Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39106460

RESUMEN

Natural products are a valuable resource for the discovery of novel crop protection agents. A series of γ-butyrolactone derivatives, derived from the simplification of podophyllotoxin's structure, were synthesized and assessed for their efficacy against tobacco mosaic virus (TMV). Several derivatives exhibited notable antiviral properties, with compound 3g demonstrating the most potent in vivo anti-TMV activity. At 500 µg/mL, compound 3g achieved an inactivation effect of 87.8%, a protective effect of 71.7%, and a curative effect of 67.7%, surpassing the effectiveness of the commercial plant virucides ningnanmycin and ribavirin. Notably, the syn-diastereomer (syn-3g) exhibited superior antiviral activity compared to the anti-diastereomer (anti-3g). Mechanistic studies revealed that syn-3g could bind to the TMV coat protein and interfere with the self-assembly process of TMV particles. These findings indicate that compound 3g, with its simple chemical structure, could be a potential candidate for the development of novel antiviral agents for crop protection.

2.
Heliyon ; 10(8): e29146, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38628759

RESUMEN

Preventing microbiological surface contamination in public spaces is nowadays of high priority. The proliferation of a microbial infection may arise through air, water, or direct contact with infected surfaces. Chemical sanitization is one of the most effective approaches to avoid the proliferation of microorganisms. However, extended contact with chemicals for cleaning purposes such as chlorine, hydrogen peroxide or ethanol may lead to long-term diseases as well as drowsiness or respiratory issues, not to mention environmental issues associated to their use. As a potentially safer alternative, in the present work, the efficacy and endurance of the antimicrobial activity of different sol-gel coatings were studied, where one or two biocides were added to the coating matrix resulting on active groups exposed on the surface. Specifically, the coating formulations were synthesized by the sol-gel method. Using the alkoxide route with acid catalysis a hybrid silica-titania-methacrylate matrix was obtained where aromatic liquid eugenol was added with a double function: as a complexing agent for the chelation of the reaction precursor titanium isopropoxide, and as a biocide. In addition, 2-Phenylphenol, ECHA approved biocide, has also been incorporated to the coating matrix. The antibacterial effect of these coatings was confirmed on Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli). Additionally, the coatings were non cyto-toxic and displayed virucidal activity. The coating chemical composition was characterized by 29Si NMR, and ATR-FTIR. Furthermore, the thickness and the mechanical properties were characterized by profilometry and nanoindentation, respectively. Finally, the durability of the coatings was studied with tribology tests. Overall, our data support the efficacy of the tested sol-gel coatings and suggest that added features may be required to improve endurance of the antimicrobial effects on operational conditions.

3.
Pharmaceutics ; 15(12)2023 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-38140133

RESUMEN

OBJECTIVE: This study aimed to develop a holobiont tablet with rapid dispersibility to provide regulation of the microbiota, virucidal activity, and skin barrier protection. METHODS: A 23 factorial experiment was planned to define the best formulation for the development of the base tablet, using average weight, hardness, dimensions, swelling rate, and disintegration time as parameters to be analyzed. To produce holobiont tablets, the chosen base formulation was fabricated by direct compression of prebiotics, postbiotics, and excipients. The tablets also incorporated solid lipid nanoparticles containing postbiotics that were obtained by high-pressure homogenization and freeze-drying. The in vitro virucidal activity against alpha-coronavirus particles (CCoV-VR809) was determined in VERO cell culture. In vitro analysis, using monolayer cells and human equivalent skin, was performed by rRTq-PCR to determine the expression of interleukins 1, 6, 8, and 17, aquaporin-3, involucrin, filaggrin, FoxO3, and SIRT-1. Antioxidant activity and collagen-1 synthesis were also performed in fibroblast cells. Metagenomic analysis of the skin microbiome was determined in vivo before and after application of the holobiont tablet, during one week of continuous use, and compared to the use of alcohol gel. Samples were analyzed by sequencing the V3-V4 region of the 16S rRNA gene. RESULTS: A handrub tablet with rapid dispersibility was developed for topical use and rinse off. After being defined as safe, the virucidal activity was found to be equal to or greater than that of 70% alcohol, with a reduction in interleukins and maintenance or improvement of skin barrier gene markers, in addition to the reestablishment of the skin microbiota after use. CONCLUSIONS: The holobiont tablets were able to improve the genetic markers related to the skin barrier and also its microbiota, thereby being more favorable for use as a hand sanitizer than 70% alcohol.

