Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 790
Filtrar
1.
Poult Sci ; 103(12): 104321, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39361997

RESUMEN

The circadian clock is crucial for maintaining lipid metabolism homeostasis in mammals. Despite the economic importance of fat content in poultry, research on the regulatory effects and molecular mechanisms of the circadian clock on avian hepatic lipid metabolism has been limited. In this study, we observed significant diurnal variations (P<0.05) in triglyceride (TG), free fatty acids (FFA), fatty acid synthase (FAS), and total cholesterol (TC) levels in the chicken embryonic liver under 12-h light/12-h dark incubation conditions, with TG, FFA, and TC concentrations showing significant cosine rhythmic oscillations (P<0.05). However, such rhythmic variations were not observed under complete darkness incubation conditions. Using transcriptome sequencing technology, we identified 157 genes significantly upregulated at night and 313 genes significantly upregulated during the 12-h light/12-h dark cycle. These circadian differential genes are involved in processes and pathways such as lipid catabolic process regulation, meiotic cell cycle, circadian rhythm regulation, positive regulation of the MAPK cascade, and glycerolipid metabolism. Weighted gene co-expression network analysis (WGCNA) revealed 3 modules-green, blue, and red-that significantly correlate with FFA, FAS, and TG, respectively. Genes within these modules were enriched in processes and pathways including the cell cycle, light stimulus response, circadian rhythm regulation, phosphorylation, positive regulation of the MAPK cascade, and lipid biosynthesis. Notably, we identified ten hub genes, including protein kinase C delta (PRKCD), polo like kinase 4 (PLK4), clock circadian regulator (CLOCK), steroid 5 alpha-reductase 3 (SRD5A3), BUB1 mitotic checkpoint serine/threonine kinase (BUB1B), shugoshin 1 (SGO1), NDC80 kinetochore complex component (NDC80), NIMA related kinase 2 (NEK2), minichromosome maintenance complex component 4 (MCM4), polo like kinase 1 (PLK1), potentially link circadian regulation with lipid metabolic homeostasis. These findings demonstrate the regulatory role of the circadian clock in chicken liver lipid metabolism homeostasis and provide a theoretical basis and molecular targets for optimizing the circadian clock to reduce excessive fat deposition in chickens, which is significant for the healthy development of the poultry industry.

2.
Foods ; 13(19)2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39410242

RESUMEN

Soil mulching is a useful agronomic practice that promotes early fruit maturation and affects fruit quality. However, the regulatory mechanism of fruit metabolites under soil-mulching treatments remains unknown. In this study, variations in the gene sets and metabolites of grape berries after mulching (rice straw + felt + plastic film) using transcriptome and metagenomic sequencing were investigated. The results of the cluster analysis and orthogonal projection to latent structures discriminant analysis of the metabolites showed a difference between the mulching and control groups, as did the principal component analysis results for the transcriptome. In total, 36 differentially expressed metabolites were identified, of which 10 (resveratrol, ampelopsin F, piceid, 3,4'-dihydroxy-5-methoxystilbene, ε-viniferin, trans resveratrol, epsilon-viniferin, 3'-hydroxypterostilbene, 1-methyl-resveratrol, and pterostil-bene) were stilbenes. Their content increased after mulching, indicating that stilbene synthase activity increased after mulching. The weighted gene co-expression network analysis revealed that the turquoise and blue modules were positively and negatively related to stilbene compounds. The network analysis identified two seed genes (VIT_09s0054g00610, VIT_13s0156g00260) and two transcription factors (VIT_13s0156g00260, VIT_02s0025g04590). Overall, soil mulching promoted the accumulation of stilbene compounds in grapes, and the results provided key genetic information for further studies.

3.
Int Arch Allergy Immunol ; : 1-16, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39348809

RESUMEN

INTRODUCTION: Septic shock, a severe manifestation of infection-induced systemic immune response, poses a critical threat resulting in life-threatening multi-organ failure. Early diagnosis and intervention are imperative due to the potential for irreversible organ damage. However, specific and sensitive detection tools for the diagnosis of septic shock are still lacking. METHODS: Gene expression files of early septic shock were obtained from the Gene Expression Omnibus (GEO) database. CIBERSORT analysis was used to evaluate immune cell infiltration. Genes related to immunity and disease progression were identified using weighted gene co-expression network analysis (WGCNA), followed by enrichment analysis. CytoHubba was then employed to identify hub genes, and their relationships with immune cells were explored through correlation analysis. Blood samples from healthy controls and patients with early septic shock were collected to validate the expression of hub genes, and an external dataset was used to validate their diagnostic efficacy. RESULTS: Twelve immune cells showed significant infiltration differences in early septic shock compared to control, such as neutrophils, M0 macrophages, and natural killer cells. The identified immune and disease-related genes were mainly enriched in immune, cell signaling, and metabolism pathways. In addition, six hub genes were identified (PECAM1, F11R, ITGAL, ICAM3, HK3, and MCEMP1), all significantly associated with M0 macrophages and exhibiting an area under curve of over 0.7. These genes exhibited abnormal expression in patients with early septic shock. External datasets and real-time qPCR validation supported the robustness of these findings. CONCLUSION: Six immune-related hub genes may be potential biomarkers for early septic shock.

