Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Eur J Pharm Sci ; 197: 106767, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38636781

RESUMEN

Triple-negative breast cancer (TNBC) is a unique breast cancer subtype characterized by a lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. Since TNBC lacks ER, PR, and HER2, there are currently no drugs that specifically target TNBC. Therefore, the development of new drugs or effective treatment strategies to target TNBC has become an urgent clinical need. Research has shown that the application of histone deacetylase (HDAC) inhibitors and DNA methyltransferase (DNMT) inhibitors leads to genomic and epigenomic instability. This, in turn, triggers the activation of pattern recognition receptors (PRRs) and subsequently activates downstream interferon (IFN) signalling pathways. In this study, the bifunctional HDAC and DNMT inhibitor J208 exhibited antitumour activity in TNBC cell lines. J208 effectively induced apoptosis and cell cycle arrest at the G0/G1 phase, inhibiting cell migration and invasion in TNBC. Moreover, this bifunctional inhibitor induced the expression of endogenous retroviruses (ERVs) and elicited a viral mimicry response, which increased the intracellular levels of double-stranded RNA (dsRNA) to activate the innate immune signalling pathway in TNBC. In summary, we demonstrated that the bifunctional inhibitor J208, which is designed to inhibit HDAC and DNMT, has potent anticancer effects, providing a new research basis for reactivating antitumour immunity by triggering innate immune signalling and offering a promising strategy for TNBC treatment.


Asunto(s)
Inhibidores de Histona Desacetilasas , Inmunidad Innata , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/inmunología , Humanos , Línea Celular Tumoral , Inmunidad Innata/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Femenino , Apoptosis/efectos de los fármacos , Antineoplásicos/farmacología , Movimiento Celular/efectos de los fármacos , Animales
2.
Cell Mol Life Sci ; 81(1): 157, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38556602

RESUMEN

Over half of human genomic DNA is composed of repetitive sequences generated throughout evolution by prolific mobile genetic parasites called transposable elements (TEs). Long disregarded as "junk" or "selfish" DNA, TEs are increasingly recognized as formative elements in genome evolution, wired intimately into the structure and function of the human genome. Advances in sequencing technologies and computational methods have ushered in an era of unprecedented insight into how TE activity impacts human biology in health and disease. Here we discuss the current views on how TEs have shaped the regulatory landscape of the human genome, how TE activity is implicated in human cancers, and how recent findings motivate novel strategies to leverage TE activity for improved cancer therapy. Given the crucial role of methodological advances in TE biology, we pair our conceptual discussions with an in-depth review of the inherent technical challenges in studying repeats, specifically related to structural variation, expression analyses, and chromatin regulation. Lastly, we provide a catalog of existing and emerging assays and bioinformatic software that altogether are enabling the most sophisticated and comprehensive investigations yet into the regulation and function of interspersed repeats in cancer genomes.


Asunto(s)
Elementos Transponibles de ADN , Neoplasias , Humanos , Elementos Transponibles de ADN/genética , Biología Computacional , Genoma Humano , Neoplasias/genética , Evolución Molecular
3.
Trends Cancer ; 10(4): 286-288, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38499453

RESUMEN

Subsets of long interspersed nuclear element 1 (LINE-1) retrotransposons can 'retrotranspose' throughout the human genome at a cost to host cell fitness, as observed in some cancers. Pharmacological inhibition of LINE-1 retrotransposition requires a comprehensive understanding of the LINE-1 ORF2p reverse transcriptase. Two recent publications, by Thawani et al. and Baldwin et al., report structures of LINE-1 ORF2p and address long-standing mechanistic gaps regarding LINE-1 retrotransposition. Both studies will be critical to design new specific inhibitors of the LINE-1 ORF2p reverse transcriptase.


