Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38709876

RESUMEN

The microbiomes in macroalgal holobionts play vital roles in regulating macroalgal growth and ocean carbon cycling. However, the virospheres in macroalgal holobionts remain largely underexplored, representing a critical knowledge gap. Here we unveil that the holobiont of kelp (Saccharina japonica) harbors highly specific and unique epiphytic/endophytic viral species, with novelty (99.7% unknown) surpassing even extreme marine habitats (e.g. deep-sea and hadal zones), indicating that macroalgal virospheres, despite being closest to us, are among the least understood. These viruses potentially maintain microbiome equilibrium critical for kelp health via lytic-lysogenic infections and the expression of folate biosynthesis genes. In-situ kelp mesocosm cultivation and metagenomic mining revealed that kelp holobiont profoundly reshaped surrounding seawater and sediment virus-prokaryote pairings through changing surrounding environmental conditions and virus-host migrations. Some kelp epiphytic viruses could even infect sediment autochthonous bacteria after deposition. Moreover, the presence of ample viral auxiliary metabolic genes for kelp polysaccharide (e.g. laminarin) degradation underscores the underappreciated viral metabolic influence on macroalgal carbon cycling. This study provides key insights into understanding the previously overlooked ecological significance of viruses within macroalgal holobionts and the macroalgae-prokaryotes-virus tripartite relationship.


Asunto(s)
Bacterias , Kelp , Microbiota , Agua de Mar , Kelp/microbiología , Agua de Mar/microbiología , Agua de Mar/virología , Bacterias/genética , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Metagenómica , Algas Marinas/microbiología , Algas Marinas/virología , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/virología , Células Procariotas/virología , Células Procariotas/metabolismo , Bacteriófagos/genética , Bacteriófagos/fisiología , Bacteriófagos/aislamiento & purificación , Viroma
2.
Proc Natl Acad Sci U S A ; 120(45): e2310529120, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37906647

RESUMEN

The emergence of previously unknown disease-causing viruses in mammals is in part the result of a long-term evolutionary process. Reconstructing the deep phylogenetic histories of viruses helps identify major evolutionary transitions and contextualizes the emergence of viruses in new hosts. We used a combination of total RNA sequencing and transcriptome data mining to extend the diversity and evolutionary history of the RNA virus order Articulavirales, which includes the influenza viruses. We identified instances of Articulavirales in the invertebrate phylum Cnidaria (including corals), constituting a novel and divergent family that we provisionally named the "Cnidenomoviridae." We further extended the evolutionary history of the influenza virus lineage by identifying four divergent, fish-associated influenza-like viruses, thereby supporting the hypothesis that fish were among the first hosts of influenza viruses. In addition, we substantially expanded the phylogenetic diversity of quaranjaviruses and proposed that this genus be reclassified as a family-the "Quaranjaviridae." Within this putative family, we identified a novel arachnid-infecting genus, provisionally named "Cheliceravirus." Notably, we observed a close phylogenetic relationship between the Crustacea- and Chelicerata-infecting "Quaranjaviridae" that is inconsistent with virus-host codivergence. Together, these data suggest that the Articulavirales has evolved over at least 600 million years, first emerging in aquatic animals. Importantly, the evolution of the Articulavirales was likely shaped by multiple aquatic-terrestrial transitions and substantial host jumps, some of which are still observable today.