4.
J Int Med Res ; 52(9): 3000605241277740, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39324181

RESUMEN

OBJECTIVE: To investigate the signature genes of fatty acid metabolism and their association with immune cells in pulmonary arterial hypertension (PAH). METHODS: Fatty acid metabolism-related genes were obtained from the GeneCards database. In this retrospective study, a PAH-related dataset was downloaded from the Gene Expression Omnibus database and analyzed to identify differentially expressed genes (DEGs). Weighted gene co-expression network analysis (WGCNA) and machine learning algorithms, including least absolute shrinkage and selection operator (LASSO) and random forest, were used to identify the signature genes. Diagnostic efficiency was assessed by receiver operating characteristic (ROC) curve analysis and a nomogram. Immune cell infiltration was subsequently classified using CIBERSORT. RESULTS: In total, 817 DEGs were screened from the GSE33463 dataset. The data were clustered into six modules via WGCNA, and the MEdarkred module was significantly related to PAH. The LASSO and random forest algorithms identified five signature genes: ARV1, KCNJ2, PEX11B, PITPNC1, and SCO1. The areas under the ROC curves of these signature genes were 0.917, 0.934, 0.947, 0.963, and 0.940, respectively. CIBERSORT suggested these signature genes may participate in immune cell infiltration. CONCLUSIONS: ARV1, KCNJ2, PEX11B, PITPNC1, and SCO1 show remarkable diagnostic performance in PAH and are involved in immune cell infiltration.


Asunto(s)
Ácidos Grasos , Perfilación de la Expresión Génica , Aprendizaje Automático , Hipertensión Arterial Pulmonar , Curva ROC , Humanos , Ácidos Grasos/metabolismo , Perfilación de la Expresión Génica/métodos , Hipertensión Arterial Pulmonar/genética , Redes Reguladoras de Genes , Estudios Retrospectivos , Bases de Datos Genéticas , Transcriptoma , Masculino , Femenino , Algoritmos , Biología Computacional/métodos , Hipertensión Pulmonar/genética
5.
Ann Biol Clin (Paris) ; 82(4): 423-437, 2024 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-39297544

RESUMEN

The susceptibility modules and characteristic genes of patients with osteoarthritis (OA) were determined by weighted gene co-expression network analysis (WGCNA), and the role of immune cells in OA related microenvironment was analyzed. GSE98918 and GSE117999 data sets are from GEO database. R language was used to conduct difference analysis for the new data set after merging. The formation of gene co-expression network, screening of susceptibility modules and screening of core genes are all through WGCNA. GO and KEGG enrichment analyses were used for Hub genes. The characteristic genes of the disease were obtained by Lasso regression screening. SSGSEA was used to estimate immune cell abundance in sample and a series of correlation analyses were performed. WGCNA was used to form 6 gene co-expression modules. The yellow-green module is identified as the susceptible module of OA. 202 genes were identified as core genes. Finally, RHOT2, FNBP4 and NARF were identified as the characteristic genes of OA. The results showed that the characteristic genes of OA were positively correlated with plasmacytoid dendritic cells, NKT cells and immature dendritic cells, but negatively correlated with active B cells. MDSC were the most abundant immune cells in cartilage. This study identified the Hippo signaling pathway, mTOR signaling pathway, and three characteristic genes (RHOT2, FNBP4, NARF) as being associated with osteoarthritis (OA). These three genes are downregulated in the cartilage of OA patients and may serve as biomarkers for early diagnosis and targeted therapy. Proper regulation of immune cells may aid in the treatment of OA. Future research should focus on developing tools to detect these genes and exploring their therapeutic applications.


Asunto(s)
Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Predisposición Genética a la Enfermedad , Osteoartritis , Humanos , Osteoartritis/genética , Osteoartritis/diagnóstico , Bases de Datos Genéticas , Transducción de Señal/genética , Biología Computacional/métodos , Serina-Treonina Quinasas TOR/genética
6.
Mol Neurobiol ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39325100

