Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Microbiol Biotechnol ; 34(1): 1-9, 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-37674398

RESUMEN

Cellular stress responses are crucial for maintaining cellular homeostasis. Stress granules (SGs), activated by eIF2α kinases in response to various stimuli, play a pivotal role in dealing with diverse stress conditions. Viral infection, as one kind of cellular stress, triggers specific cellular programs aimed at overcoming virus-induced stresses. Recent studies have revealed that virus-derived stress responses are tightly linked to the host's antiviral innate immunity. Virus infection-induced SGs act as platforms for antiviral sensors, facilitating the initiation of protective antiviral responses called "antiviral stress granules" (avSGs). However, many viruses, including coronaviruses, have evolved strategies to suppress avSG formation, thereby counteracting the host's immune responses. This review discusses the intricate relationship between cellular stress responses and antiviral innate immunity, with a specific focus on coronaviruses. Furthermore, the diverse mechanisms employed by viruses to counteract avSGs are described.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , Virosis , Humanos , Inmunidad Innata , Antivirales
2.
Infect Disord Drug Targets ; 21(7): e300821192322, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33739247

RESUMEN

A successful viral infection is due to the effective evasion of viruses of the immune system. The entry of viruses is usually detected by different cellular receptors including PRRs. Recognition of the viral genome leads to the production of interferons through a signaling stream. This review article provides brief information regarding escape mechanisms of DNA and RNA viruses from the host immune system. These strategies include viral endonuclease activity, cap snatching of host mRNA, the formation of replication organelles, stress granule formation, membrane modifications, action of proteases, and evasion from ISGs. Moreover, the strategies of DNA viruses to inhibit immune responses include subversion of mRNA, transcriptional factors, adaptor proteins, PRRs, evasion from T lymphocytes, genomic diversity, theft or seizure of host defense proteins, imitation of host factors like affecting cytokines and chemokines of the host, suppression or inhibition of apoptosis, and proteasomal degradation of host antiviral proteins by DNA viruses. The knowledge of these mechanisms is pivotal to understanding different methodologies that viruses have created to escape antiviral cellular reactions of the host as well as virus-host interactions and the origin of viral pathogenesis. Also, this knowledge is significant for the design of gene targeting vectors, antiviral vaccines, and the development of effective treatments directed against DNA and RNA viruses.


Asunto(s)
Evasión Inmune , Virus ARN , ADN , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Gránulos de Estrés , Replicación Viral
3.
Proc Natl Acad Sci U S A ; 116(12): 5699-5704, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30819886

RESUMEN

Vaccinia virus protein A49 inhibits NF-κB activation by molecular mimicry and has a motif near the N terminus that is conserved in IκBα, ß-catenin, HIV Vpu, and some other proteins. This motif contains two serines, and for IκBα and ß-catenin, phosphorylation of these serines enables recognition by the E3 ubiquitin ligase ß-TrCP. Binding of IκBα and ß-catenin by ß-TrCP causes their ubiquitylation and thereafter proteasome-mediated degradation. In contrast, HIV Vpu and VACV A49 are not degraded. This paper shows that A49 is phosphorylated at serine 7 but not serine 12 and that this is necessary and sufficient for binding ß-TrCP and antagonism of NF-κB. Phosphorylation of A49 S7 occurs when NF-κB signaling is activated by addition of IL-1ß or overexpression of TRAF6 or IKKß, the kinase needed for IκBα phosphorylation. Thus, A49 shows beautiful biological regulation, for it becomes an NF-κB antagonist upon activation of NF-κB signaling. The virulence of viruses expressing mutant A49 proteins or lacking A49 (vΔA49) was tested. vΔA49 was attenuated compared with WT, but viruses expressing A49 that cannot bind ß-TrCP or bind ß-TrCP constitutively had intermediate virulence. So A49 promotes virulence by inhibiting NF-κB activation and by another mechanism independent of S7 phosphorylation and NF-κB antagonism. Last, a virus lacking A49 was more immunogenic than the WT virus.


Asunto(s)
FN-kappa B/metabolismo , Fosfoproteínas/metabolismo , Virus Vaccinia/metabolismo , Retroalimentación Fisiológica/fisiología , Humanos , Quinasa I-kappa B/metabolismo , Proteínas I-kappa B/metabolismo , Imitación Molecular , FN-kappa B/fisiología , Fosfoproteínas/fisiología , Fosforilación , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteínas Virales/metabolismo , Virulencia/fisiología , Proteínas con Repetición de beta-Transducina/metabolismo , Proteínas con Repetición de beta-Transducina/fisiología
4.
Front Microbiol ; 9: 1751, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30123198