Asunto(s)
Gripe Humana , Orthomyxoviridae , Virus ARN , Animales , Humanos , Filogenia , Virus ARN/genética , Invertebrados/genética , Orthomyxoviridae/genética , ARN , Evolución Molecular , ARN Viral/genética , Mamíferos/genética
3.
Front Microbiol ; 13: 1032918, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386652

RESUMEN

Viruses are the most abundant biological entities on Earth, and yet, they have not received enough consideration in astrobiology. Viruses are also extraordinarily diverse, which is evident in the types of relationships they establish with their host, their strategies to store and replicate their genetic information and the enormous diversity of genes they contain. A viral population, especially if it corresponds to a virus with an RNA genome, can contain an array of sequence variants that greatly exceeds what is present in most cell populations. The fact that viruses always need cellular resources to multiply means that they establish very close interactions with cells. Although in the short term these relationships may appear to be negative for life, it is evident that they can be beneficial in the long term. Viruses are one of the most powerful selective pressures that exist, accelerating the evolution of defense mechanisms in the cellular world. They can also exchange genetic material with the host during the infection process, providing organisms with capacities that favor the colonization of new ecological niches or confer an advantage over competitors, just to cite a few examples. In addition, viruses have a relevant participation in the biogeochemical cycles of our planet, contributing to the recycling of the matter necessary for the maintenance of life. Therefore, although viruses have traditionally been excluded from the tree of life, the structure of this tree is largely the result of the interactions that have been established throughout the intertwined history of the cellular and the viral worlds. We do not know how other possible biospheres outside our planet could be, but it is clear that viruses play an essential role in the terrestrial one. Therefore, they must be taken into account both to improve our understanding of life that we know, and to understand other possible lives that might exist in the cosmos.

4.
J Virol ; 96(20): e0078322, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36190242

RESUMEN

Unicellular microalgae are of immense ecological importance with growing commercial potential in industries such as renewable energy, food, and pharmacology. Viral infections can have a profound impact on the growth and evolution of their hosts. However, very little is known of the diversity within, and the effect of, unicellular microalgal RNA viruses. In addition, identifying RNA viruses in these organisms that could have originated more than a billion years ago constitutes a robust data set to dissect molecular events and address fundamental questions in virus evolution. We assessed the diversity of RNA viruses in eight microalgal cultures, including representatives from the diatom, eustigmatophyte, dinoflagellate, red algae, and euglenid groups. Using metatranscriptomic sequencing combined with bioinformatic approaches optimized to detect highly divergent RNA viruses, we identified 10 RNA virus sequences, with nine constituting new viral species. Most of the newly identified RNA viruses belonged to the double-stranded Totiviridae, Endornaviridae, and Partitiviridae, greatly expanding the reported host range for these families. Two new species belonging to the single-stranded RNA viral clade Marnaviridae, commonly associated with microalgal hosts, were also identified. This study highlights that a substantial diversity of RNA viruses likely exists undetected within the unicellular microalgae. It also highlights the necessity for RNA viral characterization and for investigation of the effects of viral infections on microalgal physiology, biology, and growth, considering their environmental and industrial roles. IMPORTANCE Our knowledge of the diversity of RNA viruses infecting microbial algae-the microalgae-is minimal. However, describing the RNA viruses infecting these organisms is of primary importance at both the ecological and economic scales because of the fundamental roles these organisms play in aquatic environments and their growing value across a range of industrial fields. Using metatranscriptomic sequencing, we aimed to reveal the RNA viruses present in cultures of eight microalgae species belonging to the diatom, dinoflagellate, eustigmatophyte, rhodophyte, and euglena major clades of algae. Accordingly, we identified 10 new divergent RNA virus species belonging to RNA virus families as diverse as the double-stranded Totiviridae, Endornaviridae, and Partitiviridae and the single-stranded Marnaviridae. By expanding the known diversity of RNA viruses infecting unicellular eukaryotes, this study contributes to a better understanding of the early evolution of the virosphere and will inform the use of microalgae in industrial applications.