Asunto(s)
Elementos de Nucleótido Esparcido Largo , Transcripción Reversa , Humanos , Células HeLa , Elementos de Nucleótido Esparcido Largo/genética , Retroelementos , ADN Polimerasa Dirigida por ARN/química , ADN Polimerasa Dirigida por ARN/genética , ADN Polimerasa Dirigida por ARN/metabolismo
4.
Arch Microbiol ; 206(3): 94, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38334822

RESUMEN

One of the mechanisms viruses use in hijacking host cellular machinery is mimicking Short Linear Motifs (SLiMs) in host proteins to maintain their life cycle inside host cells. In the face of the escalating volume of virus-host protein-protein interactions (vhPPIs) documented in databases; the accurate prediction of molecular mimicry remains a formidable challenge due to the inherent degeneracy of SLiMs. Consequently, there is a pressing need for computational methodologies to predict new instances of viral mimicry. Our present study introduces a DMI-de-novo pipeline, revealing that vhPPIs catalogued in the VirHostNet3.0 database effectively capture domain-motif interactions (DMIs). Notably, both affinity purification coupled mass spectrometry and yeast two-hybrid assays emerged as good approaches for delineating DMIs. Furthermore, we have identified new vhPPIs mediated by SLiMs across different viruses. Importantly, the de-novo prediction strategy facilitated the recognition of several potential mimicry candidates implicated in the subversion of host cellular proteins. The insights gleaned from this research not only enhance our comprehension of the mechanisms by which viruses co-opt host cellular machinery but also pave the way for the development of novel therapeutic interventions.


Asunto(s)
Proteínas , Virus , Secuencias de Aminoácidos , Proteínas/química , Proteínas/metabolismo , Virus/genética , Virus/metabolismo , Interacciones Huésped-Patógeno
5.
Cell Rep ; 43(2): 113684, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38261511

RESUMEN

Viral mimicry describes the immune response induced by endogenous stimuli such as double-stranded RNA (dsRNA) from endogenous retroelements. Activation of viral mimicry has the potential to kill cancer cells or augment anti-tumor immune responses. Here, we systematically identify mechanisms of viral mimicry adaptation associated with cancer cell dependencies. Among the top hits is the RNA decay protein XRN1 as an essential gene for the survival of a subset of cancer cell lines. XRN1 dependency is mediated by mitochondrial antiviral signaling protein and protein kinase R activation and is associated with higher levels of cytosolic dsRNA, higher levels of a subset of Alus capable of forming dsRNA, and higher interferon-stimulated gene expression, indicating that cells die due to induction of viral mimicry. Furthermore, dsRNA-inducing drugs such as 5-aza-2'-deoxycytidine and palbociclib can generate a synthetic dependency on XRN1 in cells initially resistant to XRN1 knockout. These results indicate that XRN1 is a promising target for future cancer therapeutics.


Asunto(s)
Neoplasias , Retroelementos , Humanos , Línea Celular , Citosol , Decitabina , Exonucleasas , Neoplasias/genética , ARN Bicatenario , Exorribonucleasas , Proteínas Asociadas a Microtúbulos
6.
Br J Haematol ; 204(1): 206-220, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37726227

RESUMEN

Progression to aggressive secondary acute myeloid leukaemia (sAML) poses a significant challenge in the management of myeloproliferative neoplasms (MPNs). Since the physiopathology of MPN is closely linked to the activation of interferon (IFN) signalling and that AML initiation and aggressiveness is driven by leukaemia stem cells (LSCs), we investigated these pathways in MPN to sAML progression. We found that high IFN signalling correlated with low LSC signalling in MPN and AML samples, while MPN progression and AML transformation were characterized by decreased IFN signalling and increased LSC signature. A high LSC to IFN expression ratio in MPN patients was associated with adverse clinical prognosis and higher colony forming potential. Moreover, treatment with hypomethylating agents (HMAs) activates the IFN signalling pathway in MPN cells by inducing a viral mimicry response. This response is characterized by double-stranded RNA (dsRNA) formation and MDA5/RIG-I activation. The HMA-induced IFN response leads to a reduction in LSC signature, resulting in decreased stemness. These findings reveal the frequent evasion of viral mimicry during MPN-to-sAML progression, establish the LSC-to-IFN expression ratio as a progression biomarker, and suggests that HMAs treatment can lead to haematological response in murine models by re-activating dsRNA-associated IFN signalling.


