Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 364: 143061, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39127187

RESUMEN

Here we present the UCI Fluxtron, a cost-effective multi-enclosure dynamic gas exchange system that provides an adequate level of control of the experimental conditions for investigating biosphere-atmosphere exchange of trace gases. We focus on the hardware and software used to monitor, control, and record the air flows, temperatures, and valve switching, and on the software that processes the collected data to calculate the exchange flux of trace gases. We provide the detailed list of commercial materials used and also the software code developed for the Fluxtron, so that similar dynamic enclosure systems can be quickly adopted by interested researchers. Furthermore, the two software components -Fluxtron Control and Fluxtron Process- work independently of each other, thus being highly adaptable for other experimental designs. Beyond plants, the same experimental setup can be applied to the study of trace gas exchange by animals, microbes, soil, or any materials that can be enclosed in a suitable container.

2.
Fa Yi Xue Za Zhi ; 40(3): 269-275, 2024 Jun 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-39166308

RESUMEN

In the process of murder investigation, it is of great significance to find the discarded and buried human remains accurately. The main methods of searching for human remains include human visual search, aerial detection, geophysical technology, remote imaging technology and canine olfactory search technique. Canine olfactory search for human remains is a recognized time-effective and non-invasive search method, making dogs the most valuable search tool in forensic investigation. By systematically reviewing and summarizing relevant literature, and based on the theory of volatile organic compound produced by the decomposition of human remains, this paper explores the basic principle of the canine olfactory search technique for human remains. This paper also reviews the application of training canine search technique for human remains in forensic investigation by using human blood, tissue, cadaver putrefying fluid and odor substitutes as sniffing sources. The application prospect of canine olfactory search for human remains was prospected from the perspectives of detection of volatile organic compound during cadaver decay, development of odor substitutes and adsorption devices, and technology tactics used in canine training and use, to provide references for the relevant research of canine olfactory search for human remains in China.


Asunto(s)
Odorantes , Olfato , Compuestos Orgánicos Volátiles , Perros , Animales , Humanos , Olfato/fisiología , Odorantes/análisis , Compuestos Orgánicos Volátiles/análisis , Cambios Post Mortem , Restos Mortales , Ciencias Forenses/métodos , Cadáver , Medicina Legal/métodos
3.
Food Chem ; 460(Pt 2): 140620, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39094338

RESUMEN

Food contamination has long plagued agriculture, posing significant health risks to consumers. The use of volatile gases for food safety detection has proven highly effective, with composite gas sensors that leverage the two-dimensional material MXene exhibiting notable advancements in detecting various target gases. This paper reviews the progress of MXene-based composite gas sensors in the detection of food safety-related gases. The review begins by examining MXene material synthesis methods and then presents an overview of techniques aimed at enhancing MXene-based sensor detection capabilities. Recently, advancements in MXene composite gas sensors tailored for food safety gases have been highlighted. Finally, challenges encountered in gas-sensing applications of MXene-based composites are outlined, alongside predictions for their future development, aiming to offer insights for the application and advancement of intelligent gas sensors for target gases in food safety.

4.
J Breath Res ; 18(4)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38955168

RESUMEN

Preservation of the breath sample integrity during storage and transport is one of the biggest challenges in off-line exhaled breath gas analysis. In this context, adsorbent tubes are frequently used as storage containers for use with analytical methods employing gas chromatography with mass spectrometric detection. The key objective of this short communication is to provide data on the recovery of selected breath volatiles from Tenax®TA adsorbent tubes that were stored at -80 °C for up to 90 d. For this purpose, an Owlstone Medical's ReCIVA®Breath Sampler was used for exhaled breath collection. The following fifteen compounds, selected to cover a range of chemical properties, were monitored for their stability: isoprene, n-heptane, n-nonane, toluene, p-cymene, allyl methyl sulfide, 1-(methylthio)-propane, 1-(methylthio)-1-propene,α-pinene, DL-limonene,ß-pinene,γ-terpinene, 2-pentanone, acetoin and 2,3 butanedione. All compounds, but one (acetoin), were found to be stable during the first 4 weeks of storage (recovery within ± 2 × RSD). Furthermore, n-nonane was stable during the whole of the investigated period.


