Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.759
Filtrar
1.
Sci Rep ; 14(1): 19833, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191903

RESUMEN

Surface-active ionic liquids (SAILs) have gained much attention due to their green, stable, and efficient properties. The high costs associated with SAILs have raised concerns in their applications; however, blending with conventional surfactants like sodium dodecyl benzene sulfonate (SDBS) can bring about desired outcomes. Gemini surface-active ionic liquids (GSAILs) have been recognized as more efficient surfactants. Accordingly, this study investigates the influence of a mixture of an imidazolium-based GSAIL, [C4im-C6-imC4][Br2], and SDBS on different aspects of crude oil-water interfacial properties. The findings show remarkable synergy in interfacial tension (IFT) reduction up to 98.8% together with incredibly low IFT value of 0.05 mN m-1. This was with an optimal GSAIL mole fraction of 0.2 in the mixture. Further, the surfactant mixture gives synergies of 52.6% in emulsification and 51.8% in wettability of a quartz surface. These amazing results can be explained by the dominant interactions between the oppositely charged components. In theoretical study, the adsorption of individual surfactants and their mixtures was analyzed based on the Frumkin isotherm and the Rosen model, respectively, further supporting the findings.

2.
Biofilm ; 8: 100212, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39114648

RESUMEN

Urinary tract infections (UTI) caused by uropathogenic Escherichia coli (UPEC) are a significant global health challenge. The UPEC biofilm lifestyle is believed to play an important role in infection recurrency and treatment resistance, but our understanding of how the extracellular matrix (ECM) components curli and cellulose contribute to biofilm formation and pathogenicity is limited. Here, we study the spatial and temporal development of native UPEC biofilm using agar-based detection methods where the non-toxic, optically active fluorescent tracer EbbaBiolight 680 reports the expression and structural location of curli in real-time. An in vitro screen of the biofilm capacity of common UPEC strains reveals significant strain variability and identifies UPEC No. 12 (UPEC12) as a strong biofilm former at 28 °C and 37 °C. Non-interventional microscopy, including time-lapse and 2-photon, reveal significant horizontal and vertical heterogeneity in the UPEC12 biofilm structure. We identify region-specific expression of curli, with a shift in localization from the bottom of the flat central regions of the biofilm to the upper surface in the topographically dramatic intermediate region. When investigating if the rdar morphotype affects wettability of the biofilm surface, we found that the nano-architecture of curli guided by cellulose, rather than the rdar macrostructures, leads to increased hydrophobicity of the biofilm. By providing new insights at exceptional temporal and spatial resolution, we demonstrate how non-interventional analysis of native biofilms will facilitate the next generation of understanding into the roles of ECM components during growth of UPEC biofilms and their contribution to the pathogenesis of UTI.

3.
Nanotechnology ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39106877

RESUMEN

Changing the wettability and surface texturing have a significant impact on lubrication. In this study, the researchers used the molecular dynamics (MD) method to investigate how adjusting the interaction between alkanes and the wall affects oil film morphology and frictional properties under boundary lubrication. The findings revealed that the bearing capacity was influenced by both the morphology of the oil film and the strength of solid-liquid adsorption. In cases where the walls had weak wettability, the alkanes formed clusters to effectively separate the walls, while in cases where the walls had strong wettability, the oil film spread and formed a strong adsorption film. The super oleophilic textured surface could enhance the oil film adsorption capacity and replenish the oil film to the friction area in time, and the super oleophobic smooth surface could further reduce the friction coefficient. Therefore, a composite surface consisting of a super oleophilic textured surface and a super oleophobic smooth surface can be designed to enhance the bearing capacity of the oil film and reduce friction.

