Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Exp Bot ; 75(9): 2604-2630, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38300237

RESUMEN

Ascorbate (vitamin C) is one of the most abundant primary metabolites in plants. Its complex chemistry enables it to function as an antioxidant, as a free radical scavenger, and as a reductant for iron and copper. Ascorbate biosynthesis occurs via the mannose/l-galactose pathway in green plants, and the evidence for this pathway being the major route is reviewed. Ascorbate accumulation is leaves is responsive to light, reflecting various roles in photoprotection. GDP-l-galactose phosphorylase (GGP) is the first dedicated step in the pathway and is important in controlling ascorbate synthesis. Its expression is determined by a combination of transcription and translation. Translation is controlled by an upstream open reading frame (uORF) which blocks translation of the main GGP-coding sequence, possibly in an ascorbate-dependent manner. GGP associates with a PAS-LOV protein, inhibiting its activity, and dissociation is induced by blue light. While low ascorbate mutants are susceptible to oxidative stress, they grow nearly normally. In contrast, mutants lacking ascorbate do not grow unless rescued by supplementation. Further research should investigate possible basal functions of ascorbate in severely deficient plants involving prevention of iron overoxidation in 2-oxoglutarate-dependent dioxygenases and iron mobilization during seed development and germination.


Asunto(s)
Ácido Ascórbico , Plantas , Ácido Ascórbico/metabolismo , Ácido Ascórbico/biosíntesis , Plantas/metabolismo , Plantas/genética , Regulación de la Expresión Génica de las Plantas , Vías Biosintéticas
2.
Free Radic Biol Med ; 122: 116-129, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29567393

RESUMEN

Ascorbic acid is synthesised by eukaryotes, the known exceptions being primates and some other animal groups which have lost functional gulonolactone oxidase. Prokaryotes do not synthesise ascorbate and do not need an ascorbate supply, so the functions that are essential for mammals and plants are not required or are substituted by other compounds. The ability of ascorbate to donate electrons enables it to act as a free radical scavenger and to reduce higher oxidation states of iron to Fe2+. These reactions are the basis of its biological activity along with the relative stability of the resulting resonance stabilised monodehydroascorbate radical. The importance of these properties is emphasised by the evolution of at least three biosynthetic pathways and production of an ascorbate analogue, erythroascorbate, by fungi. The iron reducing activity of ascorbate maintains the reactive centre Fe2+ of 2-oxoglutarate-dependent dioxygenases (2-ODDs) thus preventing inactivation. These enzymes have diverse functions and, recently, the possibility that ascorbate status in mammals could influence 2-ODDs involved in histone and DNA demethylation thereby influencing stem cell differentiation and cancer has been uncovered. Ascorbate is involved in iron uptake and transport in plants and animals. While the above biochemical functions are shared between mammals and plants, ascorbate peroxidase (APX) is an enzyme family limited to plants and photosynthetic protists. It provides these organisms with increased capacity to remove H2O2 produced by photosynthetic electron transport and photorespiration. The Fe reducing activity of ascorbate enables hydroxyl radical production (pro-oxidant effect) and the reactivity of dehydroascorbate (DHA) and reaction of its degradation products with proteins (dehydroascorbylation and glycation) is potentially damaging. Ascorbate status influences gene expression in plants and mammals but at present there is little evidence that it acts as a specific signalling molecule. It most likely acts indirectly by influencing the redox state of thiols and 2-ODD activity. However, the possibility that dehydroascorbylation is a regulatory post-translational protein modification could be explored.


Asunto(s)
Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Epigénesis Genética , Hierro/metabolismo , Animales , Ascorbato Peroxidasas/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Mamíferos/metabolismo , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Plantas/metabolismo
3.
Plant Cell Environ ; 38(2): 375-84, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24393051

RESUMEN

The cell wall forms the first line of interaction between the plant and the external environment. Based on the observation that ascorbate-deficient vtc mutants of Arabidopsis thaliana have increased cell wall peroxidase activity, the cell wall glycoproteome of vtc2-2 was investigated. Glycoproteins were purified from fully expanded leaves by Concanavalin A affinity chromatography and analysed by liquid chromatography quadrupole time-of-flight mass spectrometry. This procedure identified 63 proteins with predicted glycosylation sites and cell wall localization. Of these, 11 proteins were differentially expressed between vtc2-2 and wild type. In particular, PRX33/34 were identified as contributing to increased peroxidase activity in response to ascorbate deficiency. This is the same peroxidase previously shown to contribute to hydrogen peroxide generation and pathogen resistance. Three fasciclin-like arabinogalactan proteins (FLA1, 2 and 8) had lower abundance in vtc2-2. Inspection of published microarray data shows that these also have lower gene expression in vtc1 and vtc2-1 and are decreased in expression by pathogen challenge and oxidative stresses. Ascorbate deficiency therefore impacts expression of cell wall proteins involved in pathogen responses and these presumably contribute to the increased resistance of vtc mutants to biotrophic pathogens.


Asunto(s)
Arabidopsis/metabolismo , Ácido Ascórbico/metabolismo , Pared Celular/metabolismo , Glicoproteínas/metabolismo , Hojas de la Planta/citología , Hojas de la Planta/metabolismo , Proteoma/metabolismo , Secuencia de Aminoácidos , Arabidopsis/citología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Pared Celular/efectos de la radiación , Glicoproteínas/química , Hidroxiprolina/metabolismo , Luz , Datos de Secuencia Molecular , Mutación/genética , Péptidos/química , Péptidos/metabolismo , Peroxidasas/metabolismo , Hojas de la Planta/efectos de la radiación , Transporte de Proteínas/efectos de la radiación , Proteoma/química , Alineación de Secuencia , Fracciones Subcelulares/metabolismo , Fracciones Subcelulares/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...