Asunto(s)
Pruebas Respiratorias , Compuestos Orgánicos Volátiles , Humanos , Pruebas Respiratorias/instrumentación , Pruebas Respiratorias/métodos , Compuestos Orgánicos Volátiles/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Espiración , Adsorción , Manejo de Especímenes/métodos , Manejo de Especímenes/instrumentación
5.
Environ Sci Technol ; 58(28): 12719-12730, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38959427

RESUMEN

Chlorofluorocarbons (CFCs) exert a strong greenhouse effect and constitute the largest contributor to ozone depletion. Catalytic removal is considered an effective pathway for eliminating low-concentration CFCs under mild conditions. The key issue is the easy deactivation of the catalysts due to their surface fluorination. We herein report a comparative investigation on catalytic dichlorodifluoromethane (CFC-12) removal in the absence or presence of water over the sulfuric-acid-modified three-dimensionally ordered macroporous vanadia-titania-supported Ru (S-Ru/3DOM VTO) catalysts. The S-Ru/3DOM VTO catalyst exhibited high activity (T90% = 278 °C at space velocity = 40 000 mL g-1 h-1) and good stability within 60 h of on-stream reaction in the presence of 1800 ppm of water due to the improvements in acid site amount and redox ability that promoted the adsorption of CFC-12 and the activation of C-F bonds. Compared with the case under dry conditions, catalytic performance for CFC-12 removal was better over the S-Ru/3DOM VTO catalyst in the presence of water. Water introduction mitigated surface fluorination by the replenishment of hydroxyl groups, inhibited the formation of halogenated byproducts via the surface fluorine species cleaning effect, and promoted the reaction pathway of COX2 (X = Cl/F) → carboxylic acid → CO2.


Asunto(s)
Oxidación-Reducción , Catálisis , Halogenación , Ácidos Sulfúricos/química , Titanio/química , Rutenio/química
6.
Sci Rep ; 14(1): 17041, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39048612

RESUMEN

Consumer spray products (CSPs) are widely used in daily life, yet it is challenging to find products that fully disclose all components posing health risks. Existing studies primarily focus on product components or VOC quantities emitted during use. Therefore, this study aimed to measure the VOC concentrations emitted by CSPs at varying distances. 47 CSPs available in the Korean market were selected, spanning three spray groups: antiseptics/insecticides (11), aromatic deodorants (16), and coating/polishing agents (20). VOC in air samples were collected using Tenax TA tube at a distance of 1 and 3 m from the sprayed CSPs and then analyzed by thermal desorption-gas chromatography-mass spectrometry system. Discrepancies were found between labeled and actual product components. Aromatic deodorants exhibited the highest total VOCs (TVOCs), while antiseptic/insecticide sprays exhibited the lowest. In the antiseptic/insecticide group and coating/polishing agent group, benzene as a propellant had a maximum concentration (30.9 ± 25.6 ppb), and as trigger, its concentration was 33.7 ± 30.7 ppb. Quantitative analysis using advanced analytical instruments only explained 26.1 ± 20.4% of toluene-equivalent TVOCs, suggesting the presence of additional substances. Concentrations varied by distance due to substance volatility and usage. Maintaining a distance of at least 1 m from CSPs is recommended.