RESUMEN

The genetic transcription profile and underlying molecular mechanisms of ischemic stroke (IS) remain elusive. To address this issue, four mRNA and one miRNA expression profile of rats with middle cerebral artery occlusion (MCAO) were acquired from the Gene Expression Omnibus (GEO) database. A total of 780 differentially expressed genes (DEGs) and 56 miRNAs (DEMs) were screened. Gene set and functional enrichment analysis revealed that a substantial number of immune-inflammation-related pathways were abnormally activated in IS. Through weighted gene co-expression network analysis, the turquoise module was identified as meaningful. By taking the intersection of the turquoise module genes, DEM-target genes, and all DEGs, 354 genes were subsequently obtained as key IS-related genes. Among them, six characteristic genes were identified using the least absolute shrinkage and selection operator. After validation with three external datasets, transforming growth factor beta 1 (Tgfb1) was selected as the hub gene. This finding was further confirmed by gene expression pattern analysis in both the MCAO model rats and clinical IS patients. Moreover, the expression of the hub genes exhibited a negative correlation with the modified Rankin scale score (P < 0.05). Collectively, these results expand our knowledge of the genetic profile and molecular mechanisms involved in IS and suggest that the Tgfb1 gene is a potential biomarker of this disease.

7.
Front Genet ; 15: 1423584, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39238786

RESUMEN

Introduction: Neuromyelitis Optica spectrum disorder (NMOSD) is an autoimmune disease characterized by anti-aquaporin-4 (AQP4) auto-antibodies. The discovery of antibodies AQP4 and myelin oligodendrocyte glycoprotein (MOG) has expanded our understanding of the pathogenesis of neuromyelitis optica. However, the molecular mechanisms underlying the disease, particularly AQP4-associated optic neuritis (AQP4-ON), remain to be fully elucidated. Methods: In this study, we utilized Weighted Gene Co-expression Network Analysis (WGCNA) to investigate the transcriptomic profiles of peripheral blood samples from patients with AQP4-ON and MOG-positive optic neuritis (MOG-ON), compared to healthy controls. Results: WGCNA revealed a brown module (ME brown) strongly associated with AQP4-ON, which correlated positively with post-onset visual acuity decline. A total of 132 critical genes were identified, mainly involved in histone modification and microtubule dynamics. Notably, genes HDAC4, HDAC7, KDM6A, and KDM5C demonstrated high AUC values in ROC analysis, indicating their potential as biomarkers for AQP4-ON. Conclusion: Our findings provide novel insights into the molecular signature of AQP4-ON and highlight the potential of systems biology approaches in identifying biomarkers for NMOSD. The identified histone modification genes warrant further investigation for their role in disease pathogenesis and as therapeutic targets.

8.
Front Endocrinol (Lausanne) ; 15: 1364782, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239096

RESUMEN

Background: T-cell exhaustion (Tex) can be beneficial in autoimmune diseases, but its role in Graves' disease (GD), an autoimmune disorder of the thyroid, remains unknown. This study investigated Tex-related gene expression in GD patients to discern the potential contributions of these genes to GD pathogenesis and immune regulation. Methods: Through gene landscape analysis, a protein-protein interaction network of 40 Tex-related genes was constructed. mRNA expression levels were compared between GD patients and healthy control (HCs). Unsupervised clustering categorized GD cases into subtypes, revealing distinctions in gene expression, immune cell infiltration, and immune responses. Weighted gene co-expression network analysis and differential gene expression profiling identified potential therapeutic targets. RT-qPCR validation of candidate gene expression was performed using blood samples from 112 GD patients. Correlations between Tex-related gene expression and clinical indicators were analyzed. Results: Extensive Tex-related gene interactions were observed, with six genes displaying aberrant expression in GD patients. This was associated with atypical immune cell infiltration and regulation. Cluster analysis delineated two GD subtypes, revealing notable variations in gene expression and immune responses. Screening efforts identified diverse drug candidates for GD treatment. The Tex-related gene CBL was identified for further validation and showed reduced mRNA expression in GD patients, especially in cases of relapse. CBL mRNA expression was significantly lower in patients with moderate-to-severe thyroid enlargement than in those without such enlargement. Additionally, CBL mRNA expression was negatively correlated with the disease-specific indicator thyrotropin receptor antibodies. Conclusion: Tex-related genes modulate GD pathogenesis, and their grouping aids subtype differentiation and exploration of therapeutic targets. CBL represents a potential marker for GD recurrence.


Asunto(s)
Enfermedad de Graves , Humanos , Enfermedad de Graves/genética , Enfermedad de Graves/inmunología , Masculino , Femenino , Adulto , Linfocitos T/inmunología , Linfocitos T/metabolismo , Persona de Mediana Edad , Perfilación de la Expresión Génica , Mapeo Cromosómico , Mapas de Interacción de Proteínas , Estudios de Casos y Controles , Proteínas Proto-Oncogénicas c-cbl/genética , Redes Reguladoras de Genes , Agotamiento de Células T
9.
Artículo en Inglés | MEDLINE | ID: mdl-39265177

