Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39274678

RESUMEN

Hydrogen fuel holds promise for clean energy solutions, particularly in onboard applications such as fuel cell vehicles. However, the development of efficient hydrogen storage systems remains a critical challenge. This study addresses this challenge by exploring the potential of high-strength novel materials, including glass, to maximize onboard hydrogen storage capacity. A mathematical approach was employed to evaluate the feasibility and efficacy of various high-strength materials for hydrogen storage. This study focused on capillary arrays as a promising storage medium and utilized mathematical modeling techniques to estimate the storage capacity enhancement achievable with different materials. The analysis revealed significant variations in storage capacity enhancements in different high-strength novel materials, with glass having promising results. Glass-based materials demonstrated the potential to meet or exceed US Department of Energy (DOE) targets for both gravimetric and volumetric hydrogen storage capacities in capillary arrays. By leveraging a mathematical approach, this study identified high-strength novel materials, including glass and polymers, capable of substantially improving onboard hydrogen storage capacity: 29 wt.% with 40 g/L for quartz glass and 25 wt.% with 38 g/L for Kevlar compared to 5.2 wt.% with 26.3 g/L from a conventional type IV tank. These findings underscore the importance of material selection in optimizing hydrogen storage systems and provide valuable insights for the design and development of next-generation hydrogen storage technologies for onboard applications.

2.
Adv Mater ; 36(31): e2403385, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38769003

RESUMEN

Capacitive deionization (CDI) has emerged as a promising technology for freshwater recovery from low-salinity brackish water. It is still inapplicable in specific scenarios (e.g., households, islands, or offshore platforms) due to too low volumetric adsorption capacities. In this study, a high-density semi-metallic molybdenum disulfide (1T'-MoS2) electrode with compact architecture obtained by restacking of exfoliated nanosheets, which achieve high capacitance up to ≈277.5 F cm-3 under an ultrahigh scan rate of 1000 mV s-1 with a lower charge-transfer resistance and nearly tenfold higher electrochemical active surface area than the 2H-MoS2 electrode, is reported. Furthermore, 1T'-MoS2 electrode demonstrates exceptional volumetric desalination capacity of 65.1 mgNaCl cm-3 in CDI experiments. Ex situ X-ray diffraction (XRD) reveal that the cation storage mechanism with the dynamic expansion of 1T'-MoS2 interlayer to accommodate cations such as Na+, K+, Ca2+, and Mg2+, which in turn enhances the capacity. Theoretical analysis unveils that 1T' phase is thermodynamically preferable over 2H phase, the ion hydration and channel confinement also play critical role in enhancing ion adsorption. Overall, this work provides a new method to design compact 2D-layered nanolaminates with high-volumetric performance for CDI desalination.

3.
Nano Lett ; 23(22): 10538-10544, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37933820

RESUMEN

Binders are crucial for maintaining the integrity of an electrode, and there is a growing need for integrating multiple desirable properties into the binder for high-energy batteries, yet significant challenges remain. Here, we successfully synthesized a new binder by cross-linking sodium alginate (SA) with MXene materials (Ti3C2Tx). Besides the improved adhesion and mechanical properties, the integrated SA@Ti3C2Tx binder demonstrates much improved electronic conductivity, which enables ruling out the fluffy conductive additive from the electrode component with enhanced volumetric capacity. When SA@Ti3C2Tx is used to fabricate sulfur (S) cathodes, the conductive-additive-free electrode demonstrates extremely high capacity (1422 mAh cm-3/24.5 mAh cm-2) under an S loading of 17.2 mg cm-2 for Li-S batteries. Impressively, the SA@Ti3C2Tx binder shows remarkable feasibility in other battery systems such as Na-S and LiFePO4 batteries. The proposed strategy of constructing a cross-linking conductive binder opens new possibilities for designing high-mass-loading electrodes with high volumetric capacity.