7.
Foods ; 13(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38998469

RESUMEN

In this study, the flavor characteristics and physicochemical properties of salted egg yolk (SEY) under different cooking methods (steaming/baking/microwaving) were investigated. The microwave-treated SEY exhibited the highest levels of salt content, cooking loss, lightness, and b* value, as well as the highest content of flavor amino acids. A total of 31, 27, and 29 volatile compounds were detected after steaming, baking, and microwave treatments, respectively, covering 10 chemical families. The partial least squares discriminant analysis confirmed that 21 compounds, including octanol, pyrazine, 2-pentyl-furan, and 1-octen-3-ol, were the key volatile compounds affecting the classification of SEY aroma. The electronic nose revealed a sharp distinction in the overall flavor profile of SEY with varying heat treatments. However, no dramatic differences were observed in terms of fatty acid composition. Microwave treatment was identified as presenting a promising approach for enhancing the aroma profile of SEY. These findings contribute novel insights into flavor evaluation and the development of egg products as ingredients for thermal processing.

8.
J Hazard Mater ; 475: 134843, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38870859

RESUMEN

ß-Carboline heterocyclic amines (ß-CHAs), known for their synergistic neurotoxic and carcinogenic effects, are predominantly produced by humans through cigarette smoke and food and are found particularly in meats cooked at high temperatures. Few studies have explored the differences in the mechanisms of accumulation of ß-CHAs in smoked meat and meat processed at high temperatures. In this research, the concentration of ß-CHAs in smoked meats prepared using a variety of wood materials was measured using LCMS/MS. Additionally, key volatile organic compound markers associated with ß-CHAs accumulation in smoke were identified through GCMS and multivariate statistical analysis and subsequently confirmed in a chemical simulation system. Three types of strainers, each with a distinct aperture size, were used to assess the efficacy of particle filtration in reducing ß-CHAs levels in smoked meat. The findings indicated that smoke exposure indeed increases the ß-CHAs content of meat. However, only the strainer capable of filtering PM2.5-sized particles reduced the amount of ß-CHAs present compared to the control group. In contrast, strainers with larger pore sizes facilitated excessive accumulation of ß-CHAs. The presence of aldehydes such as 1 H-pyrrole-2-carboxaldehyde, 5-methylfurfural, benzaldehyde, furfural, and nonanal exhibited a positive correlation with the accumulation of ß-CHAs. Conversely, phenolic compounds, including 2-methoxy-4-vinylphenol, 2-methoxy-5-methylphenol, p-cresol, phenol, 2-methoxy-4-(1-propenyl)-, (Z)-, phenol, 3-ethyl-, and phenol, 4-ethyl-2-methoxy-, showed a negative correlation. Thus, filters made from chelated carbonyl trap materials both chemically and physically disrupt the buildup of ß-CHAs in smoked meats. The use of this approach will not only improve the quality of these products but will also contribute to decreasing the amount of inhalation pollutants released into the environment.


Asunto(s)
Carbolinas , Humo , Carbolinas/química , Humo/análisis , Aminas/química , Aminas/análisis , Animales , Carne/análisis , Productos de la Carne/análisis , Culinaria , Madera/química , Material Particulado/análisis , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química , Compuestos Heterocíclicos/análisis
9.
Planta ; 260(1): 15, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829528

RESUMEN

MAIN CONCLUSION: One of seven Solanum taxa studied displayed associations between pollen presence and floral scent composition and volume, suggesting buzz-pollinated plants rarely use scent as an honest cue for foraging pollinators. Floral scent influences the recruitment, learning, and behaviour of floral visitors. Variation in floral scent can provide information on the amount of reward available or whether a flower has been visited recently and may be particularly important in species with visually concealed rewards. In many buzz-pollinated flowers, tubular anthers opening via small apical pores (poricidal anthers) visually conceal pollen and appear similar regardless of pollen quantity within the anther. We investigated whether pollen removal changes floral scent composition and emission rate in seven taxa of buzz-pollinated Solanum (Solanaceae). We found that pollen removal reduced both the overall emission of floral scent and the emission of specific compounds (linalool and farnesol) in S. lumholtzianum. Our findings suggest that in six out of seven buzz-pollinated taxa studied here, floral scent could not be used as a signal by visitors as it does not contain information on pollen availability.