Asunto(s)
Leucemia Mieloide Aguda , Trastornos Mieloproliferativos , Humanos , Animales , Ratones , Trastornos Mieloproliferativos/tratamiento farmacológico , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/complicaciones , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Pronóstico , Biomarcadores , Interferones/uso terapéutico
7.
Arch Microbiol ; 206(1): 30, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38117335

RESUMEN

Domain-motif interactions (DMIs) represent transient bonds formed when a Short Linear Motif (SLiM) engages a globular domain via a compact contact interface. Understanding the mechanics of DMIs is critical for maintaining diverse regulatory processes and deciphering how various viruses hijack host cellular machinery. However, identifying DMIs through traditional in vitro and in vivo experiments is challenging due to their degenerate nature and small contact areas. Predictions often carry a high rate of false positives, necessitating rigorous in-silico validation before embarking on experimental work. This study assessed the binding energy changes in predicted SLiM instances through in-silico peptide exchange experiment, elucidating how they interact with known 3D DMI complexes. We identified a subset of potential mimicry candidates that exhibited effective binding affinities with native DMI structures, suggesting their potential to be true mimicry candidates. The identified viral SLiMs can be potential targets in developing therapeutics, opening new opportunities for innovative treatments that can be finely tuned to address the complex molecular underpinnings of various diseases. To gain a comprehensive understanding of identified DMIs, it is imperative to conduct further validation through experimental approaches.


Asunto(s)
Biología Computacional , Dominios Proteicos , Virus
8.
Cancers (Basel) ; 15(16)2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37627147

RESUMEN

The frequency of somatic retrotranspositions of Long Interspersed Nuclear Elements 1 (LINE1) over a lifetime in healthy colonic epithelium and colorectal tumors has recently been reported. Indicative of a cell type-specific effect, LINE1 sequences in colonic epithelium showed lower levels of DNA methylation compared to other cell types examined in the study. Consistent with a role for DNA methylation in transposon silencing, the decreases in DNA methylation observed at LINE1 elements in colonic epithelium were accompanied by increases in LINE1 mRNA levels. In human primary colorectal tumors, LINE1 retrotransposition frequency was tenfold higher than in normal colonic tissues, with insertions potentially altering genomic stability and cellular functions. Here, we discuss the discoveries made by Nam and colleagues, emphasizing the intestinal-specific methylation signature regulating the LINE1 lifecycle and how this new information could shape future drug discovery endeavors against colorectal cancer.

9.
Proc Natl Acad Sci U S A ; 120(25): e2216206120, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37307441

RESUMEN

Recurrent miscarriage (RM) is a distressing pregnancy complication. While the etiology of RM remains unclear, growing evidence has indicated the relevance of trophoblast impairment to the pathogenesis of RM. PR-SET7 is the sole enzyme catalyzing monomethylation of H4K20 (H4K20me1) and has been implicated in many pathophysiological processes. However, how PR-SET7 functions in trophoblasts and its relevance to RM remain unknown. Here, we found that trophoblast-specific loss of Pr-set7 in mice led to defective trophoblasts, resulting in early embryonic loss. Mechanistic analysis revealed that PR-SET7 deficiency in trophoblasts derepressed endogenous retroviruses (ERVs), leading to double-stranded RNA stress and subsequent viral mimicry, which drove overwhelming interferon response and necroptosis. Further examination discovered that H4K20me1 and H4K20me3 mediated the inhibition of cell-intrinsic expression of ERVs. Importantly, dysregulation of PR-SET7 expression and the corresponding aberrant epigenetic modifications were observed in the placentas of RM. Collectively, our results demonstrate that PR-SET7 acts as an epigenetic transcriptional modulator essential for repressing ERVs in trophoblasts, ensuring normal pregnancy and fetal survival, which sheds new light on potential epigenetic causes contributing to RM.


Asunto(s)
Aborto Habitual , Retrovirus Endógenos , Femenino , Embarazo , Humanos , Animales , Ratones , Trofoblastos , Necroptosis , Placenta
10.
Viruses ; 15(4)2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-37112851

RESUMEN

The COVID-19 pandemic has resulted in upwards of 6.8 million deaths over the past three years, and the frequent emergence of variants continues to strain global health. Although vaccines have greatly helped mitigate disease severity, SARS-CoV-2 is likely to remain endemic, making it critical to understand its viral mechanisms contributing to pathogenesis and discover new antiviral therapeutics. To efficiently infect, this virus uses a diverse set of strategies to evade host immunity, accounting for its high pathogenicity and rapid spread throughout the COVID-19 pandemic. Behind some of these critical host evasion strategies is the accessory protein Open Reading Frame 8 (ORF8), which has gained recognition in SARS-CoV-2 pathogenesis due to its hypervariability, secretory property, and unique structure. This review discusses the current knowledge on SARS-CoV-2 ORF8 and proposes actualized functional models describing its pivotal roles in both viral replication and immune evasion. A better understanding of ORF8's interactions with host and viral factors is expected to reveal essential pathogenic strategies utilized by SARS-CoV-2 and inspire the development of novel therapeutics to improve COVID-19 disease outcomes.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Sistemas de Lectura Abierta , Pandemias , Antivirales
12.
J Hematol Oncol ; 16(1): 8, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36755342