Asunto(s)
Diatomeas , Dinoflagelados , Microalgas , Virus ARN , Diatomeas/genética , Dinoflagelados/genética , Microalgas/genética , Filogenia , Virus ARN/genética , Plantas , ARN , Genoma Viral
5.
Microbiol Spectr ; 10(5): e0287322, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36125316

RESUMEN

Emerging infectious diseases represent a serious and ongoing threat to humans. Most emerging viruses are maintained in stable relationships with other species of animals, and their emergence within the human population results from cross-species transmission. Therefore, if we want to be prepared for the next emerging virus, we need to broadly characterize the diversity and ecology of viruses currently infecting other animals (i.e., the animal virosphere). High-throughput metagenomic sequencing has accelerated the pace of virus discovery. However, molecular assays can detect only active infections and only if virus is present within the sampled fluid or tissue at the time of collection. In contrast, serological assays measure long-lived antibody responses to infections, which can be detected within the blood, regardless of the infected tissues. Therefore, serological assays can provide a complementary approach for understanding the circulation of viruses, and while serological assays have historically been limited in scope, recent advancements allow thousands to hundreds of thousands of antigens to be assessed simultaneously using <1 µL of blood (i.e., highly multiplexed serology). The application of highly multiplexed serology for the characterization of the animal virosphere is dependent on the availability of reagents that can be used to capture or label antibodies of interest. Here, we evaluate the utility of commercial immunoglobulin-binding proteins (protein A and protein G) to enable highly multiplexed serology in 25 species of nonhuman mammals, and we describe a competitive fluorescence-linked immunosorbent assay (FLISA) that can be used as an initial screen for choosing the most appropriate capture protein for a given host species. IMPORTANCE Antibodies are generated in response to infections with viruses and other pathogens, and they help protect against future exposures. Mature antibodies are long lived, are highly specific, and can bind to their protein targets with high affinity. Thus, antibodies can also provide information about an individual's history of viral exposures, which has important applications for understanding the epidemiology and etiology of disease. In recent years, there have been large advances in the available methods for broadly characterizing antibody-binding profiles, but thus far, these have been utilized primarily with human samples only. Here, we demonstrate that commercial antibody-binding reagents can facilitate modern antibody assays for a wide variety of mammalian species, and we describe an inexpensive and fast approach for choosing the best reagent for each animal species. By studying antibody-binding profiles in captive and wild animals, we can better understand the distribution and prevalence of viruses that could spill over into humans.


Asunto(s)
Anticuerpos Antivirales , Inmunoadsorbentes , Animales , Formación de Anticuerpos , Ensayo de Inmunoadsorción Enzimática/métodos , Mamíferos
6.
Biomolecules ; 12(8)2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-36008967

RESUMEN

Virus discovery has been fueled by new technologies ever since the first viruses were discovered at the end of the 19th century. Starting with mechanical devices that provided evidence for virus presence in sick hosts, virus discovery gradually transitioned into a sequence-based scientific discipline, which, nowadays, can characterize virus identity and explore viral diversity at an unprecedented resolution and depth. Sequencing technologies are now being used routinely and at ever-increasing scales, producing an avalanche of novel viral sequences found in a multitude of organisms and environments. In this perspective article, we argue that virus discovery has started to undergo another transformation prompted by the emergence of new approaches that are sequence data-centered and primarily computational, setting them apart from previous technology-driven innovations. The data-driven virus discovery approach is largely uncoupled from the collection and processing of biological samples, and exploits the availability of massive amounts of publicly and freely accessible data from sequencing archives. We discuss open challenges to be solved in order to unlock the full potential of data-driven virus discovery, and we highlight the benefits it can bring to classical (mostly molecular) virology and molecular biology in general.


Asunto(s)
Virus , Biología Molecular , Análisis de Secuencia , Virus/genética
7.
Annu Rev Virol ; 9(1): 173-192, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-35704744

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic has had a profound impact on human health, economic well-being, and societal function. It is essential that we use this generational experience to better understand the processes that underpin the emergence of COVID-19 and other zoonotic diseases. Herein, I review the mechanisms that determine why and how viruses emerge in new hosts, as well as the barriers to this process. I show that traditional studies of virus emergence have an inherent anthropocentric bias, with disease in humans considered the inevitable outcome of virus emergence, when in reality viruses are integral components of a global ecosystem characterized by continual host jumping with humans also transmitting their viruses to other animals. I illustrate these points using coronaviruses, including severe acute respiratory syndrome coronavirus 2, as a case study. I also outline the potential steps that can be followed to help mitigate and prevent future pandemics, with combating climate change a central component.