Asunto(s)
Flores , Odorantes , Polen , Polinización , Solanum , Solanum/fisiología , Solanum/química , Polinización/fisiología , Flores/fisiología , Flores/química , Polen/fisiología , Polen/química , Odorantes/análisis , Animales , Abejas/fisiología
10.
J Proteome Res ; 23(7): 2552-2560, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38864484

RESUMEN

Detection of exhaled volatile organic compounds (VOCs) is promising for noninvasive screening of esophageal cancer (EC). Cellular VOC analysis can be used to investigate potential biomarkers. Considering the crucial role of methionine (Met) during cancer development, exploring associated abnormal metabolic phenotypes becomes imperative. In this work, we employed headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) to investigate the volatile metabolic profiles of EC cells (KYSE150) and normal esophageal epithelial cells (HEECs) under a Met regulation strategy. Using untargeted approaches, we analyzed the metabolic VOCs of the two cell types and explored the differential VOCs between them. Subsequently, we utilized targeted approaches to analyze the differential VOCs in both cell types under gradient Met culture conditions. The results revealed that there were five/six differential VOCs between cells under Met-containing/Met-free culture conditions. And the difference in levels of two characteristic VOCs (1-butanol and ethyl 2-methylbutyrate) between the two cell types intensified with the increase of the Met concentration. Notably, this is the first report on VOC analysis of EC cells and the first to consider the effect of Met on volatile metabolic profiles. The present work indicates that EC cells can be distinguished through VOCs induced by Met regulation, which holds promise for providing novel insights into diagnostic strategies.


Asunto(s)
Neoplasias Esofágicas , Cromatografía de Gases y Espectrometría de Masas , Metionina , Compuestos Orgánicos Volátiles , Metionina/metabolismo , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/metabolismo , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Humanos , Cromatografía de Gases y Espectrometría de Masas/métodos , Línea Celular Tumoral , Microextracción en Fase Sólida , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos
11.
Sensors (Basel) ; 24(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38894418

RESUMEN

Metal-oxide-based gas sensors are extensively utilized across various domains due to their cost-effectiveness, facile fabrication, and compatibility with microelectronic technologies. The copper (Cu)-based multifunctional polymer-enhanced sensor (CuMPES) represents a notably tailored design for non-invasive environmental monitoring, particularly for detecting diverse gases with a low concentration. In this investigation, the Cu-CuO/PEDOT nanocomposite was synthesized via a straightforward chemical oxidation and vapor-phase polymerization. Comprehensive characterizations employing X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), X-ray diffraction (XRD), and micro Raman elucidated the composition, morphology, and crystal structure of this nanocomposite. Gas-sensing assessments of this CuMPES based on Cu-CuO/PEDOT revealed that the response current of the microneedle-type CuMPES surpassed that of the pure Cu microsensor by nearly threefold. The electrical conductivity and surface reactivity are enhanced by poly (3,4-ethylenedioxythiophene) (PEDOT) polymerized on the CuO-coated surface, resulting in an enhanced sensor performance with an ultra-fast response/recovery of 0.3/0.5 s.

12.
J Colloid Interface Sci ; 673: 258-266, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38875791

RESUMEN

Plants exhibit rapid responses to biotic and abiotic stresses by releasing a range of volatile organic compounds (VOCs). Monitoring changes in these VOCs holds the potential for the early detection of plant diseases. This study proposes a method for identifying late blight in potatoes based on the detection of (E)-2-hexenal, one of the major VOC markers released during plant infection by Phytophthora infestans. By combining the Michael addition reaction with cysteine-mediated etching of aggregation-induced emission gold nanoclusters (Au NCs), we have developed a portable hydrogel kit for on-site detection of (E)-2-hexenal. The Michael addition reaction between (E)-2-hexenal and cysteine effectively alleviates the etching of cysteine-mediated Au NCs, leading to a distinct fluorescence color change in the Au NCs, enabling a detection limit of 0.61 ppm. Utilizing the superior loading and diffusion characteristics of the three-dimensional structure of agarose hydrogel, our sensor demonstrated exceptional performance in terms of sensitivity, selectivity, reaction time, and ease of use. Moreover, quantitative measurement of (E)-2-hexenal was made easier by using ImageJ software to transform fluorescent images from the hydrogel kit into digital data. Such method was effectively used for the early detection of potato late blight. This study presents a low-cost, portable fluorescent analytical tool, offering a new avenue for on-site detection of plant diseases.


