásica/clasificación , Animales , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas de Amplificación de Ácido Nucleico/economía , Peste Porcina Clásica/diagnóstico , Peste Porcina Clásica/virología , Porcinos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/economía , ARN Viral/genética , ARN Viral/aislamiento & purificación , Cartilla de ADN/genética , Colorimetría/métodos , Temperatura
9.
Proc Natl Acad Sci U S A ; 121(16): e2400203121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38598338

RESUMEN

Viral outbreaks can cause widespread disruption, creating the need for diagnostic tools that provide high performance and sample versatility at the point of use with moderate complexity. Current gold standards such as PCR and rapid antigen tests fall short in one or more of these aspects. Here, we report a label-free and amplification-free nanopore sensor platform that overcomes these challenges via direct detection and quantification of viral RNA in clinical samples from a variety of biological fluids. The assay uses an optofluidic chip that combines optical waveguides with a fluidic channel and integrates a solid-state nanopore for sensing of individual biomolecules upon translocation through the pore. High specificity and low limit of detection are ensured by capturing RNA targets on microbeads and collecting them by optical trapping at the nanopore location where targets are released and rapidly detected. We use this device for longitudinal studies of the viral load progression for Zika and Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infections in marmoset and baboon animal models, respectively. The up to million-fold trapping-based target concentration enhancement enables amplification-free RNA quantification across the clinically relevant concentration range down to the assay limit of RT-qPCR as well as cases in which PCR failed. The assay operates across all relevant biofluids, including semen, urine, and whole blood for Zika and nasopharyngeal and throat swab, rectal swab, and bronchoalveolar lavage for SARS-CoV-2. The versatility, performance, simplicity, and potential for full microfluidic integration of the amplification-free nanopore assay points toward a unique approach to molecular diagnostics for nucleic acids, proteins, and other targets.


Asunto(s)
Nanoporos , Infección por el Virus Zika , Virus Zika , Animales , ARN Viral/genética , ARN Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Primates/genética , Virus Zika/genética , Sensibilidad y Especificidad , Técnicas de Amplificación de Ácido Nucleico
10.
Annu Rev Biochem ; 93(1): 163-187, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38594919

RESUMEN

Positive-strand RNA viruses encompass a variety of established and emerging eukaryotic pathogens. Their genome replication is confined to specialized cytoplasmic membrane compartments known as replication organelles (ROs). These ROs derive from host membranes, transformed into distinct structures such as invaginated spherules or intricate membrane networks including single- and/or double-membrane vesicles. ROs play a vital role in orchestrating viral RNA synthesis and evading detection by innate immune sensors of the host. In recent years, groundbreaking cryo-electron microscopy studies conducted with several prototypic viruses have significantly advanced our understanding of RO structure and function. Notably, these studies unveiled the presence of crown-shaped multimeric viral protein complexes that seem to actively participate in viral RNA synthesis and regulate the release of newly synthesized RNA into the cytosol for translation and packaging. These findings have shed light on novel viral functions and fascinating macromolecular complexes that delineate promising new avenues for future research.


Asunto(s)
Microscopía por Crioelectrón , ARN Viral , Replicación Viral , Microscopía por Crioelectrón/métodos , ARN Viral/metabolismo , ARN Viral/genética , ARN Viral/química , Humanos , Virus ARN Monocatenarios Positivos/metabolismo , Virus ARN Monocatenarios Positivos/genética , Virus ARN Monocatenarios Positivos/química , Virus ARN Monocatenarios Positivos/ultraestructura , Orgánulos/ultraestructura , Orgánulos/virología , Orgánulos/metabolismo , Proteínas Virales/metabolismo , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/ultraestructura , Animales , Compartimentos de Replicación Viral/metabolismo , Compartimentos de Replicación Viral/ultraestructura
11.
Proc Natl Acad Sci U S A ; 121(10): e2320493121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38427602