RESUMEN

The family Arenaviridae is divided into three genera: Mammarenavirus, Reptarenavirus, and Hartmanivirus. The Mammarenaviruses contain viruses responsible for causing human hemorrhagic fever diseases including New World viruses Junin, Machupo, Guanarito, Sabia, and Chapare virus and Old World viruses Lassa, and Lujo virus. These two groups of arenaviruses share the same genome organization composed of two ambisense RNA segments. These segments contain four open reading frames that encode for four proteins: the nucleoprotein, glycoprotein precursor, L protein, and Z. Despite their genome similarities, these groups exhibit marked differences in their replication life cycles. This includes differences in attachment, entry, and immune evasion. By understanding the intricacy of replication in each of these viral species we can work to develop counter measures against human diseases. This includes the development of vaccines and antivirals for these emerging viral threats. Currently only the vaccine against Junin virus, Candid#1, is in use as well as Ribavirin for treatment of Lassa Fever. In addition, small molecule inhibitors can be developed to target various aspects of the virus life cycle. In these ways an understanding of the arenavirus replication cycle can be used to alleviate the mortality and morbidity of these infections worldwide.

5.
Gastroenterology ; 154(6): 1778-1790, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29408639

RESUMEN

BACKGROUND & AIMS: Most viruses are detected at early stages of cell infection and induce an innate immune response mediated by production of interferons (IFNs). IFNs induce expression of hundreds of IFN-stimulated genes (ISGs). Infection of chimpanzees with hepatitis C virus, but not hepatitis B virus (HBV), induces ISG expression in the liver. HBV might not induce an innate immune response because it is not detected by pattern recognition receptors (the stealth properties of HBV) or because HBV suppresses IFN production or signaling despite detection by pattern recognition receptors. We studied innate immune signaling in liver biopsies from patients with different stages of chronic HBV infection and uninfected individuals (controls). METHODS: We obtained liver within 10 minutes after collection from 30 patients with chronic HBV infection (hepatitis B e antigen-positive or -negative, with or without hepatitis) and 42 controls (most with fatty liver disease). The liver tissues were analyzed by histology, immunohistochemistry, quantitative reverse-transcription polymerase chain reaction, in situ hybridization, HBV RNA quantification, and HBV genotyping; some specimens were incubated with toll-like receptor (TLR) ligands (polyinosinic-polycytidylic acid) or infected with Sendai virus and then analyzed. RESULTS: Liver specimens from patients with HBV infection were not expressing more IFN or ISGs than those from control patients, indicating that chronic HBV infection did not activate an innate immune response. However, liver specimens from patients with HBV infection did produce IFN and induce expression of ISGs following activation of TLR3 with poly(I:C) or Sendai virus infections, so the innate immune response is not suppressed in these tissues. CONCLUSION: Liver tissues from patients with chronic HBV infection do not have induction of an innate immune response, but this response can be activated by other factors (TLR3 binding, Sendai virus infection) in HBV-infected liver tissue. These findings support the hypothesis that HBV is invisible to pattern recognition receptors.


Asunto(s)
Virus de la Hepatitis B/inmunología , Hepatitis B/inmunología , Hepatocitos/inmunología , Inmunidad Innata/inmunología , Hígado/inmunología , Adulto , Biopsia , Estudios de Casos y Controles , Femenino , Hepatitis B/patología , Hepatitis B/virología , Hepatocitos/virología , Humanos , Factores Reguladores del Interferón/metabolismo , Interferones/biosíntesis , Hígado/patología , Hígado/virología , Masculino
6.
Methods Mol Biol ; 1435: 1-13, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27188545

RESUMEN

West Nile virus (WNV) is an arbovirus with increased global incidence in the last decade. It is also a major cause of human encephalitis in the USA. WNV is an arthropod-transmitted virus that mainly affects birds but humans become infected as incidental dead-end hosts which can cause outbreaks in naïve populations. The main vectors of WNV are mosquitoes of the genus Culex, which preferentially feed on birds. As in many other arboviruses, the characteristics that allow Flaviviruses like WNV to replicate and transmit to different hosts are encrypted in their genome, which also contains information for the production of structural and nonstructural proteins needed for host cell infection. WNV and other Flaviviruses have developed different strategies to establish infection, replication, and successful transmission. Most of these strategies include the diversion of the host's immune responses away from the virus. In this review, we describe the molecular structure and protein function of WNV with emphasis on protein involvement in the modulation of antiviral immune responses.


Asunto(s)
Culex/virología , Fiebre del Nilo Occidental/transmisión , Virus del Nilo Occidental/fisiología , Animales , Culex/inmunología , Genoma Viral , Humanos , Insectos Vectores/inmunología , Insectos Vectores/virología , Proteínas Virales/inmunología , Replicación Viral , Fiebre del Nilo Occidental/inmunología , Virus del Nilo Occidental/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...