Asunto(s)
COVID-19 , Virus , Animales , Ecosistema , Humanos , Pandemias , SARS-CoV-2 , Zoonosis/epidemiología
8.
Viruses ; 14(2)2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-35215784

RESUMEN

Almost two decades after the isolation of the first amoebal giant viruses, indubitably the discovery of these entities has deeply affected the current scientific knowledge on the virosphere. Much has been uncovered since then: viruses can now acknowledge complex genomes and huge particle sizes, integrating remarkable evolutionary relationships that date as early as the emergence of life on the planet. This year, a decade has passed since the first studies on giant viruses in the Brazilian territory, and since then biomes of rare beauty and biodiversity (Amazon, Atlantic forest, Pantanal wetlands, Cerrado savannas) have been explored in the search for giant viruses. From those unique biomes, novel viral entities were found, revealing never before seen genomes and virion structures. To celebrate this, here we bring together the context, inspirations, and the major contributions of independent Brazilian research groups to summarize the accumulated knowledge about the diversity and the exceptionality of some of the giant viruses found in Brazil.


Asunto(s)
Amoeba/virología , Virus Gigantes/genética , Virus Gigantes/aislamiento & purificación , Virología/historia , Biodiversidad , Brasil , Ecosistema , Genoma Viral , Virus Gigantes/clasificación , Virus Gigantes/ultraestructura , Historia del Siglo XXI , Filogenia
9.
Anthropocene Rev ; 9(1): 24-36, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38603022

RESUMEN

In this essay, we reevaluate the 2019 outbreak of a novel coronavirus (SARS-CoV-2) from the perspective of multispecies entanglements. It is argued that anthropogenic alterations in the biosphere will most likely accelerate the rate of multispecies pandemics in the Anthropocene. Using a textual analysis approach of anthropological and historical sources on the example of coronaviruses and live animal markets in China, we trace how the virosphere of wild animals from tropical regions comes into contact with the virosphere of humans and farmed animals in highly industrialized landscapes. We suggest that adopting a multispecies perspective on viruses can allow them to be understood as living processes that interact with other species in a realm called the virosphere. The rate at which novel infectious diseases are transmitted by bacteria and viruses has increased in recent decades. We argue that this is caused by side effects of the Anthropocene, such as deforestation, the surge in population growth and density, and anthropogenic climate change, which give rise to an increased number of unusual encounters between humans, nonhuman companion species, and wild animals. In this way, the virospheres of host organisms, which were formerly partly isolated, are allowed to converge and freely exchange infectious diseases, leading to a more homogenized virosphere. As anthropogenic alterations are set to continue in the future, we suggest that multispecies pandemics will likely increase in the following decades.

10.
Microbiol Mol Biol Rev ; 85(4): e0019320, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34468181

RESUMEN

Originally, viruses were defined as miniscule infectious agents that passed through filters that retain even the smallest cells. Subsequently, viruses were considered obligate intracellular parasites whose reproduction depends on their cellular hosts for energy supply and molecular building blocks. However, these features are insufficient to unambiguously define viruses as they are broadly understood today. We outline possible approaches to define viruses and explore the boundaries of the virosphere within the virtual space of replicators and the relationships between viruses and other types of replicators. Regardless of how, exactly, viruses are defined, viruses clearly have evolved on many occasions from nonviral replicators, such as plasmids, by recruiting host proteins to become virion components. Conversely, other types of replicators have repeatedly evolved from viruses. Thus, the virosphere is a dynamic entity with extensive evolutionary traffic across its boundaries. We argue that the virosphere proper, here termed orthovirosphere, consists of a distinct variety of replicators that encode structural proteins encasing the replicators' genomes, thereby providing protection and facilitating transmission among hosts. Numerous and diverse replicators, such as virus-derived but capsidless RNA and DNA elements, or defective viruses occupy the zone surrounding the orthovirosphere in the virtual replicator space. We define this zone as the perivirosphere. Although intense debates on the nature of certain replicators that adorn the internal and external boundaries of the virosphere will likely continue, we present an operational definition of virus that recently has been accepted by the International Committee on Taxonomy of Viruses.