Asunto(s)
Aldehídos , Oro , Hidrogeles , Nanopartículas del Metal , Solanum tuberosum , Aldehídos/química , Hidrogeles/química , Solanum tuberosum/química , Oro/química , Nanopartículas del Metal/química , Gases/análisis , Gases/química , Phytophthora infestans , Enfermedades de las Plantas/microbiología , Límite de Detección , Tamaño de la Partícula
13.
Food Chem X ; 22: 101395, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38694544

RESUMEN

Xinyu mandarin is popular for its good flavor, but its flavor deteriorates during postharvest storage. To better understand the underlying basis of this change, the dynamics of the sensory profiles were investigated throughout fruit ripening and storage. Sweetness and sourness, determined especially by sucrose and citric acid content, were identified as the key sensory factors in flavor establishment during ripening, but not in flavor deterioration during storage. Postharvest flavor deterioration is mainly attributed to the reduction of retronasal aroma and the development of off-flavor. Furthermore, sugars, acids and volatile compounds were analyzed. Among the 101 detected volatile compounds, 10 changed significantly during the ripening process. The concentrations of 15 volatile components decreased during late postharvest storage, among which α-pinene and d-limonene were likely to play key roles in the reduction of aroma. Three volatile compounds were found to increase during storage, associated with off-flavor development.

14.
Res Microbiol ; : 104214, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38740236

RESUMEN

The diversity of the biological activity of volatile organic compounds (VOCs), including unsaturated ketone ß-ionone, promising pharmacological, biotechnological, and agricultural agent, has aroused considerable interest. However, the functional role and mechanisms of action of VOCs remain insufficiently studied. In this work, the response of bacterial cells to the action of ß-ionone was studied using specific bioluminescent lux-biosensors containing stress-sensitive promoters. We determined that in Escherichia coli cells, ß-ionone induces oxidative stress (PkatG and Pdps promoters) through a specific response mediated by the OxyR/OxyS regulon, but not SoxR/SoxS (PsoxS promoter). It has been shown that ß-ionone at high concentrations (50 µM and above) causes a weak induction of the expression from the PibpA promoter and slightly induces the PcolD promoter in the E. coli biosensors; the observed effect is enhanced in the ΔoxyR mutants. This indicates the presence of some damage to proteins and DNA. ß-Ionone was found to inhibit the bichaperone-dependent DnaKJE-ClpB refolding of heat-inactivated bacterial luciferase in E. coli wild-type and ΔibpB mutant strains. In the cells of the Gram-positive bacterium Bacillus subtilis 168 pNK-MrgA ß-ionone does not cause oxidative stress. Thus, in this work, the specificity of bacterial cell stress responses to the action of ß-ionone was shown.