4.
Front Microbiol ; 14: 1284274, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928667

RESUMEN

It is essential to employ efficient measures to prevent the transmission of pathogenic agents during a pandemic. One such method involves using hypochlorous acid (HClO) solution. The oxidative properties of HClO water (HAW) can contribute to its ability to eliminate viral particles. Here, we examined a highly purified slightly acidic hypochlorous acid water (Hp-SA-HAW) obtained from the reverse osmosis membrane treatment of an electrolytically-generated SA-HAW for its anti-viral activity and mode of action on viral proteins. Hp-SA-HAW exhibited broad-spectrum antiviral effects against various viruses, including adenovirus, hepatitis B virus, Japanese encephalitis virus (JEV), and rotavirus. Additionally, Hp-SA-HAW treatment dose-dependently resulted in irreversibly aggregated multimers of the JEV envelope and capsid proteins. However, Hp-SA-HAW treatment had no discernible effect on viral RNA, indicating that Hp-SA-HAW acts against amino acids rather than nucleic acids. Furthermore, Hp-SA-HAW substantially reduced the infectivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), including the ancestral variant and other multiple variants. Hp-SA-HAW treatment induced the aggregation of the SARS-CoV-2 spike and nuclear proteins and disrupted the binding of the purified spike protein of SARS-CoV-2 to human ACE2. This study demonstrates that the broad-spectrum virucidal activity of highly purified HClO is attributed to viral protein aggregation of virion via protein oxidation.

5.
EMBO Mol Med ; 15(12): e17932, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37970627

RESUMEN

Viruses are vulnerable as they transmit between hosts, and we aimed to exploit this critical window. We found that the ubiquitous, safe, inexpensive and biodegradable small molecule propylene glycol (PG) has robust virucidal activity. Propylene glycol rapidly inactivates a broad range of viruses including influenza A, SARS-CoV-2 and rotavirus and reduces disease burden in mice when administered intranasally at concentrations commonly found in nasal sprays. Most critically, vaporised PG efficiently abolishes influenza A virus and SARS-CoV-2 infectivity within airborne droplets, potently preventing infection at levels well below those tolerated by mammals. We present PG vapour as a first-in-class non-toxic airborne virucide that can prevent transmission of existing and emergent viral pathogens, with clear and immediate implications for public health.


Asunto(s)
COVID-19 , Virus de la Influenza A , Gripe Humana , Animales , Ratones , Humanos , Aerosoles y Gotitas Respiratorias , COVID-19/prevención & control , Glicoles de Propileno , Mamíferos
6.
J Dent Res ; 102(9): 1031-1037, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37246843

RESUMEN

The COVID-19 pandemic has escalated the risk of SARS-CoV-2 transmission in the dental practice, especially as droplet-aerosol particles are generated by high-speed instruments. This has heightened awareness of other orally transmitted viruses, including influenza and herpes simplex virus 1 (HSV1), which are capable of threatening life and impairing health. While current disinfection procedures commonly use surface wipe-downs to reduce viral transmission, they are not fully effective. Consequently, this provides the opportunity for a spectrum of emitted viruses to reside airborne for hours and upon surfaces for days. The objective of this study was to develop an experimental platform to identify a safe and effective virucide with the ability to rapidly destroy oral viruses transported within droplets and aerosols. Our test method employed mixing viruses and virucides in a fine-mist bottle atomizer to mimic the generation of oral droplet-aerosols. The results revealed that human betacoronavirus OC43 (related to SARS-CoV-2), human influenza virus (H1N1), and HSV1 from atomizer-produced droplet-aerosols were each fully destroyed by only 100 ppm of hypochlorous acid (HOCl) within 30 s, which was the shortest time point of exposure to the virucide. Importantly, 100 ppm HOCl introduced into the oral cavity is known to be safe for humans. In conclusion, this frontline approach establishes the potential of using 100 ppm HOCl in waterlines to continuously irrigate the oral cavity during dental procedures to expeditiously destroy harmful viruses transmitted within aerosols and droplets to protect practitioners, staff, and other patients.