Asunto(s)
Virus , Evolución Biológica , ADN , Virus ADN/genética , Plásmidos , Virus/genética
11.
mSystems ; : e0077021, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34463577

RESUMEN

The virosphere (i.e., global virome) represents a vast library of unknown genes on the planet. Synthetic biology through engineering principles could be the key to unlocking this massive global gene repository. Synthetic viruses may also be used as tools to understand "the rules of life" in diverse microbial ecosystems. Such insights may be crucial for understanding the assembly, diversity, structure, and scale of virus-mediated function. Viruses directly affect resilience, stability, and microbial community selection via death resistance cycles. Interpreting and clarifying these effects is essential for predicting the system's ecology, evolution, and ecosystem stability in an increasingly unstable global climate. A "silent looming pandemic" due to multidrug-resistant microbes will directly impact the global economy, and synthetic virology could provide a future strategy of treatment using targeted viral therapy. This commentary will discuss current techniques for manipulating viruses synthetically, contributing to improved human health and sustainable agriculture.

12.
FEMS Microbiol Lett ; 368(12)2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34114607

RESUMEN

The Virus-X-Viral Metagenomics for Innovation Value-project was a scientific expedition to explore and exploit uncharted territory of genetic diversity in extreme natural environments such as geothermal hot springs and deep-sea ocean ecosystems. Specifically, the project was set to analyse and exploit viral metagenomes with the ultimate goal of developing new gene products with high innovation value for applications in biotechnology, pharmaceutical, medical, and the life science sectors. Viral gene pool analysis is also essential to obtain fundamental insight into ecosystem dynamics and to investigate how viruses influence the evolution of microbes and multicellular organisms. The Virus-X Consortium, established in 2016, included experts from eight European countries. The unique approach based on high throughput bioinformatics technologies combined with structural and functional studies resulted in the development of a biodiscovery pipeline of significant capacity and scale. The activities within the Virus-X consortium cover the entire range from bioprospecting and methods development in bioinformatics to protein production and characterisation, with the final goal of translating our results into new products for the bioeconomy. The significant impact the consortium made in all of these areas was possible due to the successful cooperation between expert teams that worked together to solve a complex scientific problem using state-of-the-art technologies as well as developing novel tools to explore the virosphere, widely considered as the last great frontier of life.


Asunto(s)
Genoma Viral/genética , Metagenómica , Bioprospección/organización & administración , Biología Computacional , Bases de Datos Genéticas , Europa (Continente) , Respiraderos Hidrotermales/virología , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo , Viroma/genética , Virus/clasificación , Virus/genética
13.
Emerg Microbes Infect ; 10(1): 982-993, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33929935

RESUMEN

Viral infections are the leading cause of childhood acute febrile illnesses motivating consultation in sub-Saharan Africa. The majority of causal viruses are never identified in low-resource clinical settings as such testing is either not part of routine screening or available diagnostic tools have limited ability to detect new/unexpected viral variants. An in-depth exploration of the blood virome is therefore necessary to clarify the potential viral origin of fever in children. Metagenomic next-generation sequencing is a powerful tool for such broad investigations, allowing the detection of RNA and DNA viral genomes. Here, we describe the blood virome of 816 febrile children (<5 years) presenting at outpatient departments in Dar es Salaam over one-year. We show that half of the patients (394/816) had at least one detected virus recognized as causes of human infection/disease (13.8% enteroviruses (enterovirus A, B, C, and rhinovirus A and C), 12% rotaviruses, 11% human herpesvirus type 6). Additionally, we report the detection of a large number of viruses (related to arthropod, vertebrate or mammalian viral species) not yet known to cause human infection/disease, highlighting those who should be on the radar, deserve specific attention in the febrile paediatric population and, more broadly, for surveillance of emerging pathogens.Trial registration: ClinicalTrials.gov identifier: NCT02225769.