15.
J Hazard Mater ; 472: 134553, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38735191

RESUMEN

Microwave resonators combined with polymer absorption layers are widely used in volatile organic compound (VOC) detection based on their variable resonant frequencies. However, the response time is limited due to the polymer's slow volumetric absorption of VOC molecules. By constructing a porous structure in Polydimethylsiloxane (PDMS), resulting in reduced the response time to as short as 71.1%. To mitigate the sensitivity decline caused by the porous PDMS, a trenched-substrate complementary split-ring resonator (CSRR) is proposed for enhancing the interaction between the electromagnetic fields (EMFs) and the porous PDMS with VOCs. The removal of the substrate beneath CSRR's sensing region enhances the effective EMF, increasing frequency and amplitude sensitivities up to 175.5% and 137.8%, respectively. Responses to four common VOCs by the sensor show a maximum sensitivity of 217 Hz/ppm and a minimum limit of detection of 295 ppm. Additionally, resonant parameters and extracted lumped parameters are utilized to establish two decision-tree-based VOC classification models, achieving high accuracies of 98.71% and 99.59%, respectively. And the latter one fully utilizing responses throughout the swept band, proves superior in identifying similar substances. This sensor technology helps promote the sensitive detection and accurate classification of diverse VOCs.

16.
Environ Pollut ; 355: 124199, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38788990

RESUMEN

Phytoremediation has become famous for removing particulate matter (PM) and volatile organic compounds (VOCs), but the ability is affected by plant health. Lately, the priming technique was a simple approach to studying improving plant tolerance against abiotic stress by specific metabolites that accumulated, known as "memory", but the mechanism underlying this mechanism and how long this "memory" was retained in the plant was a lack of study. Sansevieria trifasciata was primed for one week for PM and VOC stress to improve plant efficiency on PM and VOC. After that, the plant was recovered for two- or five-weeks, then re-exposed to the same stress with similar PM and VOC concentrations from cigarette smoke. Primed S. trifasciata showed improved removal of PMs entirely within 2 h and VOC within 24 h. The primed plant can maintain a malondialdehyde (MDA) level and retain the "memory" for two weeks. Metabolomics analysis showed that an ornithine-related compound was accumulated as a responsive metabolite under exposure to PM and VOC stress. Exogenous ornithine can maintain plant efficiency and prevent stress by increasing proline and antioxidant enzymes. This study is the first to demonstrate plant "memory" mechanisms under PM and VOC stress.


Asunto(s)
Biodegradación Ambiental , Material Particulado , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/metabolismo , Contaminantes Atmosféricos/metabolismo , Asparagaceae/metabolismo , Malondialdehído/metabolismo
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124473, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-38795528

RESUMEN

Infrared spectroscopy appears to be a promising analytical method for the metabolic analysis of breath. However, due to the presence of trace amounts in exhaled breath, the absorption strength of the metabolites remains extremely low. In such low detection limits, the nonlinear detection sensitivity of the infrared detector and electronic noise strongly modify the baseline of the acquired infrared spectra of breath. Fitting the reference molecular spectra with the baseline-modified spectral features of breath metabolites does not provide accurate identification. Therefore, baseline correction of the acquired infrared spectra of breath is the primary requirement for the success of breath-based infrared diagnosis. A selective spectral region-based, simple baseline correction method is proposed for the infrared spectroscopy of breath.


Asunto(s)
Pruebas Respiratorias , Espiración , Espectrofotometría Infrarroja , Pruebas Respiratorias/métodos , Humanos , Espectrofotometría Infrarroja/métodos , Espiración/fisiología , Masculino , Adulto , Femenino
18.
Bioeng Transl Med ; 9(3): e10519, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38818125

RESUMEN

The different immune system cells communicate and coordinate a response using a complex and evolved language of cytokines and chemokines. These cellular interactions carry out multiple functions in distinct cell types with numerous developmental outcomes. Despite the plethora of different cytokines and their cognate receptors, there is a restricted number of signal transducers and activators to control immune responses. Herein, we report on a new class of immunomodulatory signaling molecules based on volatile molecules (VMs, namely, volatile organic compounds [VOCs]), by which they can affect and/or control immune cell behavior and transcriptomic profile without any physical contact with other cells. The study demonstrates the role of VMs by analyzing non-contact cell communication between normal and cancerous lung cells and U937 monocytes, which are key players in the tumor microenvironment. Integrated transcriptome and proteome analyses showed the suggested regulatory role of VMs released from normal and cancer cells on neighboring monocytes in several molecular pathways, including PI3K/AKT, PPAR, and HIF-1. Presented data provide an initial platform for a new class of immunomodulatory molecules that can potentially mirror the genomic and proteomic profile of cells, thereby paving the way toward non-invasive immunomonitoring.