Asunto(s)
COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Humanos , COVID-19/prevención & control , Gripe Humana/prevención & control , SARS-CoV-2 , Ácido Hipocloroso , Pandemias/prevención & control , Aerosoles y Gotitas Respiratorias
7.
Lett Appl Microbiol ; 76(3)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36906280

RESUMEN

Efficacy of cleaning methods against SARS-CoV-2 suspended in either 5% soil load (SARS-soil) or simulated saliva (SARS-SS) was evaluated immediately (hydrated virus, T0) or 2 hours post-contamination (dried virus, T2). Hard water dampened wiping (DW) of surfaces, resulted in 1.77-3.91 log reduction (T0) or 0.93-2.41 log reduction (T2). Incorporating surface pre-wetting by spraying with a detergent solution (D + DW) or hard water (W + DW) just prior to dampened wiping did not unilaterally increase efficacy against infectious SARS-CoV-2, however, the effect was nuanced with respect to surface, viral matrix, and time. Cleaning efficacy on porous surfaces (seat fabric, SF) was low. W + DW on stainless steel (SS) was as effective as D + DW for all conditions except SARS-soil at T2 on SS. DW was the only method that consistently resulted in > 3-log reduction of hydrated (T0) SARS-CoV-2 on SS and ABS plastic. These results suggest that wiping with a hard water dampened wipe can reduce infectious virus on hard non-porous surfaces. Pre-wetting surfaces with surfactants did not significantly increase efficacy for the conditions tested. Surface material, presence or absence of pre-wetting, and time post-contamination affect efficacy of cleaning methods.


Asunto(s)
COVID-19 , Virus , Humanos , SARS-CoV-2 , Desinfección/métodos , Detergentes/farmacología , Tacto , COVID-19/prevención & control , Agua
8.
Pharmaceutics ; 14(12)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36559284

RESUMEN

In response to the COVID-19 and monkeypox outbreaks, we present the development of a universal disinfectant to avoid the spread of infectious viral diseases through contact with contaminated surfaces. The sanitizer, based on didecyldimethylammonium chloride (DDAC), N,N-bis(3-aminopropyl)dodecylamine (APDA) and γ-cyclodextrin (γ-CD), shows synergistic effects against non-enveloped viruses (poliovirus type 1 and murine norovirus) according to the EN 14476 standard (≥99.99% reduction of virus titer). When a disinfectant product is effective against them, it can be considered that it will be effective against all types of viruses, including enveloped viruses. Consequently, "general virucidal activity" can be claimed. Moreover, we have extended this synergistic action to bacteria (P. aeruginosa, EN 13727). Based on physicochemical investigations, we have proposed two independent mechanisms of action against bacteria and non-enveloped viruses, operating at sub- and super-micellar concentrations, respectively. This synergistic mixture could then be highly helpful as a universal disinfectant to avoid the spread of infectious viral or bacterial diseases in community settings, including COVID-19 and monkeypox (caused by enveloped viruses).

9.
Pharmaceutics ; 14(11)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36365182

RESUMEN

The emergent human coronavirus SARS-CoV-2 and its high infectivity rate has highlighted the strong need for new virucidal treatments. In this sense, the use of photodynamic therapy (PDT) with white light, to take advantage of the sunlight, is a potent strategy for decreasing the virulence and pathogenicity of the virus. Here, we report the virucidal effect of PDT based on Hypericum extract (HE) in combination with white light, which exhibits an inhibitory activity of the human coronavirus HCoV-229E on hepatocarcinoma Huh-7 cells. Moreover, despite continuous exposure to white light, HE has long durability, being able to maintain the prevention of viral infection. Given its potent in vitro virucidal capacity, we propose HE in combination with white light as a promising candidate to fight against SARS-CoV-2 as a virucidal compound.