RESUMEN

Coronavirus genomes sequester their start codons within stem-loop 5 (SL5), a structured, 5' genomic RNA element. In most alpha- and betacoronaviruses, the secondary structure of SL5 is predicted to contain a four-way junction of helical stems, some of which are capped with UUYYGU hexaloops. Here, using cryogenic electron microscopy (cryo-EM) and computational modeling with biochemically determined secondary structures, we present three-dimensional structures of SL5 from six coronaviruses. The SL5 domain of betacoronavirus severe-acute-respiratory-syndrome-related coronavirus 2 (SARS-CoV-2), resolved at 4.7 Å resolution, exhibits a T-shaped structure, with its UUYYGU hexaloops at opposing ends of a coaxial stack, the T's "arms." Further analysis of SL5 domains from SARS-CoV-1 and MERS (7.1 and 6.4 to 6.9 Å resolution, respectively) indicate that the junction geometry and inter-hexaloop distances are conserved features across these human-infecting betacoronaviruses. The MERS SL5 domain displays an additional tertiary interaction, which is also observed in the non-human-infecting betacoronavirus BtCoV-HKU5 (5.9 to 8.0 Å resolution). SL5s from human-infecting alphacoronaviruses, HCoV-229E and HCoV-NL63 (6.5 and 8.4 to 9.0 Å resolution, respectively), exhibit the same coaxial stacks, including the UUYYGU-capped arms, but with a phylogenetically distinct crossing angle, an X-shape. As such, all SL5 domains studied herein fold into stable tertiary structures with cross-genus similarities and notable differences, with implications for potential protein-binding modes and therapeutic targets.


Asunto(s)
Alphacoronavirus , COVID-19 , Coronavirus Humano 229E , Humanos , SARS-CoV-2/genética , ARN
12.
Mol Ther Nucleic Acids ; 35(2): 102162, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38545619

RESUMEN

The co-delivery of microRNAs (miRNAs) and protein-coding RNA presents an opportunity for a combined approach to gene expression and gene regulation for therapeutic applications. Protein delivery is established using long mRNA, self-, and trans-amplifying RNA (taRNA), whereas miRNA delivery typically uses short synthetic oligonucleotides rather than incorporating it as a precursor into long RNA. Although miRNA delivery into the cell cytoplasm using long genomes of RNA viruses has been described, concerns have remained regarding low processing efficiency. However, miRNA precursors can be released from long cytoplasmic alphaviral RNA by a cytoplasmic fraction of Drosha. taRNA, a promising vector platform for infectious disease vaccination, uses a nonreplicating mRNA expressing an alphaviral replicase to amplify a protein-coding short transreplicon-RNA (STR) in trans. To investigate the possibility of simultaneously delivering protein expression and gene silencing, we tested whether a taRNA system can carry and release functional miRNA to target cells. Here, we show that mature miRNA is released from STRs and silences specific targets in a replication-dependent manner for several days without compromising the expression of STR-encoded proteins. Our findings suggest that incorporating miRNAs into the taRNA vector platform has the potential for gene regulation alongside the expression of therapeutic genes.

13.
Int J Food Microbiol ; 416: 110664, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38492524

RESUMEN

Fruits, vegetables, and shellfish are often associated with outbreaks of illness caused particularly by human norovirus (HuNoV) and hepatitis A virus (HAV), the leading causative agents of foodborne illness worldwide. The aim of this study was to evaluate a new automated nucleic acid extraction platform (EGENE-UP EASYPREP) for enteric viruses in several at-risk food matrices and to test its limit of detection in comparison to a semi-automated method (EGENE-UP) using Boom methodology for nucleic acid extraction as suggested in the reference method ISO 15216-2:2019. Fresh and frozen raspberries, frozen blackberries, romaine lettuce and oyster digestive glands were artificially contaminated with HAV, HuNoV GII.4 or HuNoV GI.7 at 102, 103 or 104 genome copies/sample. Virus was then recovered from the food matrix using the ISO method. Viral RNA extracted from frozen berry samples by the automated system was purified on a column for additional removal of RT-qPCR inhibitors. For fresh raspberry, oysters, and romaine lettuce, the two extraction platforms were deemed equivalent. For frozen raspberry, the automated platform appeared to be more efficient for viral recovery, particularly for HAV and HuNoV GI at lower concentrations. With frozen blackberries, the two platforms may be considered equivalent for all targeted viruses. However, the automated method led to less sample-associated inhibition of the PCR, 56.5 % of samples versus 95.0 % for the semi-automated. We thus found that the automated extraction can be performed easily by users while obtaining equivalent or even superior results to the ISO 15216-2:2019 method, and therefore appears to be suitable for routine sanitary monitoring in food processing and for tracing outbreaks of illness.