Asunto(s)
Fiebre/virología , Metagenómica/métodos , Virosis/sangre , Virus/clasificación , Preescolar , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Recién Nacido , Estudios Retrospectivos , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN , Tanzanía , Virosis/virología , Virus/genética , Virus/aislamiento & purificación
14.
Viruses ; 13(1)2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33430116

RESUMEN

Virus research has advanced significantly since the discovery of the tobacco mosaic virus (TMV), the characterization of its infection mechanisms and the factors that determine their pathogenicity. However, most viral research has focused on pathogenic viruses to humans, animals and plants, which represent only a small fraction in the virosphere. As a result, the role of most viral genes, and the mechanisms of coevolution between mutualistic viruses, their host and their environment, beyond pathogenicity, remain poorly understood. This review focuses on general aspects of viruses that interact with extremophile organisms, characteristics and examples of mechanisms of adaptation. Finally, this review provides an overview on how knowledge of extremophile viruses sheds light on the application of new tools of relevant use in modern molecular biology, discussing their value in a biotechnological context.


Asunto(s)
Biotecnología , Microbiología Ambiental , Extremófilos/virología , Animales , Virus de Archaea/fisiología , Bacterias/virología , Humanos , Nanomedicina
15.
Theor Biol Forum ; 114(2): 41-59, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36382548

RESUMEN

For nearly a century the main focus in biological disciplines such as molecular biology, biochemistry, genetics and evolutionary theory was cellular life as a machine like process in which mechanistic pathways regulate metabolism, genetic reading and translation into proteins and evolution by variations (random error replications) and selection. Modern biochemistry started with the cellular theory of life. Also the modern synthesis focused on cells at the starting event of life. The dominance of this paradigm lasted until ten years ago. Then the comeback of virology offered new empirical data and explanatory models of how viruses determine cellular life through an abundance of parasite host interactions that overrule cellular processes. The RNA world hypothesis demonstrated that prior to cellular life RNA group interactions were at the beginning of biological selection before cellular life emerged. Last but not least the central dogma of molecular biology collapsed when epigenetics demonstrated that history and developmental experiences of the past can be epigenetically imprinted and serve as identity markings that in every replication process of any cell in any organism on this planet the timely and locally coordinated replication is regulated and orchestrated by these programmings. In the light of this knowledge a better explanatory model than an extension of the modern synthesis will be more successful in the 21st century.


Asunto(s)
Evolución Biológica , Virus , Virus/genética , Biología Molecular , Bioquímica , ARN/genética , Evolución Molecular
16.
J Invertebr Pathol ; 177: 107494, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33115693

RESUMEN

A positive, single-stranded RNA virus is identified from the transcriptome of Probopyrinella latreuticola Gissler, 1882; a bopyrid isopod parasite of the Sargassum shrimp, Latreutes fucorum Fabricius, 1789. The viral sequence is 13,098 bp in length (including polyA), encoding four open reading frames (ORF). ORF-1 encodes a polyprotein, with three computationally discernible functional domains: viral methyltransferase; viral helicase; and RNA-directed RNA polymerase. The remaining ORFs encode a transmembrane protein, a capsid protein and a protein of undetermined function. The raw transcriptomic data reveal a low level of background single nucleotide mutations within the data. Comparison of the protein sequence data and synteny with other viral isolates reveals that the greatest protein similarity (<39%) is shared with the Negevirus group, a group that exclusively infects insects. Phylogenetic assessment of the individual polyprotein domains revealed a mixed prediction of phylogenetic origins, suggesting with low confidence that the novel +ssRNA virus could be present in multiple places throughout the individual gene trees. A concatenated approach strongly suggested that this new virus is an early diverging isolate, branching before the Negevirus and Cilevirus groups. Alongside the new isolate are other marine viruses, also present toward the base of the tree. The isopod virosphere, with the addition of this novel virus, is discussed relative to viral genomics/systematics. A great diversity of nege-like viruses appears to be present in marine invertebrate hosts, which require greater efforts for discovery and identification.