RESUMEN

Pulmonary hypertension (PH) is a life-threatening condition characterized by pulmonary vascular remodeling and endothelial dysfunction. Current therapies primarily target vasoactive imbalances but often fail to address adverse vascular remodeling. Long non-coding RNA (lncRNA), which are key regulators of various cellular processes, remain underexplored in the context of PH. To investigate the role of lncRNA in PH, we performed a comprehensive analysis using Weighted Gene Co-expression Network Analysis (WGCNA) on the GSE113439 dataset, comprising human lung tissue samples from different PH subtypes. Our analysis identified the lncRNA SNHG11 as consistently downregulated in PH. Functional assays in human pulmonary artery endothelial cells (HPAECs) demonstrated that SNHG11 plays a critical role in modulating inflammation, cell proliferation, apoptosis, and the JAK/STAT and MAPK signaling pathways. Mechanistically, SNHG11 influences the stability of PRPF8, a crucial mRNA spliceosome component, thereby affecting multiple cellular functions beyond splicing. In vivo experiments using a hypoxic rat model showed that knockdown of SNHG11 alleviates PH development and improves right ventricular function. These findings highlight SNHG11 as a key regulator in PH pathogenesis and suggest it as a potential therapeutic target.

10.
Discov Oncol ; 15(1): 418, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251459

RESUMEN

AIMS: This research developed a prognostic model for OS patients based on the Mechanistic Target of Rapamycin Complex 1 (mTORC1) signature. BACKGROUND: The mTORC1 signaling pathway has a critical role in the maintenance of cellular homeostasis and tumorigenesis and development through the regulation of cell growth, metabolism and autophagy. However, the mechanism of action of this signaling pathway in Osteosarcoma (OS) remains unclear. OBJECTIVE: The datasets including the TARGET-OS and GSE39058, and 200 mTORC1 genes were collected. METHODS: The mTORC1 signaling-related genes were obtained based on the Molecular Signatures Database (MSigDB) database, and the single sample gene set enrichment analysis (ssGSEA) algorithm was utilized in order to calculate the mTORC1 score. Then, the WGCNA were performed for the mTORC1-correlated gene module, the un/multivariate and lasso Cox regression analysis were conducted for the RiskScore model. The immune infiltration analysis was performed by using the ssGSEA method, ESTIMATE tool and MCP-Count algorithm. KM survival and Receiver Operating Characteristic (ROC) Curve analysis were performed by using the survival and timeROC package. RESULTS: The mTORC1 score and WGCNA with ß = 5 screened the mTORC1 positively correlated skyblue2 module that included 67 genes, which are also associated with the metabolism and hypoxia pathways. Further narrowing of candidate genes and calculating the regression coefficient, we developed a useful and reliable RiskScore model, which can classify the patients in the training and validation set into high and low-risk groups based on the median value of RiskScore as an independent and robust prognostic factor. High-risk patients had a significantly poor prognosis, lower immune infiltration level of multiple immune cells and prone to cancer metastasis. Finally, we a nomogram model incorporating the metastasis features and RiskScore showed excellent prediction accuracy and clinical practicability. CONCLUSION: We developed a useful and reliable risk prognosis model based on the mTORC1 signaling signature.

11.
Int J Med Sci ; 21(11): 2052-2064, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239552

RESUMEN

This study unveils the pivotal roles of taurine metabolic reprogramming and its implications in the development and progression of Abdominal Aortic Aneurysm (AAA). Leveraging an integrated approach that combines single-cell RNA sequencing (scRNA-seq) and Weighted Gene Co-expression Network Analysis (WGCNA), our research investigates the intricate transcriptional and gene expression dynamics crucial to AAA. Our findings uniquely link metabolic shifts to the integrity of the extracellular matrix (ECM) and the functionality of smooth muscle cells (SMCs), key elements in the pathology of AAA. Utilizing scRNA-seq data from a mouse model (GSE152583 dataset), we identified critical alterations in cellular composition during AAA progression, particularly highlighting shifts in fibroblasts and inflammatory cells. Concurrently, WGCNA of human AAA tissue samples has outlined distinct gene expression patterns correlated with disease severity and progression, offering comprehensive insights into both molecular and cellular disease mechanisms. Moreover, this study introduces innovative metabolic profiling techniques to identify differential metabolites in AAA, integrating extensive metabolomic analyses with pathway enrichment strategies. This novel approach has pinpointed potential biomarkers and therapeutic targets, notably within taurine metabolism pathways, crucial for crafting non-surgical interventions. By merging state-of-the-art bioinformatics with thorough molecular analysis, our study not only enhances the understanding of AAA's complex pathophysiology but also catalyzes the development of targeted therapeutic strategies. This research represents a significant advancement in the molecular characterization of AAA, with substantial implications for its future diagnosis and treatment strategies.