19.
World J Gastrointest Oncol ; 16(3): 894-906, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38577457

RESUMEN

BACKGROUND: Volatile organic compounds (VOCs) are a promising potential biomarker that may be able to identify the presence of cancers. AIM: To identify exhaled breath VOCs that distinguish pancreatic ductal adenocarcinoma (PDAC) from intraductal papillary mucinous neoplasm (IPMN) and healthy volunteers. METHODS: We collected exhaled breath from histologically proven PDAC patients, radiological diagnosis IPMN, and healthy volunteers using the ReCIVA® device between 10/2021-11/2022. VOCs were identified by thermal desorption-gas chromatography/field-asymmetric ion mobility spectrometry and compared between groups. RESULTS: A total of 156 participants (44% male, mean age 62.6 ± 10.6) were enrolled (54 PDAC, 42 IPMN, and 60 controls). Among the nine VOCs identified, two VOCs that showed differences between groups were dimethyl sulfide [0.73 vs 0.74 vs 0.94 arbitrary units (AU), respectively; P = 0.008] and acetone dimers (3.95 vs 4.49 vs 5.19 AU, respectively; P < 0.001). After adjusting for the imbalance parameters, PDAC showed higher dimethyl sulfide levels than the control and IPMN groups, with adjusted odds ratio (aOR) of 6.98 (95%CI: 1.15-42.17) and 4.56 (1.03-20.20), respectively (P < 0.05 both). Acetone dimer levels were also higher in PDAC compared to controls and IPMN (aOR: 5.12 (1.80-14.57) and aOR: 3.35 (1.47-7.63), respectively (P < 0.05 both). Acetone dimer, but not dimethyl sulfide, performed better than CA19-9 in PDAC diagnosis (AUROC 0.910 vs 0.796). The AUROC of acetone dimer increased to 0.936 when combined with CA19-9, which was better than CA19-9 alone (P < 0.05). CONCLUSION: Dimethyl sulfide and acetone dimer are VOCs that potentially distinguish PDAC from IPMN and healthy participants. Additional prospective studies are required to validate these findings.

20.
Plant Biol (Stuttg) ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38593287

RESUMEN

The study investigated the impact of intraspecific plant chemodiversity on plant growth and reproductive traits at both the plant and plot levels. It also aimed to understand how chemodiversity at stand level affects ecosystem functioning and plant-plant interactions. We describe a biodiversity experiment in which we manipulated intraspecific plant chemodiversity at the plot level using six different chemotypes of common tansy (Tanacetum vulgare L., Asteraceae). We tested the effects of chemotype identity and plot-level chemotype richness on plant growth and reproductive traits and plot-level headspace emissions. The study found that plant chemotypes differed in growth and reproductive traits and that traits were affected by the chemotype richness of the plots. Although morphological differences among chemotypes became less pronounced over time, reproductive phenology patterns persisted. Plot-level trait means were also affected by the presence or absence of certain chemotypes in a plot, and the direction of the effect depended on the specific chemotype. However, chemotype richness did not lead to overyielding effects. Lastly, chemotype blends released from plant communities were neither richer nor more diverse with increasing plot-level chemotype richness, but became more dissimilar as they became more dissimilar in their leaf terpenoid profiles. We found that intraspecific plant chemodiversity is crucial in plant-plant interactions. We also found that the effects of chemodiversity on plant growth and reproductive traits were complex and varied depending on the chemotype richness of the plots. This long-term field experiment will allow further investigation into plant-insect interactions and insect community assembly in response to intraspecific chemodiversity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...