4.
Chemistry ; 29(64): e202302244, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37604794

RESUMEN

With the rapid improvement of compact smart devices, fabricating anode materials with high volumetric capacity has gained substantial interest for future sodium-ion batteries (SIBs) applications. Herein, a novel bimetal sulfide CuCo5 S8 material is proposed with enhanced volumetric capacity due to the intrinsic metallic electronic conductivity of the material and multi-electron transfer during electrochemical procedures. Due to the intrinsic metallic behavior, the conducting additive (CA) could be removed from the electrode fabrication without scarifying the high rate capability. The CA-free CuCo5 S8 electrode can achieve a high volumetric capacity of 1436.4 mA h cm-3 at a current density of 0.2 A g-1 and 100 % capacity retention over 2000 cycles in SIBs, outperforming most metal chalcogenides, owing to the enhanced electrode density. Reversible conversion reactions are revealed by combined measurements for sodium systems. The proposed new strategy offers a viable approach for developing innovative anode materials with high-volumetric capacity.

5.
Small ; 19(48): e2303864, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37525330

RESUMEN

Silicon (Si) is regarded as one of the most promising anode materials for high-performance lithium-ion batteries (LIBs). However, how to mitigate its poor intrinsic conductivity and the lithiation/delithiation-induced large volume change and thus structural degradation of Si electrodes without compromising their energy density is critical for the practical application of Si in LIBs. Herein, an integration strategy is proposed for preparing a compact micron-sized Si@G/CNF@NC composite with a tight binding and dual-encapsulated architecture that can endow it with superior electrical conductivity and deformation resistance, contributing to excellent cycling stability and good rate performance in thick electrode. At an ultrahigh mass loading of 10.8 mg cm-2 , the Si@G/CNF@NC electrode also presents a large initial areal capacity of 16.7 mA h cm-2 (volumetric capacity of 2197.7 mA h cm-3 ). When paired with LiNi0.95 Co0.02 Mn0.03 O2 , the pouch-type full battery displays a highly competitive gravimetric (volumetric) energy density of ≈459.1 Wh kg-1 (≈1235.4 Wh L-1 ).

6.
Small ; 19(38): e2301744, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37231559

RESUMEN

Application of Si anodes is hindered by severe capacity fading due to pulverization of Si particles during the large volume changes of Si during charge/discharge and repeated formation of the solid-electrolyte interphase. To address these issues, considerable efforts have been devoted to the development of Si composites with conductive carbons (Si/C composites). However, Si/C composites with high C content inevitably show low volumetric capacity because of low electrode density. For practical applications, the volumetric capacity of a Si/C composite electrode is more important than gravimetric capacity, but volumetric capacity in pressed electrodes is rarely reported. Herein, a novel synthesis strategy is demonstrate for a compact Si nanoparticle/graphene microspherical assembly with interfacial stability and mechanical strength achieved by consecutively formed chemical bonds using 3-aminopropyltriethoxysilane and sucrose. The unpressed electrode (density: 0.71 g cm-3 ) shows a reversible specific capacity of 1470 mAh g-1 with a high initial coulombic efficiency of 83.7% at a current density of 1 C-rate. The corresponding pressed electrode (density: 1.32 g cm-3 ) exhibits high reversible volumetric capacity of 1405 mAh cm-3 and gravimetric capacity of 1520 mAh g-1 with a high initial coulombic efficiency of 80.4% and excellent cycling stability of 83% over 100 cycles at 1 C-rate.

7.
Adv Sci (Weinh) ; 10(20): e2300727, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37138371

RESUMEN

Retaining satisfactory electrochemical performances under high-mass electrode-active-matter loadings is important for energy storage. However, the performance decreases with increasing mass loadings due to a reduction in the ion/electron transport. In this study, a novel mesoporous amorphous bulk (MAB) material strategy is proposed. Co-based hydroxide KCo1.3 (OH)3.6 is directly electro-deposited on the Ni foam for cathode. Comprehensive structural characterizations confirm the mesoporous, amorphous, and bulk features for KCo1.3 (OH)3.6 . The fabricated whole MAB-KCo1.3 (OH)3.6 @Ni electrode exhibits an ultrahigh full volumetric capacity (123.7 mAh cm-3 ) with high KCo1.3 (OH)3.6 mass loading (11.7 mg cm-2 ) and excellent cycling stability. Along with the MAB-KCo1.3 (OH)3.6 , the mesoporous amorphous features enable fast ion diffusion and provide sufficient electroactive sites for redox reactions. In addition, the bulk nature not only facilitates the electron mobility but also guarantees structural and chemical stability. Therefore, the proposed MAB strategy and explored KCo1.3 (OH)3.6 material demonstrate considerable prospects for designing electrode materials and practical applications.