Asunto(s)
Aneurisma de la Aorta Abdominal , Progresión de la Enfermedad , Taurina , Aneurisma de la Aorta Abdominal/patología , Aneurisma de la Aorta Abdominal/metabolismo , Aneurisma de la Aorta Abdominal/genética , Taurina/metabolismo , Animales , Humanos , Ratones , Modelos Animales de Enfermedad , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Masculino , Análisis de la Célula Individual , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Metabolómica/métodos , Reprogramación Metabólica
12.
Exp Ther Med ; 28(5): 406, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39268370

RESUMEN

Diabetic nephropathy (DN) is a common systemic microvascular complication of diabetes with a high incidence rate. Notably, the disturbance of lipid metabolism is associated with DN progression. The present study aimed to identify lipid metabolism-related hub genes associated with DN for improved diagnosis of DN. The gene expression profile data of DN and healthy samples (GSE142153) were obtained from the Gene Expression Omnibus database, and the lipid metabolism-related genes were obtained from the Molecular Signatures Database. Differentially expressed genes (DEGs) between DN and healthy samples were analyzed. The weighted gene co-expression network analysis (WGCNA) was performed to examine the relationship between genes and clinical traits to identify the key module genes associated with DN. Next, the Venn Diagram R package was used to identify the lipid metabolism-related genes associated with DN and their protein-protein interaction (PPI) network was constructed. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed. The hub genes were identified using machine-learning algorithms. The Gene Set Enrichment Analysis (GSEA) was used to analyze the functions of the hub genes. The present study also investigated the immune infiltration discrepancies between DN and healthy samples, and assessed the correlation between the immune cells and hub genes. Finally, the expression levels of key genes were verified by reverse transcription-quantitative (RT-q)PCR. The present study determined 1,445 DEGs in DN samples. In addition, 694 DN-related genes in MEyellow and MEturquoise modules were identified by WGCNA. Next, the Venn Diagram R package was used to identify 17 lipid metabolism-related genes and to construct a PPI network. GO analysis revealed that these 17 genes were markedly associated with 'phospholipid biosynthetic process' and 'cholesterol biosynthetic process', while the KEGG analysis showed that they were enriched in 'glycerophospholipid metabolism' and 'fatty acid degradation'. In addition, SAMD8 and CYP51A1 were identified through the intersections of two machine-learning algorithms. The results of GSEA revealed that the 'mitochondrial matrix' and 'GTPase activity' were the markedly enriched GO terms in both SAMD8 and CYP51A1. Their KEGG pathways were mainly concentrated in the 'pathways of neurodegeneration-multiple diseases'. Immune infiltration analysis showed that nine types of immune cells had different expression levels in DN (diseased) and healthy samples. Notably, SAMD8 and CYP51A1 were both markedly associated with activated B cells and effector memory CD8 T cells. Finally, RT-qPCR confirmed the high expression of SAMD8 and CYP51A1 in DN. In conclusion, lipid metabolism-related genes SAMD8 and CYP51A1 may play key roles in DN. The present study provides fundamental information on lipid metabolism that may aid the diagnosis and treatment of DN.

13.
Comput Biol Chem ; 113: 108204, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39270542

RESUMEN

The tertiary lymphoid structure (TLS) plays a central role in cancer immune response, and its gene expression pattern, called the TLS signature, has shown prognostic value in breast cancer. The formation of TLS and tumor-associated high endothelial venules (TA-HEVs), responsible for lymphocytic infiltration within the TLS, is associated with the expression of cancer hallmark genes (CHGs) related to immunity and inflammation. In this study, we performed co-expression network analysis of immune- and inflammation-related CHGs to identify predictive genes for breast cancer. In total, 382 immune- and inflammation-related CHGs with high expression variance were extracted from the GSE86166 microarray dataset of patients with breast cancer. CHGs were classified into five modules by applying weighted gene co-expression network analysis. The survival analysis results for each module showed that one module comprising 45 genes was statistically significant for relapse-free and overall survival. Four network properties identified key genes in this module with high prognostic prediction abilities: CD34, CXCL12, F2RL2, JAM2, PROS1, RAPGEF3, and SELP. The prognostic accuracy of the seven genes in breast cancer was synergistic and exceeded that of other predictors in both small and large public datasets. Enrichment analysis predicted that these genes had functions related to leukocyte infiltration of TA-HEVs. There was a positive correlation between key gene expression and the TLS signature, suggesting that gene expression levels are associated with TLS density. Co-expression network analysis of inflammation- and immune-related CHGs allowed us to identify genes that share a standard function in cancer immunity and have a high prognostic predictive value. This analytical approach may contribute to the identification of prognostic genes in TLS.