10.
Antiviral Res ; 207: 105416, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36113629

RESUMEN

Cellular responses to stress generally lead to the activation of the endoplasmic reticulum-associated protein degradation (ERAD) pathway. Several lines of study support that ERAD may be playing a proviral role during flaviviral infection. A key host factor in ERAD is the valosin-containing protein (VCP), an ATPase which ushers ubiquitin-tagged proteins to degradation by the proteasome. VCP exhibits different proviral activities, such as engaging in the biogenesis of viral replication organelles and facilitating flavivirus genome uncoating after the viral particle entry. To investigate the possible antiviral value of drugs targeting VCP, we tested two inhibitors: eeyarestatin I (EEY) and xanthohumol (XAN). Both compounds were highly effective in suppressing Zika virus (ZIKV) and Usutu virus (USUV) replication during infection in cell culture. Further analysis revealed an unexpected virucidal activity for EEY, but not for XAN. Preincubation of ZIKV or USUV with EEY before inoculation to cells resulted in significant decreases in infectivity in a dose- and time-dependent manner. Viral genomes in samples previously treated with EEY were more sensitive to propidium monoazide, an intercalating agent, with 10- to 100-fold decreases observed in viral RNA levels, supporting that EEY affects viral particle integrity. Altogether, these results support that EEY is a strong virucide against two unrelated flaviviruses, encouraging further studies to investigate its potential use as a broad-acting drug or the development of improved derivatives in the treatment of flaviviral infection.


Asunto(s)
Infecciones por Flavivirus , Flavivirus , Infección por el Virus Zika , Virus Zika , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/farmacología , Adenosina Trifosfatasas/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico , Flavivirus/genética , Humanos , Hidrazonas , Hidroxiurea/análogos & derivados , Sustancias Intercalantes/farmacología , Sustancias Intercalantes/uso terapéutico , Complejo de la Endopetidasa Proteasomal/metabolismo , ARN Viral/genética , Ubiquitinas/metabolismo , Proteína que Contiene Valosina/metabolismo , Replicación Viral
11.
ACS Appl Mater Interfaces ; 14(36): 40659-40673, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36004755

RESUMEN

The COVID-19 pandemic marks an inflection point in the perception and treatment of human health. Substantial resources have been reallocated to address the direct medical effects of COVID-19 and to curtail the spread of the virus. Thereby, shortcomings of traditional disinfectants, especially their requirement for regular reapplication and the related complications (e.g., dedicated personnel and short-term activity), have become issues at the forefront of public health concerns. This issue became especially pressing when infection-mitigating supplies dwindled early in the progression of the pandemic. In consideration of the constant threat posed by emerging novel viruses, we report a platform technology for persistent surface disinfection to combat virus transmission through nanomaterial-mediated, localized UV radiation emission. In this work, two formulations of Y2SiO5-based visible-to-UV upconversion nanomaterials were developed using a facile sol-gel-based synthesis. Our formulations have shown substantial antiviral activities (4 × 104 to 0 TCID50 units in 30 min) toward an enveloped, circulating human coronavirus strain (OC43) under simple white light exposure as an analogue to natural light or common indoor lighting. Additionally, we have shown that our two formulations greatly reduce OC43 RNA recovery from surfaces. Antiviral activities were further demonstrated toward a panel of structurally diverse viruses including enveloped viruses, SARS-CoV-2, vaccinia virus, vesicular stomatitis virus, parainfluenza virus, and Zika virus, as well as nonenveloped viruses, rhinovirus, and calicivirus, as evidence of the technology's broad antiviral activity. Remarkably, one formulation completely inactivated 105 infectious units of SARS-CoV-2 in only 45 min. The detailed technology has implications for the design of more potent, long-lived disinfectants and modified/surface-treated personal protective equipment targeting a wide range of viruses.


Asunto(s)
COVID-19 , Desinfectantes , Virus , Infección por el Virus Zika , Virus Zika , Antivirales/farmacología , Antivirales/uso terapéutico , Humanos , Pandemias , SARS-CoV-2 , Infección por el Virus Zika/tratamiento farmacológico
12.
Oral Health Prev Dent ; 20(1): 185-192, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35481342

RESUMEN

PURPOSE: The oral cavity is an important entry point for SARS-CoV-2 infection. This study tested whether four commercially available mouthrinses and dentifrices have in vitro virucidal activity against SARS-CoV-2 (=4 log10 reduction in viral titer). MATERIALS AND METHODS: One part of stock SARS-CoV-2 virus plus one part 0.3 g/l bovine serum albumin were mixed with eight parts of test product solution. After 30 s for the rinses, or 60 s for the dentifrices, the mixture was quenched in an appropriate neutralizer, serially diluted, and inoculated onto Vero E6 cells to determine viral titer. Triplicate runs were performed for each test condition with appropriate controls for test product cytotoxicity, viral interference, and neutralizer effectiveness. Test products included: 1.5% hydrogen peroxide (H2O2) rinse; 0.07% cetylpyridinium chloride (CPC) rinse; 0.454% stannous fluoride (SnF2) dentifrice A; and 0.454% SnF2 dentifrice B. RESULTS: ?The 1.5% H2O2 rinse, 0.07% CPC rinse, SnF2 dentifrice A, and SnF2 dentifrice B all produced > 4 log10 reduction in SARS-CoV-2 titer. CONCLUSION: All four test products displayed potent virucidal activity in vitro. Clinical studies are warranted to determine what role, if any, these oral care products might play in preventing transmission of SARS-CoV-2 or in the management of patients currently diagnosed with COVID-19 illness.