4.
Int J Oral Maxillofac Implants ; : 1-28, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39121371

RESUMEN

Aim: To assess the roughness and hydrophilicity of nine types of dental implant surfaces, while also examining the presence of contaminants carbon and oxygen on these surfaces. Furthermore, the study investigated potential correlations between these characteristics across the analyzed surfaces. Materials and Methods: The surfaces analyzed were as follows: MI: machined (turned), Implacil implant; TOI: blasted with titanium oxide, Implacil implant; TOAEI: blasted with titanium oxide and acid-etched, Implacil implant; ZAED: blasted with zirconia and acid-etched, DSP implant; CPD: coated with calcium phosphate, DSP implant; XD: subjected to an experimental treatment (patent pending), DSP implant; DAEHAS: double acid-etched and activated with hydroxyapatite nano-crystals, SIN implant; DAES: double acid-etched, SIN implant; and AMP: untreated surface of the Plenum implant, produced by additive manufacturing. Four and five disc-shaped specimens were used in the hydrophilicity and roughness assessments, respectively. Roughness was evaluated by optical profilometry and scanning electron microscopy; hydrophilicity was determined using the sessile-drop technique; and the chemical analysis was performed using X-ray photoelectron spectroscopy. The Kruskal- Wallis, Mann-Whitney, and Spearman correlation tests were employed to analyze the data (p < 0.10). Results: Significant differences were observed among the analyzed surfaces in terms of both roughness and hydrophilicity (p < 0.001). The surface exhibiting the highest roughness was AMP, whereas the greatest hydrophilicity was exhibited by CPD. Correlations between roughness and hydrophobicity were observed for MI (r = 0.936, p = 0.009), ZAED (r = 0.957, p = 0.004), and DAES (r = 0.964, p = 0.005). The carbon concentration observed on the CPD surface was lower than that observed on the other surfaces, whereas the oxygen concentrations were similar. No correlations were observed between the presence of contaminants and the roughness or hydrophilicity characteristics. Conclusion: Roughness and hydrophilicity values exhibited considerable variation among the tested surfaces. Aside from the CPD surface, comparable concentrations of carbon and oxygen were detected. Although correlations between roughness and hydrophilicity were observed only for the ZAED, DAES, and MI surfaces, these correlations were inadequate to establish a causal relationship between the two surface characteristics.

5.
Plant Biol (Stuttg) ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141664

RESUMEN

Andean ecosystems are characterized by high humidity, mainly from rain and fog events. Because of differences in altitude two Andean ecosystems - sub-Andean forest and Páramo -face different environmental pressures that affect leaf anatomy and cell wall composition and, consequently, species foliar water uptake (FWU) capacity. Here, FWU capacity of eight species in the Melastomataceae was evaluated and found to be related to proportions of cell wall components and aquaporins in the two ecosystems. Cellulose was labelled with Calcofluor white, and aquaporin and pectins were labelled with monoclonal antibodies. There were differences in plant FWU capacity in both ecosystems, with higher FWU capacity in sub-Andean forest species than in Páramo forest species. Cell wall components were positively related to FWU, with increased FWU related to pectin and aquaporin content of the plasma membrane. Differences in water availability in the two analysed environments led to differences in FWU capacity that are associated with leaf anatomical traits and cell wall composition. In these two environments, plants with similar traits are selected to respond to given environmental pressures. Traits that favour FWU in sub-Andean forest species may lead to further advances of these species in this environments.

6.
ACS Appl Mater Interfaces ; 16(32): 42641-42659, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39087275

RESUMEN

The pressing need for effective methods to separate oil and water in oily wastewater has spurred the development of innovative solutions. This work presents the creation and evaluation of a Janus nanofibrous membrane, also known as the Liquid Diode, developed using electrospinning (e-spinning) and buoyancy-assisted hydrothermal techniques. The membrane features a unique structure: one side is composed of PVDF nanofibers embedded with a GO/TiO2 composite, exhibiting in-air superhydrophobic and superoleophilic properties, while the reverse side consists of PVDF nanofibers with a ZnO nanorod array, demonstrating in-air superhydrophilic and underwater (UW) superoleophobic properties. This distinct asymmetric wettability enables the membrane to effectively separate both water-in-oil (w-in-o) and oil-in-water (o-in-w) emulsions, achieving an impressive liquid flux and separation efficiency (SEff). The in-air superhydrophobic side of the Janus nanofibrous membrane achieves a maximum oil flux (Fo) of 3506 ± 250 L m-2 h-1, while the in-air superhydrophilic side achieves a maximum water flux (Fw) of 1837 ± 150 L m-2 h-1, with SEff exceeding 98% for both sides. Furthermore, the Janus nanofibrous membrane maintained reliable mechanical stability after 10 cycles of sandpaper abrasion test and demonstrated excellent chemical stability when subjected to acidic, alkaline, cold water and hot water conditions for 24 h. These properties, combined with its ability in breaking down of organic contaminants (98% ± 2% in 210 min) and pharmaceutical contaminants (97% ± 2% in 210 min) under visible light, highlight its photocatalytic potential. Additionally, the membrane's antifouling and antibacterial properties suggest long-term and sustainable use in wastewater treatment applications. The synergistic combination of these superior properties positions the Janus nanofibrous membrane as a promising solution for addressing complex challenges in wastewater treatment and environmental remediation.