8.
Adv Mater ; 35(9): e2209322, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36482793

RESUMEN

Pursuing conversion-type cathodes with high volumetric capacity that can be used in aqueous environments remains rewarding and challenging. Tellurium (Te) is a promising alternative electrode due to its intrinsic attractive electronic conductivity and high theoretical volumetric capacity yet still to be explored. Herein, the kinetically/thermodynamically co-dominat copper-tellurium (Cu-Te) alloying phase-conversion process and corresponding oxidation failure mechanism of tellurium are investigated using in situ synchrotron X-ray diffraction and comprehensive ex situ characterization techniques. By virtue of the fundamental insights into the tellurium electrode, facile and precise electrolyte engineering (solvated structure modulation or reductive antioxidant addition) is implemented to essentially tackle the dramatic capacity loss in tellurium, affording reversible aqueous Cu-Te conversion reaction with an unprecedented ultrahigh volumetric capacity of up to 3927 mAh cm-3 , a flat long discharge plateau (capacity proportion of ≈81%), and an extraordinary level of capacity retention of 80.4% over 2000 cycles at 20 A g-1 of which lifespan thousand-fold longer than Cu-Te conversion using CuSO4 -H2 O electrolyte. This work paves a significant avenue for expanding high-performance conversion-type cathodes toward energetic aqueous multivalent-ion batteries.

9.
Adv Sci (Weinh) ; 9(33): e2204192, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36202626

RESUMEN

Designing dense thick sulfur cathodes to gain high-volumetric/areal-capacity lithium-sulfur batteries (LSBs) in lean electrolytes is extremely desired. Nevertheless, the severe Li2 S clogging and unclear mechanism seriously hinder its development. Herein, an integrated strategy is developed to manipulate Li2 S redox kinetics of CoP/MXene catalyst via electron-donor Cu doping. Meanwhile a dense S/Cu0.1 Co0.9 P/MXene cathode (density = 1.95 g cm-3 ) is constructed, which presents a large volumetric capacity of 1664 Ah L-1 (routine electrolyte) and a high areal capacity of ≈8.3 mAh cm-2 (lean electrolyte of 5.0 µL mgs -1 ) at 0.1 C. Systematical thermodynamics, kinetics, and theoretical simulation confirm that electron-donor Cu doping induces the charge accumulation of Co atoms to form more chemical bonding with polysulfides, whereas weakens CoS bonding energy and generates abundant lattice vacancies and active sites to facilitate the diffusion and catalysis of polysulfides/Li2 S on electrocatalyst surface, thereby decreasing the diffusion energy barrier and activation energy of Li2 S nucleation and dissolution, boosting Li2 S redox kinetics, and inhibiting shuttling in the dense thick sulfur cathode. This work deeply understands the atomic-level manipulation mechanism of Li2 S redox kinetics and provides dependable principles for designing high-volumetric-energy-density, lean-electrolyte LSBs through integrating bidirectional electro-catalysts with manipulated Li2 S redox and dense-sulfur engineering.

10.
ACS Appl Mater Interfaces ; 14(22): 25267-25277, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35613059

RESUMEN

Despite that the practical gravimetric energy density of lithium sulfur batteries has exceeded that of the traditional lithium-ion battery, the volumetric energy density still pales due to the low density of carbonaceous materials. Herein, hollow polar nickel selenide (Ni3Se4) with various architectures was designed and employed as a carbon-free sulfur immobilizer. Among them, hollow sea urchins like Ni3Se4 with high porosity (0.39 cm3 g-1) and large specific surface area (82.7 m2 g-1) exhibit abundant adsorptive and electrocatalytic sites, which pledge excellent electrochemical performances of the Li-S battery. Correspondingly, the Ni3Se4-based sulfur electrode presents excellent rate endurability (581 mAh g-1-composite at 2.0 C) and superior cycle stability (ultralow fading rate of 0.042% per cycle during the 1000 cycles at 1.0 C). More importantly, thanks to the higher tap density (Ni3Se4/S: 1.57 g cm-3 vs super P/S: 0.7 g cm-3), the volumetric specific capacity of Ni3Se4-based cathodes is as high as 1699 mAh cm-3-composite at 0.1 C, which is almost 2.8 times that of the carbonaceous electrode. Hence, rational transition metal selenide architecture design with synergistic function of good conductivity, well-defined catalyst and adsorption, as well as high tap density provide a promising route toward high gravimetric and volumetric energy density of Li-S batteries.