Asunto(s)
COVID-19 , Dentífricos , COVID-19/prevención & control , Cetilpiridinio , Humanos , Peróxido de Hidrógeno , SARS-CoV-2 , Fluoruros de Estaño
13.
J Appl Microbiol ; 132(4): 3375-3386, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34981882

RESUMEN

AIMS: This study evaluated the residual efficacy of commercially available antimicrobial coatings or films against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on non-porous surfaces. METHODS AND RESULTS: Products were applied to stainless steel or ABS plastic coupons and dried overnight. Coupons were inoculated with SARS-CoV-2 in the presence of 5% soil load. Recovered infectious SARS-CoV-2 was quantified by TCID50 assay. Tested product efficacies ranged from <1.0 to >3.0 log10 reduction at a 2-h contact time. The log10 reduction in recovered infectious SARS-CoV-2 ranged from 0.44 to 3 log10 reduction on stainless steel and 0.25 to >1.67 log10 on ABS plastic. The most effective products tested contained varying concentrations (0.5%-1.3%) of the same active ingredient: 3-(trihydroxysilyl) propyldimethyloctadecyl ammonium chloride. Products formulated with other quaternary ammonium compounds were less effective against SARS-CoV-2 in this test. CONCLUSIONS: The residual antimicrobial products tested showed varied effectiveness against SARS-CoV-2 as a function of product tested. Several products were identified as efficacious against SARS-CoV-2 on both stainless steel and ABS plastic surfaces under the conditions evaluated. Differences in observed efficacy may be due to variation in active ingredient formulation; efficacy is, therefore, difficult to predict based upon listed active ingredient and its concentration. SIGNIFICANCE AND IMPACT: This study highlights the formulation-specific efficacy of several products against SARS-CoV-2 and may inform future development of residual antiviral products for use on non-porous surfaces. The identification of antimicrobial coatings or films showing promise to inactivate SARS-CoV-2 suggests that these products may be worth future testing and consideration.


Asunto(s)
Antiinfecciosos , Tratamiento Farmacológico de COVID-19 , Antibacterianos , Antiinfecciosos/farmacología , Antivirales/farmacología , Humanos , SARS-CoV-2
14.
J Occup Environ Hyg ; 19(2): 91-101, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34878351

RESUMEN

This study evaluated the efficacy of detergent-based surface cleaning methods against Murine Hepatitis Virus A59 (MHV) as a surrogate coronavirus for SARS-CoV-2. MHV (5% soil load in culture medium or simulated saliva) was inoculated onto four different high-touch materials [stainless steel (SS), Acrylonitrile Butadiene Styrene plastic (ABS), Formica, seat fabric (SF)]. Immediately and 2-hr post-inoculation, coupons were cleaned (damp wipe wiping) with and without pretreatment with detergent solution or 375 ppm hard water. Results identified that physical removal (no pretreatment) removed >2.3 log10 MHV on ABS, SS, and Formica when surfaces were cleaned immediately. Pretreatment with detergent or hard water increased effectiveness over wet wiping 2-hr post-inoculation; pretreatment with detergent significantly increased (p ≤ 0.05) removal of MHV in simulated saliva, but not in culture media, over hard water pretreatment (Formica and ABS). Detergent and hard water cleaning methods were ineffective on SF under all conditions. Overall, efficacy of cleaning methods against coronaviruses are material- and matrix-dependent; pre-wetting surfaces with detergent solutions increased efficacy against coronavirus suspended in simulated saliva. This study provides data highlighting the importance of incorporating a pre-wetting step prior to detergent cleaning and can inform cleaning strategies to reducing coronavirus surface transmission.