RESUMEN

RIG-I-like receptors (RLRs) are intracellular pattern recognition receptors that detect viral or bacterial infection and induce host innate immune responses. The RLRs family comprises retinoic acid-inducible gene 1 (RIG-I), melanoma differentiation-associated gene 5 (MDA5) and laboratory of genetics and physiology 2 (LGP2) that have distinctive features. These receptors not only recognize RNA intermediates from viruses and bacteria, but also interact with endogenous RNA such as the mislocalized mitochondrial RNA, the aberrantly reactivated repetitive or transposable elements in the human genome. Evasion of RLRs-mediated immune response may lead to sustained infection, defective host immunity and carcinogenesis. Therapeutic targeting RLRs may not only provoke anti-infection effects, but also induce anticancer immunity or sensitize "immune-cold" tumors to immune checkpoint blockade. In this review, we summarize the current knowledge of RLRs signaling and discuss the rationale for therapeutic targeting RLRs in cancer. We describe how RLRs can be activated by synthetic RNA, oncolytic viruses, viral mimicry and radio-chemotherapy, and how the RNA agonists of RLRs can be systemically delivered in vivo. The integration of RLRs agonism with RNA interference or CAR-T cells provides new dimensions that complement cancer immunotherapy. Moreover, we update the progress of recent clinical trials for cancer therapy involving RLRs activation and immune modulation. Further studies of the mechanisms underlying RLRs signaling will shed new light on the development of cancer therapeutics. Manipulation of RLRs signaling represents an opportunity for clinically relevant cancer therapy. Addressing the challenges in this field will help develop future generations of cancer immunotherapy.


Asunto(s)
Inmunidad Innata , Neoplasias , Humanos , Transducción de Señal , Neoplasias/terapia , ARN , Inmunoterapia
13.
Cell Rep ; 42(1): 112016, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36662621

RESUMEN

Tumors with mutations in chromatin regulators present attractive targets for DNA hypomethylating agent 5-aza-2'-deoxycytidine (DAC) therapy, which further disrupts cancer cells' epigenomic fidelity and reactivates transposable element (TE) expression to drive viral mimicry responses. SETD2 encodes a histone methyltransferase (H3K36me3) and is prevalently mutated in advanced kidney cancers. Here, we show that SETD2-mutant kidney cancer cells are especially sensitive in vitro and in vivo to DAC treatment. We find that the viral mimicry response are direct consequences of mis-splicing events, such as exon inclusions or extensions, triggered by DAC treatment in an SETD2-loss context. Comprehensive epigenomic analysis reveals H3K9me3 deposition, rather than DNA methylation dynamics, across intronic TEs might contribute to elevated mis-splicing rates. Through epigenomic and transcriptomic analyses, we show that SETD2-deficient kidney cancers are prone to mis-splicing, which can be therapeutically exacerbated with DAC treatment to increase viral mimicry activation and provide synergy with combinatorial immunotherapy approaches.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Histonas/metabolismo , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Carcinoma de Células Renales/metabolismo , Cromatina , ARN
14.
Trends Cancer ; 9(1): 55-68, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36216729

RESUMEN

Endogenous retroelements are DNA sequences which can duplicate and move to new locations in the genome. Actively moving endogenous retroelements can be disruptive to the host, and their expression is therefore often repressed. Interestingly, drugs that disrupt the repression of endogenous retroelements show promise for treating cancer. Expressed endogenous retroelements can activate innate immune receptors that activate the antiviral response, potentially leading to the death of cancer cells. We discuss disruptions to cellular processes which can lead to activation of the antiviral state from endogenous retroelements, and present the 'fire alarm hypothesis', where we argue that endogenous retroelements act as alarms for disruptions to these cellular processes. Furthermore, we discuss the properties of endogenous retroelements which make them suitable as alarms.