Asunto(s)
Virus de la Hepatitis A , Norovirus , Ostreidae , Virus , Animales , Humanos , Virus de la Hepatitis A/genética , Norovirus/genética , Frutas/química , Lactuca , ARN Viral/análisis , Contaminación de Alimentos/análisis
14.
JHEP Rep ; 6(3): 100989, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38434938

RESUMEN

Background & Aims: In the absence of a hepatitis E virus (HEV)-specific antiviral treatment, sofosbuvir has recently been shown to have antiviral activity against HEV in vivo. However, a variant, A1343V, that is strongly associated with viral relapse impedes treatment success. In this study, we investigated the occurrence of variants during sofosbuvir and ribavirin treatment in vivo and assessed the sensitivity of resistance-associated variants to concurrent treatment in cell culture. Methods: Two patients with chronic HEV infection that did not clear infection under ribavirin treatment were subsequently treated with a combination of sofosbuvir and ribavirin. We determined response to treatment by measuring liver enzymes and viral load in blood and stool. Moreover, we analyzed viral evolution using polymerase-targeted high-throughput sequencing and assessed replication fitness of resistance-associated variants using a HEV replicon system. Results: Combination treatment was successful in decreasing viral load towards the limit of quantification. However, during treatment sustained virological response was not achieved. Variants associated with sofosbuvir or ribavirin treatment emerged during treatment, including A1343V and G1634R. Moreover, A1343V, as a single or double mutation with G1634R, was associated with sofosbuvir resistance during concomitant treatment in vitro. Conclusions: These results highlight the importance of variant profiling during antiviral treatment of patients with chronic infection. Understanding how intra-host viral evolution impedes treatment success will help guide the design of next-generation antivirals. Impact and implications: The lack of hepatitis E virus (HEV)-specific antivirals to treat chronic infection remains a serious health burden. Although ribavirin, interferon and sofosbuvir have been reported as anti-HEV drugs, not all patients are eligible for treatment or clear infection, since resistant-associated variants can rapidly emerge. In this study, we analyzed the efficacy of sofosbuvir and ribavirin combination treatment in terms of HEV suppression, the emergence of resistance-associated variants and their ability to escape treatment inhibition in vitro. Our results provide novel insights into evolutionary dynamics of HEV during treatment and thus will help guide the design of next-generation antivirals.

15.
Travel Med Infect Dis ; 59: 102699, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38452991

RESUMEN

Dengue virus (DENV) is one of the most significant vector-borne pathogens worldwide. In this report, we describe clinical features and laboratory detection of dengue in a 45-year-old traveler to Nicaragua on return home to the United States in 2019. Clinical presentation was mild, with rash, headache, and fatigue, with only low-grade transient fever. Infection dynamics were documented by serology and PCR of serially collected body fluids. DENV serotype 2 was detected in whole blood 1 day after symptoms emerged, with viral RNA isolated to the red cell fraction, and remained detectable through day 89. DENV-2 RNA was detected in serum only on day 4, and IgM was undetectable on day 4 but evident by day 13. Viral RNA was also detected in urine. This report of DENV-2 RNA persistence in blood cells but only transient appearance in serum, supports the potential diagnostic value of whole blood over serum for PCR and opportunity of an expanded testing window. Informed testing approaches can improve diagnostic accuracy and inform strategies that preserve individual and public health.