7.
ACS Appl Mater Interfaces ; 16(32): 42931-42941, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39103239

RESUMEN

Water scarcity is a pressing issue in arid and semi-arid regions, making fog harvesting a promising method for water collection. However, enhancing the rate of fog harvesting remains a challenge. Controlling the movement of droplets on functional surfaces is crucial for the development of effective water-harvesting devices. In this study, a three-dimensional (3D) fog-harvesting device with mixed wettability is fabricated using a combination of physical and chemical techniques. With inspiration drawn from natural organisms, such as the desert beetle and Nephrolepis cordifolia, which can both live in low humidity, a copper substrate with a leaf-shaped wedge superhydrophilic structure and flat superhydrophobic regions is fabricated for fog harvesting. The modified surface results in a maximum 49.89% improvement in fog-harvesting efficiency compared to the original copper substrate. The synergistic effect of the 3D structure and mixed wettability of this study offers an idea for improving fog collection efficiency, with potential implications for energy sustainability water resources.

8.
Heliyon ; 10(15): e35019, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39157384

RESUMEN

In the current research, the silicon carbon oxynitride (SiCON) thin film was deposited on the silicon (Si) substrate by radio frequency (RF) reactive magnetron sputtering method. To comprehensively assess the impact of nitrogen flux rate on thin film characteristics, a suite of advanced analytical methods was utilized. The GIXRD analysis confirmed that the SiCON thin film is amorphous in structure. Additionally, Raman spectroscopy detected no graphite nanocrystals within the film. Ellipsometry measurements further showed that the refractive index of the thin films rises with increased nitrogen flux in the reactive gas, indicating a direct correlation between nitrogen concentration during deposition and optical properties. Based on the designs made with McLeod's software, the amount of reflection can be reduced up to 5.7 % at the wavelength of 4 µm and up to 8.5 % in the wavelength range of 3-5 µm for an optimal thickness thin film. The atomic force microscopy (AFM) examination revealed that the surface roughness of the thin films decreases as the nitrogen flux in the reactive gas mixture increases. Additionally, measurements of the water contact angle (WCA) indicated that the SiCON thin films exhibit a hydrophilic state.

9.
ACS Appl Mater Interfaces ; 16(33): 44298-44304, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39108070

RESUMEN

Obtaining water and renewable energy from the atmosphere provides a potential solution to the growing energy shortage. Leveraging the synergistic inspiration from desert beetles, cactus spines, and rice leaves, here, a multibioinspired hybrid wetting rod (HWR) is prepared through simple solution immersion and laser etching, which endows an efficient water collection from the atmosphere. Importantly, benefiting from the bionic asymmetric pattern design and the three-dimensional structure, the HWR possesses an omnidirectional fog collection with a rate of up to 23 g cm-2 h-1. We further show that the HWR could be combined with a droplet-based electricity generator to convert kinetic energy from falling droplets into electrical energy with a maximum output voltage of 200 V and a current of 2.47 µA to light up 28 LEDs. Collectively, this research provides a strategy for synchronous fog collection and power generation, which is promising for environmentally friendly energy production.