Asunto(s)
COVID-19 , Virus de la Hepatitis Murina , Animales , Detergentes , Humanos , Ratones , Porosidad , SARS-CoV-2
15.
J Appl Microbiol ; 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36626793

RESUMEN

AIMS: This study aimed to provide operationally relevant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) surface disinfection efficacy information. METHODS AND RESULTS: Three EPA-registered disinfectants (Vital Oxide, Peroxide, and Clorox Total 360) and one antimicrobial formulation (CDC bleach) were evaluated against SARS-CoV-2 on material coupons and were tested using Spray (no touch with contact time) and Spray & Wipe (wipe immediately post-application) methods immediately and 2 h post-contamination. Efficacy was evaluated for infectious virus, with a subset tested for viral RNA (vRNA) recovery. Efficacy varied by method, disinfectant, and material. CDC bleach solution showed low efficacy against SARS-CoV-2 (log reduction < 1.7), unless applied via Spray & Wipe. Additionally, mechanical wiping increased the efficacy of treatments against SARS-CoV-2. The recovery of vRNA post-disinfection suggested that vRNA may overestimate infectious virus remaining. CONCLUSIONS: Efficacy depends on surface material, chemical, and disinfection procedure, and suggests that mechanical wiping alone has some efficacy at removing SARS-CoV-2 from surfaces. We observed that disinfectant treatment biased the recovery of vRNA over infectious virus. SIGNIFICANCE AND IMPACT OF STUDY: These data are useful for developing effective, real-world disinfection procedures, and inform public health experts on the utility of PCR-based surveillance approaches.

16.
Bioact Mater ; 7: 39-46, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34179568

RESUMEN

New viral infections, due to their rapid spread, lack of effective antiviral drugs and vaccines, kill millions of people every year. The global pandemic SARS-CoV-2 in 2019-2021 has shown that new strains of viruses can widespread very quickly, causing disease and death, with significant socio-economic consequences. Therefore, the search for new methods of combating different pathogenic viruses is an urgent task, and strategies based on nanoparticles are of significant interest. This work demonstrates the antiviral adsorption (virucidal) efficacy of nanoparticles of porous silicon (PSi NPs) against various enveloped and non-enveloped pathogenic human viruses, such as Influenza A virus, Poliovirus, Human immunodeficiency virus, West Nile virus, and Hepatitis virus. PSi NPs sized 60 nm with the average pore diameter of 2 nm and specific surface area of 200 m2/g were obtained by ball-milling of electrochemically-etched microporous silicon films. After interaction with PSi NPs, a strong suppression of the infectious activity of the virus-contaminated fluid was observed, which was manifested in a decrease in the infectious titer of all studied types of viruses by approximately 104 times, and corresponded to an inactivation of 99.99% viruses in vitro. This sorption capacity of PSi NPs is possible due to their microporous structure and huge specific surface area, which ensures efficient capture of virions, as confirmed by ELISA analysis, dynamic light scattering measurements and transmission electron microscopy images. The results obtained indicate the great potential of using PSi NPs as universal viral sorbents and disinfectants for the detection and treatment of viral diseases.

17.
ACS Nano ; 15(12): 20105-20115, 2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-34870425

RESUMEN

Solution co-deposition of two-dimensional (2D) nanosheets with chemical solutes yields nanosheet-molecular heterostructures. A feature of these macroscopic layered hybrids is their ability to release the intercalated molecular agent to express chemical functionality on their surfaces or in their near surroundings. Systematic design methods are needed to control this molecular release to match the demand for rate and lifetime in specific applications. We hypothesize that release kinetics are controlled by transport processes within the layered solids, which primarily involve confined molecular diffusion through nanochannels formed by intersheet van der Waals gaps. Here a variety of graphene oxide (GO)/molecular hybrids are fabricated and subject to transient experiments to characterize release kinetics, locations, and mechanisms. The measured release rate profiles can be successfully described by a numerical model of internal transport processes, and the results used to extract effective Z-directional diffusion coefficients for various film types. The diffusion coefficients are found to be 8 orders of magnitude lower than those in free solution due to nanochannel confinement and serpentine path effects, and this retardation underlies the ability of 2D materials to control and extend release over useful time scales. In-plane texturing of the heterostructured films by compressive wrinkling or crumpling is shown to be a useful design tool to control the release rate for a given film type and molecular intercalant. The potential of this approach is demonstrated through case studies on the controlled release of chemical virucidal agents.