Asunto(s)
Isópodos/virología , Virus ARN Monocatenarios Positivos/aislamiento & purificación , Animales , Decápodos/parasitología , Parásitos/virología
17.
Front Microbiol ; 11: 588427, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33042103

RESUMEN

The use of high-throughput sequencing (HTS) for virus diagnostics, as well as the importance of this technology as a valuable tool for discovery of novel viruses has been extensively investigated. In this review, we consider the application of HTS approaches to uncover novel plant viruses with a focus on the negative-sense, single-stranded RNA virosphere. Plant viruses with negative-sense and ambisense RNA (NSR) genomes belong to several taxonomic families, including Rhabdoviridae, Aspiviridae, Fimoviridae, Tospoviridae, and Phenuiviridae. They include both emergent pathogens that infect a wide range of plant species, and potential endophytes which appear not to induce any visible symptoms. As a consequence of biased sampling based on a narrow focus on crops with disease symptoms, the number of NSR plant viruses identified so far represents only a fraction of this type of viruses present in the virosphere. Detection and molecular characterization of NSR viruses has often been challenging, but the widespread implementation of HTS has facilitated not only the identification but also the characterization of the genomic sequences of at least 70 NSR plant viruses in the last 7 years. Moreover, continuing advances in HTS technologies and bioinformatic pipelines, concomitant with a significant cost reduction has led to its use as a routine method of choice, supporting the foundations of a diverse array of novel applications such as quarantine analysis of traded plant materials and genetic resources, virus detection in insect vectors, analysis of virus communities in individual plants, and assessment of virus evolution through ecogenomics, among others. The insights from these advancements are shedding new light on the extensive diversity of NSR plant viruses and their complex evolution, and provide an essential framework for improved taxonomic classification of plant NSR viruses as part of the realm Riboviria. Thus, HTS-based methods for virus discovery, our 'new eyes,' are unraveling in real time the richness and magnitude of the plant RNA virosphere.

18.
Viruses ; 12(9)2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32967111

RESUMEN

Sewage-associated viruses can cause several human and animal diseases, such as gastroenteritis, hepatitis, and respiratory infections. Therefore, their detection in wastewater can reflect current infections within the source population. To date, no viral study has been performed using the sewage of any large South American city. In this study, we used viral metagenomics to obtain a single sample snapshot of the RNA virosphere in the wastewater from Santiago de Chile, the seventh largest city in the Americas. Despite the overrepresentation of dsRNA viruses, our results show that Santiago's sewage RNA virosphere was composed mostly of unknown sequences (88%), while known viral sequences were dominated by viruses that infect bacteria (60%), invertebrates (37%) and humans (2.4%). Interestingly, we discovered three novel genogroups within the Picobirnaviridae family that can fill major gaps in this taxa's evolutionary history. We also demonstrated the dominance of emerging Rotavirus genotypes, such as G8 and G6, that have displaced other classical genotypes, which is consistent with recent clinical reports. This study supports the usefulness of sewage viral metagenomics for public health surveillance. Moreover, it demonstrates the need to monitor the viral component during the wastewater treatment and recycling process, where this virome can constitute a reservoir of human pathogens.