Asunto(s)
Virus del Dengue , Dengue , ARN Viral , Viaje , Humanos , Persona de Mediana Edad , Dengue/virología , Dengue/diagnóstico , Dengue/sangre , Virus del Dengue/genética , Virus del Dengue/aislamiento & purificación , Inmunoglobulina M/sangre , Nicaragua , ARN Viral/sangre , Serogrupo
16.
Microorganisms ; 12(2)2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38399814

RESUMEN

Successful downstream molecular analyses of viral ribonucleic acid (RNA) in diagnostic laboratories, e.g., reverse transcription-quantitative polymerase chain reaction (RT-qPCR) or next-generation sequencing, are dependent on the quality of the RNA in the specimen. In swine specimens, preserving the integrity of RNA requires proper sample handling at the time the sample is collected on the farm, during transport, and in the laboratory until RNA extraction is performed. Options for proper handling are limited to maintaining the cold chain or using commercial specimen storage matrices. Herein, we reviewed the refereed literature for evidence that commercial specimen storage matrices can play a role in preserving swine viral RNA in clinical specimens. Refereed publications were included if they compared RNA detection in matrix-treated vs. untreated samples. At present, the small number of refereed studies and the inconsistency in reported results preclude the routine use of commercial specimen storage matrices. For example, specimen storage matrices may be useful under specific circumstances, e.g., where it is mandatory to render the virus inactive. In a broader view, statistically sound side-by-side comparisons between specimens, viral RNA targets, and storage conditions are needed to establish if, when, and how commercial specimen storage matrices could be used in diagnostic medicine.

17.
Pathogens ; 13(2)2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38392858

RESUMEN

The Flavivirus genus of the Flaviviridae family of enveloped single-stranded RNA viruses encompasses more than 70 members, many of which cause significant disease in humans and livestock. Packaging and assembly of the flavivirus RNA genome is essential for the formation of virions, which requires intricate coordination of genomic RNA, viral structural, and nonstructural proteins in association with virus-induced, modified endoplasmic reticulum (ER) membrane structures. The capsid (C) protein, a small but versatile RNA-binding protein, and the positive single-stranded RNA genome are at the heart of the elusive flavivirus assembly process. The nucleocapsid core, consisting of the genomic RNA encapsidated by C proteins, buds through the ER membrane, which contains viral glycoproteins prM and E organized as trimeric spikes into the lumen, forming an immature virus. During the maturation process, which involves the low pH-mediated structural rearrangement of prM and E and furin cleavage of prM in the secretory pathway, the spiky immature virus with a partially ordered nucleocapsid core becomes a smooth, mature virus with no discernible nucleocapsid. This review focuses on the mechanisms of genome packaging and assembly by examining the structural and functional aspects of C protein and viral RNA. We review the current lexicon of critical C protein features and evaluate interactions between C and genomic RNA in the context of assembly and throughout the life cycle.

18.
Biosens Bioelectron ; 252: 116145, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38412685

RESUMEN

Coronaviruses are single-stranded RNA viruses with high mutation rates. Although a diagnostic method for coronaviruses has been developed, variants appear rapidly. Low test accuracy owing to single-point mutations is one of the main factors in the failure to prevent the early spread of coronavirus infection. Although reverse transcription-quantitative polymerase chain reaction can detect coronavirus infection, it cannot exclude the possibility of false positives, and an additional multiplexing kit is needed to discriminate single nucleotide polymorphism (SNP) variants. Therefore, in this study, we introduced a new nucleic acid amplification method to determine whether an infected person has a SNP mutation using a lateral flow assay (LFA) as a point-of-care test. Unlike traditional DNA amplification methods, direct insertion into rolling circle amplification amplifies the target genes without false amplification. After SNP-selective nucleic acid amplification, nuclease enzymes are used to make double-stranded DNA fragments that the LFA can detect, where specific mismatched DNA is found and cleaved to show different signals when a SNP-type is present. Therefore, wild- and SNP-type variants can be selectively detected. In this study, the limit of detection was 400 aM for viral RNA, and we successfully identified a dominant SNP variant selectively. Clinical tests were also conducted.