14.
Poult Sci ; 103(11): 104111, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39153266

RESUMEN

Body weight (BW) is an important economic trait in chickens. The hypothalamus serves as a central regulator of appetite and energy balance, and extensive research has demonstrated its pivotal role in regulating BW. However, the molecular network of the hypothalamus regulating BW traits in chickens needs to be further illuminated. In the present study, 200 1-day-old male 817 broilers were reared to 50 d of age, and BW were recorded. 20 birds with the lowest BW were classified as the low body weight group (L-BWG), and 20 birds with the highest BW were classified as the high body weight group (H-BWG). 18 hypothalamic tissue samples were collected, including 5 from the L-BWG, 5 from the H-BWG, and 8 from the middle weight range, and were analyzed using RNA-seq and weighted gene co-expression network analysis (WGCNA). Among the 18 RNA-seq samples, 5 samples from the L-BWG and 5 from the H-BWG were selected for differential expression gene analysis. Compared with the L-BWG, 195 and 1,241 genes were upregulated and downregulated in the H-BWG, respectively. The WGCNA analysis classified all co-expressed genes in the hypothalamus of 817 broilers into 20 modules. Among these modules, the pink module was identified as significantly negatively (r = -0.81, P = 4×10-5) associated with BW. Furthermore, several genes, including Wnt family member 6 (WNT6), growth differentiation factor 11 (GDF11), bone morphogenetic protein 4 (BMP4), and erb-b2 receptor tyrosine kinase 4 (ERBB4), involved in "regulation of developmental process" and "response to growth factor," were identified as hub genes that contribute to the regulation of BW. These results provide valuable information for further understanding of the gene expression and regulation affecting BW traits and will contribute to the molecular breeding of chickens in the future.


Asunto(s)
Peso Corporal , Pollos , Redes Reguladoras de Genes , Hipotálamo , Animales , Pollos/genética , Pollos/crecimiento & desarrollo , Pollos/fisiología , Masculino , Hipotálamo/metabolismo , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Perfilación de la Expresión Génica/veterinaria
15.
Breast Cancer ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190284

RESUMEN

BACKGROUND: Breast cancer (BC) is the most common cancer in women and accounts for approximately 15% of all cancer deaths among women globally. The underlying mechanism of BC patients with small tumor size and developing distant metastasis (DM) remains elusive in clinical practices. METHODS: We integrated the gene expression of BCs from ten RNAseq datasets from Gene Expression Omnibus (GEO) database to create a genetic prediction model for distant metastasis-free survival (DMFS) in BC patients with small tumor sizes (≤ 2 cm) using weighted gene co-expression network (WGCNA) analysis and LASSO cox regression. RESULTS: ABHD11, DDX39A, G3BP2, GOLM1, IL1R1, MMP11, PIK3R1, SNRPB2, and VAV3 were hub metastatic genes identified by WGCNA and used to create a risk score using multivariable Cox regression. At the cut-point value of the median risk score, the high-risk score (≥ median risk score) group had a higher risk of DM than the low-risk score group in the training cohort [hazard ratio (HR) 4.51, p < 0.0001] and in the validation cohort (HR 5.48, p = 0.003). The nomogram prediction model of 3-, 5-, and 7-year DMFS shows good prediction results with C-indices of 0.72-0.76. The enriched pathways were immune regulation and cell-cell signaling. EGFR serves as the hub gene for the protein-protein interaction network of PIK3R1, IL1R1, MMP11, GOLM1, and VAV3. CONCLUSION: Prognostic gene signature was predictive of DMFS for BCs with small tumor sizes. The protein-protein interaction network of PIK3R1, IL1R1, MMP11, GOLM1, and VAV3 connected by EGFR merits further experiments for elucidating the underlying mechanisms.

16.
Front Genet ; 15: 1418818, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39170694

RESUMEN

Objective: This study aimed to identify prognostic signatures to predict the prognosis of patients with stomach adenocarcinoma (STAD), which is necessary to improve poor prognosis and offer possible treatment strategies for STAD patients. Methods: The overlapping genes between the key model genes that were screened by the weighted gene co-expression network analysis (WGCNA) and differentially expressed genes (DEGs) whose expression was different with significance between normal and tumor tissues were extracted to serve as co-expression genes. Then, enrichment analysis was performed on these genes. Furthermore, the least absolute shrinkage and selection operator (LASSO) regression was performed to screen the hub genes among overlapping genes. Finally, we constructed a model to explore the influence of polygenic risk scores on the survival probability of patients with STAD, and interaction effect and mediating analyses were also performed. Results: DEGs included 2,899 upregulated genes and 2,896 downregulated genes. After crossing the DEGs and light-yellow module genes that were obtained by WGCNA, a total of 39 overlapping genes were extracted. The gene enrichment analysis revealed that these genes were enriched in the prion diseases, biosynthesis of unsaturated fatty acids, RNA metabolic process, hydrolase activity, etc. PIP5K1P1, PTTG3P, and SNORD15B were determined by LASSO-Cox. The prognostic prediction of the three-gene model was established. The Cox regression analysis showed that the comprehensive risk score for three genes was an independent prognosis factor. Conclusion: PIP5K1P1, PTTG3P, and SNORD15B are related to the prognosis and overall survival of patients. The three-gene risk model constructed has independent prognosis predictive ability for STAD.