10.
ACS Appl Mater Interfaces ; 16(33): 43694-43703, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39114959

RESUMEN

Water scarcity is a global problem and collecting water from the air is a viable solution to this crisis. Inspired by Namib Desert beetle, leaf venation and spider silk, we designed an integrated biomimetic system with hybrid wettability and wettability gradient. The hybrid hydrophilic-hydrophobic wettability design that bionomics desert beetle's back can construct a three-dimensional topography with a water layer on the surface, expanding the contact area with the fog flow and thus improving the droplet trapping efficiency. The venation-like structure with wettability gradient not only provides a planned path for water transportation, but also accelerates water removal under the synergistic effect of gravity and wettability driving force, thus further improving the surface regeneration rate. The collector combines droplet capture, coalescence, transportation, separation, and storage capabilities, which provides new ideas for the design of future high-efficiency fog collectors.

11.
Materials (Basel) ; 17(15)2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39124525

RESUMEN

Pure titanium is a preferred material for medical applications due to its outstanding properties, and the fabrication of its surface microtexture proves to be an effective method for further improving its surface-related functional properties, albeit imposing high demands on the processing accuracy of surface microtexture. Currently, we investigate the fabrication of precise microtextures on pure titanium surfaces with different grid depths using precision-cutting methods, as well as assess its impact on surface wettability through a combination of experiments and finite element simulations. Specifically, a finite element model is established for pure titanium precision cutting, which can predict the surface formation behavior during the cutting process and further reveal its dependence on cutting parameters. Based on this, precision-cutting experiments were performed to explore the effect of cutting parameters on the morphology of microtextured pure titanium with which optimized cutting parameters for high-precision microtextures and uniform feature size were obtained. Subsequent surface wettability measurement experiments demonstrated from a macroscopic perspective that the increase in the grid depth of the microtexture increases the surface roughness, thereby enhancing the hydrophilicity. Corresponding fluid-solid coupling finite-element simulation is carried out to demonstrate from a microscopic perspective that the increase in the grid depth of the microtexture decreases the cohesive force inside the droplet, thereby enhancing the hydrophilicity.

12.
Materials (Basel) ; 17(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39124545

RESUMEN

Improving the durability of short-rotation wood can be achieved through chemical and thermal modification. Chemical and thermal modification can have an impact on the physicochemical properties of wood, which can affect wood's surface characteristics and its resistance to weathering. The purpose of this study was to investigate the surface characteristics and artificial weathering resistance of chemically and thermally modified short-rotation teak wood coated with linseed oil (LO)-, tung oil (TO)-, and commercial oil-based coatings consisting of a mixture of linseed oil and tung oil (LT) and commercial oil-based polyurethane resin (LB) coatings. The short-rotation teak woods were prepared in untreated and treated with furfuryl alcohol (FA), thermal treatment (HT) at 150 and 220 °C, and combination of glycerol-maleic anhydride (GMA) impregnation with thermal treatment at 150 and 220 °C. The surface characteristics measured were surface free energy, wettability, Persoz hardness, bonding quality, and color changes before and after artificial weathering exposure. The results showed that chemical and thermal modifications treatment tended to reduce total surface free energy (SFE), hardness, wettability, and bonding quality. FA and GMA at 220 °C treatments provided homogenization effect on surface characteristics, especially in total SFE and wettability. The total SFE of untreated wood ranged from 45.00 to 51.13 mN/m, and treated wood ranged from 40.58 to 50.79 mN/m. The wettability of oil-based coating according to K-value ranged from 0.20 to 0.54. TO presented better photostability than LO. Short-rotation teak wood coated with oil-based commercial coatings presented better weathering resistance compared to pure natural drying oil. Commercial oil-based coatings provided better weathering protection for the chemically and thermally modified teak wood. The application of oil-based coatings on chemically and thermally modified short-rotation teak is being considered for the development of a better wood-protection system.

13.
Molecules ; 29(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39124855

RESUMEN

Nature provides us with a wealth of inspiration for the design of bionic functional surfaces. Numerous types of plant leaves with exceptional wettability, anisotropy, and adhesion are extensively employed in many engineering applications. Inspired by the wettability, anisotropy, and adhesion of indocalamus leaves, bionic upper and lower surfaces (BUSs and BLSs) of the indocalamus leaf were successfully prepared using a facile approach combining laser scanning and chemical modification. The results demonstrated the BUSs and BLSs obtained similar structural features to the upper and lower surfaces of the indocalamus leaf and exhibited enhanced and more-controllable wettability, anisotropy, and adhesion. More importantly, we conducted a detailed comparative analysis of the wettability, anisotropy, and adhesion between BUSs and BLSs. Finally, BUSs and BLSs were also explored for the corresponding potential applications, including self-cleaning, liquid manipulation, and fog collection, thereby broadening their practical utility. We believe that this study can contribute to the enrichment of the research on novel biological models and provide significant insights into the development of multifunctional bionic surfaces.