11.
ACS Nano ; 16(3): 4642-4653, 2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35254052

RESUMEN

High-theoretical-capacity silicon anodes hold promise in lithium-ion batteries (LIBs). Nevertheless, their huge volume expansion (∼300%) and poor conductivity show the need for the simultaneous introduction of low-density conductive carbon and nanosized Si to conquer the above issues, yet they result in low volumetric performance. Herein, we develop an integration strategy of a dually encapsulated Si structure and dense structural engineering to fabricate a three-dimensional (3D) highly dense Ti3C2Tx MXene and graphene dual-encapsulated Si monolith architecture (HD-Si@Ti3C2Tx@G). Because of its high density (1.6 g cm-3), high conductivity (151 S m-1), and 3D dense dual-encapsulated Si architecture, the resultant HD-Si@Ti3C2Tx@G monolith anode displays an ultrahigh volumetric capacity of 5206 mAh cm-3 (gravimetric capacity: 2892 mAh g-1) at 0.1 A g-1 and a superior long lifespan of 800 cycles at 1.0 A g-1. Notably, the thick and dense monolithic anode presents a large areal capacity of 17.9 mAh cm-2. In-situ TEM and ex-situ SEM techniques, and systematic kinetics and structural stability analysis during cycling demonstrate that such superior volumetric and areal performances stem from its dual-encapsulated Si architecture by the 3D conductive and elastic networks of MXene and graphene, which can provide fast electron and ion transfer, effective volume buffer, and good electrolyte permeability even with a thick electrode, whereas the dense structure results in a large volumetric performance. This work offers a simple and feasible strategy to greatly improve the volumetric and areal capacity of alloy-based anodes for large-scale applications via integrating a dual-encapsulated strategy and dense-structure engineering.

12.
ACS Appl Mater Interfaces ; 14(6): 8086-8094, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35119832

RESUMEN

High volumetric capacity and durability anode materials for sodium ion batteries have been urgently required for practical applications. Herein, we reported a Sn-pillared pyknotic graphene conductive network with high-level N-doping. This densely stacked block offers high volumetric Na-ion storage capacity, rapid electrochemical reaction kinetics, and robust structural stability during cycling owing to the high capacity component (metallic Sn ≈847 mAh g-1), high tap density (≈2.63 g cm-3), high conductivity (N doping ≈5 at. %), and strong spatially confined and pillared structure. Moreover, theoretical simulations have indicated that the charge accumulation around the N-doped region is more pronounced compared to the pristine one, and electrons accumulate around the N atom while loss occurs at the Na atom. These studies also suggest that it might possibly contribute to higher conductivity and stronger electrophilic reactivity, thereby resulting in enhanced Na-ion storage performance. As a result, the as-obtained electrode material exhibits competitive volumetric capacity (1462 mAh cm-3 at 0.1 A g-1), cycling performance (1207 mAh cm-3 after 100 cycles), and promising rate behavior simultaneously.

13.
Nano Lett ; 22(3): 954-962, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35080402

RESUMEN

A highly densified electrode material is desirable to achieve large volumetric capacity. However, pores acting as ion transport channels are critical for high utilization of active material. Achieving a balance between high volume density and pore utilization remains a challenge particularly for hollow materials. Herein, capillary force is employed to convert hollow fibers to a bamboo-weaving-like flexible electrode (BWFE), in which the shrinkage of hollow space results in high compactness of the electrode. The volume of the electrode can be decreased by 96% without sacrificing the gravimetric capacity. Importantly, the conductivity of BWFE after thermal treatment can reach up to 50,500 S/m which exceeds that for most other carbon materials. Detailed mechanical analysis reveals that, due to the strong interaction between nanoribbons, Young's modulus of the electrode increases by 105 times. After SnO2 active materials is impregnated, the BWFE/SnO2 electrode exhibits an exceptionally ultrahigh volumetric capacity of 2000 mAh/cm3.