Asunto(s)
Neoplasias , Retroelementos , Humanos , Retroelementos/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Antivirales , Homeostasis/genética
15.
Biomedicines ; 10(12)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36551854

RESUMEN

The human genome is composed of unique DNA sequences that encode proteins and unique sequence noncoding RNAs that are essential for normal development and cellular differentiation. The human genome also contains over 50% of genome sequences that are repeat in nature (tandem and interspersed repeats) that are now known to contribute dynamically to genetic diversity in populations, to be transcriptionally active under certain physiological conditions, and to be aberrantly active in disease states including cancer, where consequences are pleiotropic with impact on cancer cell phenotypes and on the tumor immune microenvironment. Repeat element-derived RNAs play unique roles in exogenous and endogenous cell signaling under normal and disease conditions. A key component of repeat element-derived transcript-dependent signaling occurs via triggering of innate immune receptor signaling that then feeds forward to inflammatory responses through interferon and NFκB signaling. It has recently been shown that cancer cells display abnormal transcriptional activity of repeat elements and that this is linked to either aggressive disease and treatment failure or to improved prognosis/treatment response, depending on cell context and the amplitude of the so-called 'viral mimicry' response that is engaged. 'Viral mimicry' refers to a cellular state of active antiviral response triggered by endogenous nucleic acids often derived from aberrantly transcribed endogenous retrotransposons and other repeat elements. In this paper, the literature regarding transcriptional activation of repeat elements and engagement of inflammatory signaling in normal (focusing on hematopoiesis) and cancer is reviewed with an emphasis on the role of innate immune receptor signaling, in particular by dsRNA receptors of the RIG-1 like receptor family and interferons/NFκB. How repeat element-derived RNA reprograms cell identity through RNA-guided chromatin state modulation is also discussed.

16.
Cancers (Basel) ; 14(23)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36497341

RESUMEN

Melanoma is an aggressive skin cancer reliant on early detection for high likelihood of successful treatment. Solar UV exposure transforms melanocytes into highly mutated tumor cells that metastasize to the liver, lungs, and brain. Even upon resection of the primary tumor, almost thirty percent of patients succumb to melanoma within twenty years. Identification of key melanoma genetic drivers led to the development of pharmacological BRAFV600E and MEK inhibitors, significantly improving metastatic patient outcomes over traditional cytotoxic chemotherapy or pioneering IFN-α and IL-2 immune therapies. Checkpoint blockade inhibitors releasing the immunosuppressive effects of CTLA-4 or PD-1 proved to be even more effective and are the standard first-line treatment. Despite these major improvements, durable responses to immunotherapy and targeted therapy have been hindered by intrinsic or acquired resistance. In addition to gained or selected genetic alterations, cellular plasticity conferred by epigenetic reprogramming is emerging as a driver of therapy resistance. Epigenetic regulation of chromatin accessibility drives gene expression and establishes distinct transcriptional cell states. Here we review how aberrant chromatin, transcriptional, and epigenetic regulation contribute to therapy resistance and discuss how targeting these programs sensitizes melanoma cells to immune and targeted therapies.

17.
Int J Mol Sci ; 23(22)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36430521

RESUMEN

PURPOSE: To investigate the anti-cancer, chemosensitizing and/or immunomodulating effects of decitabine (DAC) to be used as a potential therapeutic agent for the treatment of cervical cancer (CC). METHODS: Cervical cancer cell lines were treated with low doses of DAC treatment used as a single agent or in combination with chemotherapy. End-point in vitro assays were developed as indicators of the anti-cancer and/or immunomodulating effects of DAC treatment in CC cells. These assays include cell viability, cell cycle analysis, apoptosis, induction of a viral-mimicry response pathway, expression of MHC-class I and PD-L1 and chemosensitivity. RESULTS: High and low doses of DAC treatment induced reduction in cell viability in HeLa (HPV18+), CaSki (HPV16+) and C33A (HPV-) cells. Specifically, a time-dependent reduction in cell viability of HeLa and CaSki cells was observed accompanied by robust cell cycle arrest at G2/M phase and alterations in the cell cycle distribution. Decrease in cell viability was also observed in a non-transformed immortal keratinocyte (HaCat) suggesting a non-cancer specific target effect. DAC treatment also triggered a viral mimicry response through long-term induction of cytoplasmic double-stranded RNA (dsRNA) and activation of downstream IFN-related genes in both HPV+ and HPV- cells. In addition, DAC treatment increased the number of CC cells expressing MHC-class I and PD-L1. Furthermore, DAC significantly increased the proportion of early and late apoptotic CC cells quantified using FACS. Our combination treatments showed that low dose DAC treatment sensitizes cells to chemotherapy. CONCLUSIONS: Low doses of DAC treatment promotes robust induction of a viral mimicry response, immunomodulating and chemosensitizing effects in CC, indicating its promising therapeutic role in CC in vitro.


