RESUMEN
BACKGROUND: The mitochondrial carrier homolog 2 (MTCH2) is a mitochondrial outer membrane protein regulating mitochondrial metabolism and functions in lipid homeostasis and apoptosis. Experimental data on the interaction of MTCH2 with viral proteins in virus-infected cells are very limited. Here, the interaction of MTCH2 with PA subunit of influenza A virus RdRp and its effects on viral replication was investigated. METHODS: The human MTCH2 protein was identified as the influenza A virus PA-related cellular factor with the Y2H assay. The interaction between GST.MTCH2 and PA protein co-expressed in transfected HEK293 cells was evaluated by GST-pull down. The effect of MTCH2 on virus replication was determined by quantification of viral transcript and/or viral proteins in the cells transfected with MTCH2-encoding plasmid or MTCH2-siRNA. An interaction model of MTCH2 and PA was predicted with protein modeling/docking algorithms. RESULTS: It was observed that PA and GST.MTCH2 proteins expressed in HEK293 cells were co-precipitated by glutathione-agarose beads. The influenza A virus replication was stimulated in HeLa cells whose MTCH2 expression was suppressed with specific siRNA, whereas the increase of MTCH2 in transiently transfected HEK293 cells inhibited viral RdRp activity. The results of a Y2H assay and protein-protein docking analysis suggested that the amino terminal part of the viral PA (nPA) can bind to the cytoplasmic domain comprising amino acid residues 253 to 282 of the MTCH2. CONCLUSION: It is suggested that the host mitochondrial MTCH2 protein is probably involved in the interaction with the viral polymerase protein PA to cause negative regulatory effect on influenza A virus replication in infected cells.
Asunto(s)
Virus de la Influenza A , Proteínas de Transporte de Membrana Mitocondrial , Replicación Viral , Humanos , Regulación hacia Abajo , Células HEK293 , Células HeLa , Virus de la Influenza A/fisiología , Virus de la Influenza A/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Unión Proteica , ARN Polimerasa Dependiente del ARN/metabolismo , ARN Polimerasa Dependiente del ARN/genética , Proteínas Virales/metabolismo , Proteínas Virales/genética , Replicación Viral/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismoRESUMEN
High throughput sequencing allowed the discovery of many new viruses and viral organizations increasing our comprehension of virus origin and evolution. Most RNA viruses are currently characterized through similarity searches of annotated virus databases. This approach limits the possibility to detect completely new virus-encoded proteins with no detectable similarities to existing ones, i.e. ORFan proteins. A strong indication of the ORFan viral origin in a metatranscriptome is the lack of DNA corresponding to an assembled RNA sequence in the biological sample. Furthermore, sequence homology among ORFans and evidence of co-occurrence of these ORFans in specific host individuals provides further indication of a viral origin. Here, we use this theoretical framework to report the finding of three conserved clades of protein-coding RNA segments without a corresponding DNA in fungi. Protein sequence and structural alignment suggest these proteins are distantly related to viral RNA-dependent RNA polymerases (RdRP). In these new putative viral RdRP clades, no GDD catalytic triad is present, but the most common putative catalytic triad is NDD and a clade with GDQ, a triad previously unreported at that site. SDD, HDD, and ADD are also represented. For most members of these three clades, we were able to associate a second genomic segment, coding for a protein of unknown function. We provisionally named this new group of viruses ormycovirus. Interestingly, all the members of one of these sub-clades (gammaormycovirus) accumulate more minus sense RNA than plus sense RNA during infection.
RESUMEN
Heterobasidion RNA virus 6 (HetRV6) is a double-stranded (ds)RNA mycovirus and a member of the recently established genus Orthocurvulavirus within the family Orthocurvulaviridae. The purpose of the study was to determine the biochemical requirements for RNA synthesis catalyzed by HetRV6 RNA-dependent RNA polymerase (RdRp). HetRV6 RdRp was expressed in Escherichia coli and isolated to near homogeneity using liquid chromatography. The enzyme activities were studied in vitro using radiolabeled UTP. The HetRV6 RdRp was able to initiate RNA synthesis in a primer-independent manner using both virus-related and heterologous single-stranded (ss)RNA templates, with a polymerization rate of about 46 nt/min under optimal NTP concentration and temperature. NTPs with 2'-fluoro modifications were also accepted as substrates in the HetRV6 RdRp-catalyzed RNA polymerization reaction. HetRV6 RdRp transcribed viral RNA genome via semi-conservative mechanism. Furthermore, the enzyme demonstrated terminal nucleotidyl transferase (TNTase) activity. Presence of Mn2+ was required for the HetRV6 RdRp catalyzed enzymatic activities. In summary, our study shows that HetRV6 RdRp is an active replicase in vitro that can be potentially used in biotechnological applications, molecular biology, and biomedicine.
Asunto(s)
Virus ARN/enzimología , ARN Polimerasa Dependiente del ARN/metabolismo , Proteinas del Complejo de Replicasa Viral/metabolismo , Virus Fúngicos/genética , Virus Fúngicos/metabolismo , Genoma Viral , Nucleotidiltransferasas , Virus ARN/genética , ARN Bicatenario , ARN Viral , ARN Polimerasa Dependiente del ARN/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación ViralRESUMEN
Gene silencing induced by hairpin RNA or virus infection expression is one of the major tools in genetics studies in plants. However, when dealing with essential genes, virus-induced gene silencing (VIGS) and transgenic expression of hairpin RNA could lead to plant death, while transient expression of hairpin RNA in leaves is often less competent in downregulating target gene mRNA levels. Here, we developed a transient double-stranded RNA (dsRNA) expression system assisted by a modified viral RNA-dependent RNA polymerase (RdRp) in plant leaves. We show that this system is more effective in inducing gene silencing than the intron-spliced hairpin RNA expression. Furthermore, by using this system, we tested the role of the early secretory pathway during infection of Soybean mosaic potyvirus (SMV). We found that key components of the coat protein complex II vesicles are required for the multiplication of SMV. Overall, this dsRNA-based gene silencing system is effective in downregulating plant gene expression and can be used to identify host genes involved in plant-virus interactions.
RESUMEN
Dengue virus (DENV) genome amplification is a process that involves the viral RNA, cellular and viral proteins, and a complex architecture of cellular membranes. The viral RNA is not a passive template during this process; it plays an active role providing RNA signals that act as promoters, enhancers and/or silencers of the replication process. RNA elements that modulate RNA replication were found at the 5' and 3' UTRs and within the viral coding sequence. The promoter for DENV RNA synthesis is a large stem loop structure located at the 5' end of the genome. This structure specifically interacts with the viral polymerase NS5 and promotes RNA synthesis at the 3' end of a circularized genome. The circular conformation of the viral genome is mediated by long range RNA-RNA interactions that span thousands of nucleotides. Recent studies have provided new information about the requirement of alternative, mutually exclusive, structures in the viral RNA, highlighting the idea that the viral genome is flexible and exists in different conformations. In this article, we describe elements in the promoter SLA and other RNA signals involved in NS5 polymerase binding and activity, and provide new ideas of how dynamic secondary and tertiary structures of the viral RNA participate in the viral life cycle.