14.
Adv Mater ; 34(46): e2107262, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34677908

RESUMEN

Perovskite-type oxides, characterized by excellent multifunctional physical and chemical properties, are widely used in ferroelectric, piezoelectric, energy conversion, and storage applications. It is shown here that the perovskite-type SrVO3 can achieve excellent electrochemical performance as lithium-ion battery anodes thanks to its high electrically and ionically conductivity. Conducting additive-free SrVO3 electrodes can deliver a high specific capacity of 324 mAh g-1 at a safe and low average working potential of ≈0.9 V vs Li/Li+ together with excellent high-rate performance. A high areal capacity of ≈5.4 mAh cm-2 is obtained using an ultrathick (≈120 µm) electrode. Moreover, the fully lithiated SrVO3 electrode exhibits only 2.3% volume expansion that is explained by a simple solid-solution Li+ -storage mechanism, resulting in good cycling stability of the electrode. This study highlights the perovskite-type SrVO3 as a promising Li+ -storage anode and provides opportunities for exploring a variety of perovskite oxides as next-generation metal-ion battery anodes.

15.
J Colloid Interface Sci ; 606(Pt 2): 1627-1635, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34500164

RESUMEN

Poor cycling stability and low volumetric capacity of sulfur cathode prevents practical application of Lithium-sulfur (Li-S) batteries. Herein, we demonstrate a strategy to address the two drawbacks of sulfur cathode by synthesizing a compact and flexible film cathode with bilayer structure using a two-step vacuum filtration method. Two layers make up the sulfur cathode, active layer (sulfur-acethlene black (SC) spheres) and barrier layer (three dimensional MnO2-graphene oxide-multi-walled carbon nanotubes (MnO2-GO-CNTs) composites), which are integrated together by reduced graphene oxide (rGO) through self-binding. The rGO sheets provide an electrical conductive framework and a stable architecture to accommodate volume changes of sulfur. SC spheres stacked orderly between the rGO layers facilitate fast Li+ storage and energy release. Polar MnO2-GO-CNTs composites with large specific surface area have not only afforded efficient sites for chemically binding polysulfides, but also provided fast electron transfer for accelerating polysulfides redox reaction. Consequently, the integrated film cathode exhibits an unprecedented cycling stability of ~0.0279% capacity decay per cycle over more than 600 cycles at 1C and high volumetric capacity of 1021.9 Ah L-1 at 2C. Meanwhile, a foldable Li-S battery based on this flexible cathode is fabricated and shows excellent mechanical and electrochemical properties. The integrated flexible sulfur cathode of this study sheds light on the design strategies for application in flexible high volumetric capacity system.

16.
Small Methods ; 5(11): e2100765, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34927962

RESUMEN

The transition metal oxides (TMOs) with high volumetric capacities are promising anodes for the future electronics, however, they usually suffer from severe capacity decay and poor rate capability. Carbon hybridization and nanosizing can resolve these challenges, yet these significantly compromise the volumetric capacity. Herein, both high capacity and long cycling stability are simultaneously achieved in the micrometer-sized Mo-based oxide particles by designing the dual conductive MoO2 /ß-MoO3- x mosaics. The rational combination of the highly electronically conductive MoO2 with the highly ionically conductive and open-structured ß-MoO3 achieves a promising volumetric capacity of 1742 mAh cm-3 , which is four times higher than the commercial graphite. Simultaneously, both stable cycling performance (87% retention after 500 cycles) and excellent rate capability (outperformed a majority of the MoO2 -based anodes reported in literature) are obtained in the lithium-ion batteries. For the sodium-ion batteries, the composite exhibits three times higher Na+ storage than pure MoO2 . Moreover, the decisive role of the bond energy on the electrochemical performance of TMOs is also identified. This study may open up new perspectives for choosing and designing the TMO anodes with a high volumetric capacity for the practical applications.