Asunto(s)
Técnicas Biosensibles , Infecciones por Coronavirus , Humanos , ARN Viral/genética , ADN , Mutación , Técnicas de Amplificación de Ácido Nucleico/métodos
19.
RNA ; 30(3): 213-222, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38164607

RESUMEN

Certain positive-sense single-stranded RNA viruses contain elements at their 3' termini that structurally mimic tRNAs. These tRNA-like structures (TLSs) are classified based on which amino acid is covalently added to the 3' end by host aminoacyl-tRNA synthetase. Recently, a cryoEM reconstruction of a representative tyrosine-accepting tRNA-like structure (TLSTyr) from brome mosaic virus (BMV) revealed a unique mode of recognition of the viral anticodon-mimicking domain by tyrosyl-tRNA synthetase. Some viruses in the hordeivirus genus of Virgaviridae are also selectively aminoacylated with tyrosine, yet these TLS RNAs have a different architecture in the 5' domain that comprises the atypical anticodon loop mimic. Herein, we present bioinformatic and biochemical data supporting a distinct secondary structure for the 5' domain of the hordeivirus TLSTyr compared to those in Bromoviridae Despite forming a different secondary structure, the 5' domain is necessary to achieve robust in vitro aminoacylation. Furthermore, a chimeric RNA containing the 5' domain from the BMV TLSTyr and the 3' domain from a hordeivirus TLSTyr are aminoacylated, illustrating modularity in these structured RNA elements. We propose that the structurally distinct 5' domain of the hordeivirus TLSTyrs performs the same role in mimicking the anticodon loop as its counterpart in the BMV TLSTyr Finally, these structurally and phylogenetically divergent types of TLSTyr provide insight into the evolutionary connections between all classes of viral tRNA-like structures.


Asunto(s)
Bromovirus , Virus ARN , Tirosina-ARNt Ligasa , Secuencia de Bases , Anticodón/genética , ARN Viral/química , ARN de Transferencia/química , Bromovirus/genética , Bromovirus/metabolismo , Virus ARN/genética , Tirosina-ARNt Ligasa/genética , Tirosina-ARNt Ligasa/química , Tirosina-ARNt Ligasa/metabolismo , Tirosina/genética , Tirosina/metabolismo , Conformación de Ácido Nucleico
20.
Water Environ Res ; 96(2): e10992, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38291790

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can spread the viral RNA in wastewater by the feces of those experience COVID-19 symptoms. While wastewater monitoring of SARS-CoV-2 in the raw sewage has been confirmed as an effective tool to predict COVID-19 infection, the goal of this study is to assess the presence of SARS-CoV-2 viral RNA throughout various wastewater treatment processes. Wastewater samples were collected from wastewater treatment plants (WWTPs) in the state of Arkansas from August 2020 to June 2021 and measured for the relative concentration of SARS-CoV-2 viral RNA using RT-qPCR. The gene concentrations in the raw wastewater measured in this study were similar to other published studies, targeting the N1 and N2 genes of the virus. The viral RNA concentration was measured after each wastewater treatment step within WWTPs, including primary sedimentation, activated sludge, filtration and disinfection. Results show the most viral RNA removal occurred in the secondary treatment (activated sludge). The viral RNA was only occasionally detected after disinfection (chlorination or UV disinfection). Overall, WWTPs can remove the SARS-CoV-2 viral RNA at an average of 98.7%, while complete removal was achieved on 82% of the sampling days. Further investigation is required to ensure complete viral RNA removal from wastewater such as improving existing treatment process or supplementing with additional treatment steps. PRACTITIONER POINTS: The viral RNA of SARS-CoV-2 was detected in Arkansas wastewater treatment plants. SARS-CoV-2 was rarely detected in treated effluent from wastewater treatment plants. Activated sludge was effective removing SARS-CoV-2 viral RNA from wastewater. This study was limited by the direct RNA extraction from wastewater, which lowered the sensitivity of detection.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/genética , Aguas Residuales , Aguas del Alcantarillado , Arkansas , ARN Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...