Asunto(s)
Metagenoma , Metagenómica/métodos , Virus ARN/clasificación , Aguas del Alcantarillado/virología , Animales , Chile , Humanos , Invertebrados , Picobirnavirus , Virus ARN/genética , Rotavirus , Proteínas Virales , Virus/genética , Aguas Residuales/virología
19.
Cancer Med ; 9(18): 6776-6790, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32738030

RESUMEN

The glioblastoma multiforme (GBM) is one of the deadliest tumors. It has been speculated that virus plays a role in GBM but the evidences are controversy. Published researches are mainly limited to studies on the presence of human cytomegalovirus (HCMV) in GBM. No comprehensive assessment of the brain virome, the collection of viral material in the brain, based on recently sequenced data has been performed. Here, we characterized the virome from 111 GBM samples and 57 normal brain samples from eight projects in the SRA database by a tested and comprehensive assembly approach. The annotation of the assembled contigs showed that most viral sequences in the brain belong to the viral family Retroviridae. In some GBM samples, we also detected full genome sequence of a novel picornavirus recently discovered in invertebrates. Unlike previous reports, our study did not detect herpes virus such as HCMV in GBM from the data we used. However, some contigs that cannot be annotated with any known genes exhibited antibody epitopes in their sequences. These findings provide several avenues for potential cancer therapy: the newly discovered picornavirus could be a starting point to engineer novel oncolytic virus; and the exhibited antibody epitopes could be a source to explore potential drug targets for immune cancer therapy. By characterizing the virosphere in GBM and normal brain at a global level, the results from this study strengthen the link between GBM and viral infection which warrants the further investigation.


Asunto(s)
Neoplasias Encefálicas/virología , Encéfalo/virología , Glioblastoma/virología , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica , Picornaviridae/genética , Retroviridae/genética , Viroma/genética , Encéfalo/patología , Neoplasias Encefálicas/patología , Estudios de Casos y Controles , Mapeo Contig , Bases de Datos de Ácidos Nucleicos , Glioblastoma/patología , Humanos , ARN Viral/genética , RNA-Seq
20.
Microbiol Mol Biol Rev ; 84(2)2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32132243

RESUMEN

Viruses and mobile genetic elements are molecular parasites or symbionts that coevolve with nearly all forms of cellular life. The route of virus replication and protein expression is determined by the viral genome type. Comparison of these routes led to the classification of viruses into seven "Baltimore classes" (BCs) that define the major features of virus reproduction. However, recent phylogenomic studies identified multiple evolutionary connections among viruses within each of the BCs as well as between different classes. Due to the modular organization of virus genomes, these relationships defy simple representation as lines of descent but rather form complex networks. Phylogenetic analyses of virus hallmark genes combined with analyses of gene-sharing networks show that replication modules of five BCs (three classes of RNA viruses and two classes of reverse-transcribing viruses) evolved from a common ancestor that encoded an RNA-directed RNA polymerase or a reverse transcriptase. Bona fide viruses evolved from this ancestor on multiple, independent occasions via the recruitment of distinct cellular proteins as capsid subunits and other structural components of virions. The single-stranded DNA (ssDNA) viruses are a polyphyletic class, with different groups evolving by recombination between rolling-circle-replicating plasmids, which contributed the replication protein, and positive-sense RNA viruses, which contributed the capsid protein. The double-stranded DNA (dsDNA) viruses are distributed among several large monophyletic groups and arose via the combination of distinct structural modules with equally diverse replication modules. Phylogenomic analyses reveal the finer structure of evolutionary connections among RNA viruses and reverse-transcribing viruses, ssDNA viruses, and large subsets of dsDNA viruses. Taken together, these analyses allow us to outline the global organization of the virus world. Here, we describe the key aspects of this organization and propose a comprehensive hierarchical taxonomy of viruses.


Asunto(s)
Evolución Molecular , Genoma Viral , Filogenia , Virus/clasificación , Replicación del ADN , Virus ADN/genética , Genes Virales , Virus ARN/genética , Fenómenos Fisiológicos de los Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...