17.
Funct Integr Genomics ; 24(4): 135, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39117866

RESUMEN

Gene co-expression networks may encode hitherto inadequately recognized vulnerabilities for adult gliomas. By identifying evolutionally conserved gene co-expression modules around EGFR (EM) or PDGFRA (PM), we recently proposed an EM/PM classification scheme, which assigns IDH-wildtype glioblastomas (GBM) into the EM subtype committed in neural stem cell compartment, IDH-mutant astrocytomas and oligodendrogliomas into the PM subtype committed in early oligodendrocyte lineage. Here, we report the identification of EM/PM subtype-specific gene co-expression networks and the characterization of hub gene polypyrimidine tract-binding protein 1 (PTBP1) as a genomic alteration-independent vulnerability in IDH-wildtype GBM. Supervised by the EM/PM classification scheme, we applied weighted gene co-expression network analysis to identify subtype-specific global gene co-expression modules. These gene co-expression modules were characterized for their clinical relevance, cellular origin and conserved expression pattern during brain development. Using lentiviral vector-mediated constitutive or inducible knockdown, we characterized the effects of PTBP1 on the survival of IDH-wildtype GBM cells, which was complemented with the analysis of PTBP1-depedent splicing pattern and overexpression of splicing target neuron-specific CDC42 (CDC42-N) isoform.  Transcriptomes of adult gliomas can be robustly assigned into 4 large gene co-expression modules that are prognostically relevant and are derived from either malignant cells of the EM/PM subtypes or tumor microenvironment. The EM subtype is associated with a malignant cell-intrinsic gene module involved in pre-mRNA splicing, DNA replication and damage response, and chromosome segregation, and a microenvironment-derived gene module predominantly involved in extracellular matrix organization and infiltrating immune cells. The PM subtype is associated with two malignant cell-intrinsic gene modules predominantly involved in transcriptional regulation and mRNA translation, respectively. Expression levels of these gene modules are independent prognostic factors and malignant cell-intrinsic gene modules are conserved during brain development. Focusing on the EM subtype, we identified PTBP1 as the most significant hub for the malignant cell-intrinsic gene module. PTBP1 is not altered in most glioma genomes. PTBP1 represses the conserved splicing of CDC42-N. PTBP1 knockdown or CDC42-N overexpression disrupts actin cytoskeleton dynamics, causing accumulation of reactive oxygen species and cell apoptosis. PTBP1-mediated repression of CDC42-N splicing represents a potential genomic alteration-independent, developmentally conserved vulnerability in IDH-wildtype GBM.


Asunto(s)
Glioblastoma , Ribonucleoproteínas Nucleares Heterogéneas , Proteína de Unión al Tracto de Polipirimidina , Proteína de Unión al GTP cdc42 , Proteína de Unión al Tracto de Polipirimidina/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Humanos , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo , Línea Celular Tumoral , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Redes Reguladoras de Genes , Regulación Neoplásica de la Expresión Génica , Empalme del ARN , Neuronas/metabolismo , Neuronas/patología
18.
J Alzheimers Dis ; 101(2): 611-625, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39213070

RESUMEN

Background: The connection between diabetes-associated cognitive dysfunction (DACD) and Alzheimer's disease (AD) has been shown in several observational studies. However, it remains controversial as to how the two related. Objective: To explore shared genes and pathways between DACD and AD using bioinformatics analysis combined with biological experiment. Methods: We analyzed GEO microarray data to identify DEGs in AD and type 2 diabetes mellitus (T2DM) induced-DACD datasets. Weighted gene co-expression network analysis was used to find modules, while R packages identified overlapping genes. A robust protein-protein interaction network was constructed, and hub genes were identified with Gene ontology enrichment and Kyoto Encyclopedia of Genome and Genome pathway analyses. HT22 cells were cultured under high glucose and amyloid-ß 25-35 (Aß25-35) conditions to establish DACD and AD models. Quantitative polymerase chain reaction with reverse transcription verification analysis was then performed on intersection genes. Results: Three modules each in AD and T2DM induced-DACD were identified as the most relevant and 10 hub genes were screened, with analysis revealing enrichment in pathways such as synaptic vesicle cycle and GABAergic synapse. Through biological experimentation verification, 6 key genes were identified. Conclusions: This study is the first to use bioinformatics tools to uncover the genetic link between AD and DACD. GAD1, UCHL1, GAP43, CARNS1, TAGLN3, and SH3GL2 were identified as key genes connecting AD and DACD. These findings offer new insights into the diseases' pathogenesis and potential diagnostic and therapeutic targets.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Biología Computacional , Diabetes Mellitus Tipo 2 , Enfermedad de Alzheimer/genética , Humanos , Disfunción Cognitiva/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/complicaciones , Mapas de Interacción de Proteínas/genética , Redes Reguladoras de Genes/genética , Animales , Ratones , Péptidos beta-Amiloides/metabolismo , Perfilación de la Expresión Génica
19.
Animal ; 18(9): 101259, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39137614