Asunto(s)
Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Femenino , Humanos , Neoplasias del Cuello Uterino/tratamiento farmacológico , Decitabina/farmacología , Antígeno B7-H1 , Células HeLa
18.
Methods Cell Biol ; 172: 145-161, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36064221

RESUMEN

It is now clear that radiation therapy (RT) can be delivered in doses and according to fractionation schedules that actively elicit immunostimulatory effects. While such effects are often sufficient to drive potent anticancer immunity culminating with systemic disease eradication, the immunostimulatory activity of RT stands out as a promising combinatorial partner for bona fide immunotherapeutics including immune checkpoint inhibitors (ICIs). Accumulating preclinical and clinical evidence indicates that the secretion of type I interferon (IFN) by irradiated cancer cells is a sine qua non for RT to initiate ICI-actionable tumor-targeting immune responses. Here, we detail a simple protocol to quantitatively assess type I IFN responses in irradiated mouse hormone receptor (HR)+ TS/A cells by RT-PCR. With minimal variations, the same technique can be straightforwardly adapted to quantify type I IFN-associated transcriptional responses in a variety of human and mouse cancer cells maintained in vitro.


Asunto(s)
Neoplasias , Animales , Humanos , Ratones , Neoplasias/genética , Neoplasias/radioterapia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
19.
Cell Rep ; 40(7): 111212, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35977510

RESUMEN

Evolutionary changes in host-virus interactions can alter the course of infection, but the biophysical and regulatory constraints that shape interface evolution remain largely unexplored. Here, we focus on viral mimicry of host-like motifs that allow binding to host domains and modulation of cellular pathways. We observe that motifs from unrelated viruses preferentially target conserved, widely expressed, and highly connected host proteins, enriched with regulatory and essential functions. The interface residues within these host domains are more conserved and bind a larger number of cellular proteins than similar motif-binding domains that are not known to interact with viruses. In contrast, rapidly evolving viral-binding human proteins form few interactions with other cellular proteins and display high tissue specificity, and their interfaces have few inter-residue contacts. Our results distinguish between conserved and rapidly evolving host-virus interfaces and show how various factors limit host capacity to evolve, allowing for efficient viral subversion of host machineries.


Asunto(s)
Proteínas , Virus , Secuencias de Aminoácidos , Humanos , Proteínas/metabolismo , Virus/metabolismo
20.
Semin Cancer Biol ; 86(Pt 2): 737-747, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35405340

RESUMEN

The tumor immune microenvironment is a determinant of response to cancer immunotherapy and, in many cases, is prognostic for patient survival independently of the type of treatment. Radiation therapy is used in most cancer patients for its direct cytotoxic effects on malignant cells but there is increasing evidence that it also reprograms the tumor immune microenvironment. In this review we discuss the main mechanisms whereby the local inflammatory reaction induced by radiation can reset the cross-talk between the tumor and the immune system. The outcome reflects the balance between immunostimulatory signals that lead to increased tumor antigen presentation and effector T cell activation, and immunosuppressive signals that hinder radiation-induced tumor rejection. The emerging role of small extracellular vesicles (exosomes) in this process will be discussed. Overall, preclinical and early clinical findings support the hypothesis that radiation has the potential to generate an immune-permissive tumor microenvironment. An improved understanding of the pathways involved will enable the design of more effective combinations of radiation and immunotherapy, based on a rationale integration of radiation with other interventions.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Inmunoterapia , Neoplasias/radioterapia , Neoplasias/tratamiento farmacológico , Antígenos de Neoplasias , Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...