17.
Small ; 17(49): e2103626, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34708515

RESUMEN

Electrochemical sodium-ion storage has come out as a promising technology for energy storage, where the development of electrode material that affords high volumetric capacity and long-term cycling stability remains highly desired yet a challenge. Herein, Ti3 C2 Tx (MXene)-based films are prepared by using sulfur (S) as the mediator to modulate the surface chemistry and microstructure, generating S-doped mesoporous Ti3 C2 Tx films with high flexibility. The mesoporous architecture offers desirable surface accessibility without significantly sacrificing the high density of Ti3 C2 Tx film. Meanwhile, the surface sulfur doping of Ti3 C2 Tx favors the diffusion of sodium ions. These merits are of critical importance to realize high volumetric capacity of the electrode material. As a consequence, as the freestanding electrode material for electrochemical sodium-ion storage, the S-doped mesoporous Ti3 C2 Tx film exhibits a high volumetric capacity of 625.6 mAh cm-3 at 0.1 A g-1 , which outperforms that of many reported electrodes. Moreover, outstanding rate capability and excellent long-term cycling stability extending 5000 cycles are achieved. The work opens the door for innovative design and rational fabrication of MXene-based films with ultrahigh volumetric capacity for sodium-ion storage.

18.
Natl Sci Rev ; 8(9): nwab012, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34691733

RESUMEN

Microparticulate silicon (Si), normally shelled with carbons, features higher tap density and less interfacial side reactions compared to its nanosized counterpart, showing great potential to be applied as high-energy lithium-ion battery anodes. However, localized high stress generated during fabrication and particularly, under operating, could induce cracking of carbon shells and release pulverized nanoparticles, significantly deteriorating its electrochemical performance. Here we design a strong yet ductile carbon cage from an easily processing capillary shrinkage of graphene hydrogel followed by precise tailoring of inner voids. Such a structure, analog to the stable structure of plant cells, presents 'imperfection-tolerance' to volume variation of irregular Si microparticles, maintaining the electrode integrity over 1000 cycles with Coulombic efficiency over 99.5%. This design enables the use of a dense and thick (3 mAh cm-2) microparticulate Si anode with an ultra-high volumetric energy density of 1048 Wh L-1 achieved at pouch full-cell level coupled with a LiNi0.8Co0.1Mn0.1O2 cathode.

19.
ACS Appl Mater Interfaces ; 13(33): 39186-39194, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34376048

RESUMEN

Constructing highly conductive compact sulfur cathode composites with shorter ion diffusivity lengths is vital for achieving comprehensively superior electrochemical performance under a high mass loading condition. Guided by computerization modeling, we, herein, report self-supporting CNTs-VSe2-VOx/S assembly with balanced tortuosity and porosity for flexible Li-S batteries. The resultant hybrid sulfur cathode with a tortuosity of 2.42 and a porosity of 0.44 delivers prominent rate performance and cycling stability with a medium sulfur loading. More importantly, we demonstrate that the pouch cells with a high sulfur loading of 6.0 mg cm-2 and a low electrolyte to sulfur ratio of 4.2 µL mg-1 could synchronously deliver high gravimetric/volumetric energy densities of 424.1 Wh kg-1 and 469.2 Wh L-1, as well as decent cycling behavior under arbitrary bending conditions, which provides a ponderable reference for future flexible and wearable electronic devices.

20.
Adv Mater ; 33(20): e2100210, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33829567

RESUMEN

To meet the ever-growing demand for advanced rechargeable batteries with light weight and compact size, much effort has been devoted to improving the volumetric capacity of electrodes. Herein, an effective strategy of polymorph engineering is proposed to boost the volumetric capacity of FeSe. Owing to the inherent metallic electronic conductivity of tetragonal-FeSe, a conductive additive-free electrode (hereafter denoted as CA-free) can be assembled with an enhanced sodium storage volumetric capacity of 1011 mAh cm-3 , significantly higher than semiconducting hexagonal-FeSe. Impressively, the CA-free electrode can achieve an extremely high active material utilization of 96.7 wt% and high initial Coulombic efficiency of 96%, superior to most of the anodes for Na-ion storage. Moreover, the design methodology is branched out using tetragonal FeSe as the cathode for Li-ion batteries. The CA-free tetragonal-FeSe electrode can achieve a high volumetric energy density of 1373 Wh L-1 and power density of 7200 W L-1 , outperforming most metal chalcogenides. Reversible conversion reactions are revealed by in situ XRD for both sodium and lithium systems. The proposed design strategy provides new insight and inspiration to aid in the ongoing quest for better electrode materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...