18.
Antimicrob Resist Infect Control ; 10(1): 133, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34507617

RESUMEN

OBJECTIVES/PURPOSE: High-touch surfaces are a critical reservoir in the spread of nosocomial infections. Although disinfection and infection control protocols are well developed, they lack the ability to passively reduce the pathogenic load of high-touch surfaces. Copper and its alloys have been suggested as a surface that exhibit continuous biocidal effects. Antimicrobial studies on these surfaces are prevalent, while virucidal studies are not as well explored. The goal of this study was to first determine the virucidal activity of a copper-nickel-zinc alloy and to then examine the effect of soiling and virus preparation on virucidal activity. METHODS: A baculovirus vector was used as an easily quantifiable model of an infectious enveloped animal cell virus. Droplets containing virus were deposited on surfaces and allowed to stay wet using humidity control or were dried onto the surface. Virus was then recovered from the surface and assayed for infectivity. To examine how the composition of the droplet affected the survival of the virus, 3 different soiling conditions were tested. The first two were recommended by the United States Environmental Protection Agency and the third consisted of cell debris resulting from virus amplification. RESULTS: A copper-nickel-zinc alloy was shown to have strong virucidal effects for an enveloped virus. Copper, nickel, and zinc ions were all shown to leach from the alloy surface and are the likely cause of virucidal activity by this surface. Virucidal activity was achieved under moderate soiling but lost under high soiling generated by routine virus amplification procedures. The surface was able to repeatably inactivate dried virus droplets under moderate soiling conditions, but unable to do so for virus droplets kept wet using high humidity. CONCLUSION: Ion leaching was associated with virucidal activity in both wet and dried virus conditions. Soiling protected the virus by quenching metal ions, and not by inhibiting leaching. The composition of the solution containing virus plays a critical role in evaluating the virucidal activity of surfaces and surface coatings.


Asunto(s)
Antivirales/administración & dosificación , Infección Hospitalaria/prevención & control , Infección Hospitalaria/virología , Desinfección/métodos , Virosis/prevención & control , Aleaciones/farmacología , Aleaciones/uso terapéutico , Antivirales/farmacología , Cobre/farmacología , Cobre/uso terapéutico , Medios de Cultivo Condicionados , Desinfección/normas , Humanos , Técnicas de Dilución del Indicador , Níquel/farmacología , Níquel/uso terapéutico , Virosis/virología , Zinc/farmacología , Zinc/uso terapéutico
19.
J Dent Res ; 100(11): 1265-1272, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34282982

RESUMEN

Oral mouthwashes decrease the infectivity of several respiratory viruses including SARS-CoV-2. However, the precise agents with antiviral activity in these oral rinses and their exact mechanism of action remain unknown. Here we show that cetylpyridinium chloride (CPC), a quaternary ammonium compound in many oral mouthwashes, reduces SARS-CoV-2 infectivity by inhibiting the viral fusion step with target cells after disrupting the integrity of the viral envelope. We also found that CPC-containing mouth rinses decreased more than a thousand times the infectivity of SARS-CoV-2 in vitro, while the corresponding vehicles had no effect. This activity was effective for different SARS-CoV-2 variants, including the B.1.1.7 or Alpha variant originally identified in United Kingdom, and in the presence of sterilized saliva. CPC-containing mouth rinses could therefore represent a cost-effective measure to reduce SARS-CoV-2 infectivity in saliva, aiding to reduce viral transmission from infected individuals regardless of the variants they are infected with.


Asunto(s)
COVID-19 , Antisépticos Bucales , Cetilpiridinio/farmacología , Humanos , Antisépticos Bucales/farmacología , SARS-CoV-2
20.
Materials (Basel) ; 14(9)2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33946929

RESUMEN

We report on the design, characterization and validation of a spherical irradiation system for inactivating SARS-CoV-2, based on UV-C 275 nm LEDs. The system is designed to maximize irradiation intensity and uniformity and can be used for irradiating a volume of 18 L. To this aim: (i) several commercially available LEDs have been acquired and analyzed; (ii) a complete optical study has been carried out in order to optimize the efficacy of the system; (iii) the resulting prototype has been characterized optically and tested for the inactivation of SARS-CoV-2 for different exposure times, doses and surface types; (iv) the result achieved and the efficacy of the prototype have been compared with similar devices based on different technologies. Results indicate that a 99.9% inactivation can be reached after 1 min of treatment with a dose of 83.1 J/m2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...