RESUMEN

In pigs, meat quality depends markedly on the fatty acid (FA) content and composition of the intramuscular fat, which is partly determined by the gene expression in this tissue. The aim of this work was to identify the link between muscle gene expression and its FA composition. In an (Iberian × Duroc) × Duroc backcrossed pig population, we identified modules of co-expressed genes, and correlation analyses were performed for each of them versus the phenotypes, finding four relevant modules. Two of the modules were positively correlated with saturated FAs (SFAs) and monounsaturated FAs (MUFAs), while negatively correlated with polyunsaturated FAs (PUFAs) and the omega-6/omega-3 ratio. The gene-enrichment analysis showed that these modules had over-representation of pathways related with the biosynthesis of unsaturated FAs, the Peroxisome proliferator-activated receptor signalling pathway and FA elongation. The two other relevant modules were positively correlated with PUFA and the n-6/n-3 ratio, but negatively correlated with SFA and MUFA. In this case, they had an over-representation of pathways related with fatty and amino acid degradation, and with oxidative phosphorylation. Using a graphical Gaussian model, we inferred a network of connections between the genes within each module. The first module had 52 genes with 87 connections, and the most connected genes were ADIPOQ, which is related with FA oxidation, and ELOVL6 and FABP4, both involved in FA metabolism. The second module showed 196 genes connected by 263 edges, being FN1 and MAP3K11 the most connected genes. On the other hand, the third module had 161 genes connected by 251 edges and ATG13 was the top neighbouring gene, while the fourth module had 224 genes and 655 connections, and its most connected genes were related with mitochondrial pathways. Overall, this work successfully identified relevant muscle gene networks and modules linked with FA composition, providing further insights on how the physiology of the pigs influences FA composition.


Asunto(s)
Ácidos Grasos , Redes Reguladoras de Genes , Animales , Ácidos Grasos/metabolismo , Ácidos Grasos/análisis , Porcinos/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/química , Masculino , Sus scrofa/genética , Sus scrofa/metabolismo
20.
Transl Cancer Res ; 13(7): 3620-3636, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39145060

RESUMEN

Background: In the context of head-and-neck squamous cell carcinoma (HNSCC), dendritic cells (DCs) assume pivotal responsibilities, acting as architects of antigen presentation and conductors of immune checkpoint modulation. In this study, we aimed to identify hub genes associated with DCs in HNSCC and explore their prognostic significance and implications for immunotherapy. Methods: Integrated clinical datasets from The Cancer Genome Atlas (TCGA)-HNSCC and GSE65858 cohorts underwent meticulous analysis. Employing weighted gene co-expression network analysis (WGCNA), we delineated candidate genes pertinent to DCs. Through the application of random survival forest and least absolute shrinkage and selection operator (LASSO) Cox's regression, we derived key genes of significance. Lisa (epigenetic Landscape In Silico deletion Analysis and the second descendent of MARGE) highlighted transcription factors, with Dual-luciferase assays confirming their regulatory role. Furthermore, immunotherapeutic sensitivity was assessed utilizing the Tumor Immune Dysfunction and Exclusion online tool. Results: This study illuminated the functional intricacies of HNSCC DC subsets to tailor innovative therapeutic strategies. We leveraged clinical data from the TCGA-HNSCC and GSE65858 cohorts. We subjected the data to advanced analysis, including WGCNA, which revealed 222 DC-related candidate genes. Following this, a discerning approach utilizing random survival forest analysis and LASSO Cox's regression unveiled seven genes associated with the prognostic impact of DCs, notably ACP2 and CPVL, associated with poor overall survival. Differential gene expression analysis between ACP2 + and ACP2 - DC cells revealed 208 differential expressed genes. Lisa analysis identified the top five significant transcription factors as STAT1, SPI1, SMAD1, CEBPB, and IRF1. The correlation between STAT1 and ACP2 was confirmed through quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Dual-luciferase assays in HEK293T cells. Additionally, TP53 and FAT1 mutations were more common in high-risk DC subgroups. Importantly, the sensitivity to immunotherapy differed among the risk clusters. The low-risk cohorts were anticipated to exhibit favorable responses to immunotherapy, marked by heightened expressions of immune system-related markers. In contrast, the high-risk group displayed augmented proportions of immunosuppressive cells, suggesting a less conducive environment for immunotherapeutic interventions. Conclusions: Our research may yield a robust DC-based prognostic system for HNSCC; this will aid personalized treatment and improve clinical outcomes as the battle against this challenging cancer continues.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...