Asunto(s)
Biónica , Hojas de la Planta , Propiedades de Superficie , Humectabilidad , Hojas de la Planta/química , Anisotropía , Sapindaceae/química
14.
Int J Biol Macromol ; 277(Pt 1): 133727, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39084975

RESUMEN

Pickering emulsions have attracted much attention as a novel emulsifying technology. This research to explore Zein-Citrus pectin nanoparticles stabilized cinnamon essential oil (CEO) Pickering emulsion (ZCCPEs) for constructing Pickering emulsion edible film (PEF). Unlike traditional research, which focuses on antibacterial and antioxidant activities, our research examined the physical properties of PEF, specifically changes in wettability. The results show that PEF has better transparency and tensile strength than the pectin alone direct emulsion film (PAEF), and the spatial distribution of Pickering emulsion droplets gives different wettability on both sides of PEF. The partially hydrophobic upside has important application value in food packaging. At the same time, the PEF is biodegradable and environmentally non-polluting. The edible film loaded with essential oils, developed based on the Pickering stabilization mechanism in this study, possesses several desirable characteristics for potential used as bioactive packaging films in food applications.


Asunto(s)
Cinnamomum zeylanicum , Emulsiones , Aceites Volátiles , Pectinas , Humectabilidad , Zeína , Pectinas/química , Aceites Volátiles/química , Aceites Volátiles/farmacología , Emulsiones/química , Cinnamomum zeylanicum/química , Zeína/química , Embalaje de Alimentos/métodos , Películas Comestibles , Resistencia a la Tracción , Interacciones Hidrofóbicas e Hidrofílicas , Nanopartículas/química
15.
J Colloid Interface Sci ; 676: 408-416, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39033675

RESUMEN

HYPOTHESIS: Ethoxylated nonionic surfactants are promising candidates for enhanced oil recovery (EOR) from oil-wet carbonate reservoirs due to their ability to reverse the mineral wettability. The wettability-reversal efficiency increases with the number of the ethoxy (EO) groups in the surfactant molecule. METHODOLOGY: Contact angle measurements, scanning electron microscopy (SEM) and molecular dynamics (MD) simulations were combined to investigate the wettability reversal of an oil-wet calcite by three ethoxylated nonionic surfactants with 1, 4 and 8 EO groups, respectively, to directly probe the role of the EO groups and to uncover the molecular mechanism responsible for the wettability reversal. FINDINGS: Both experiments and simulations consistently show a clear correlation between the number of EO groups and the wettability reversal efficiency of the surfactants, whereby the higher number of EO groups results in greater degree of wettability reversal. This is due to 1) the more hydrophilic surfactant headgroup weakening the carboxylate interactions with the surface by expanding the surface-adjacent water layer, and 2) the physically larger surfactant molecule attracting the carboxylates more strongly, thus aiding in their removal from the surface.

16.
Adv Mater ; : e2407315, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058238

RESUMEN

Liquid-like surfaces (LLSs) with dynamic repellency toward various pollutants (e.g., bacteria, oil, and ice), have shown enormous potential in the fields of biology, environment, and energy. However, most of the reported LLSs cannot meet the demands for practical applications, particularly in terms of de-wettability and durability. To solve these problems, considerable progress has been made in enhancing the de-wettability and durability of LLSs in complex environments. Therefore, this review mainly focuses on the recent progress in LLSs, encompassing designed structures and repellent capabilities, as well as their diverse applications, offering greater insights for the targeted design of desired LLSs. First, a detailed overview of the development of LLSs from the perspective of their molecular structural evolution is provided. Then highlight recent approaches for enhancing the dynamic de-wettability and durability of LLSs by optimizing their structural designs, including linear, looped, crosslinked, and hybrid structures. Later, the diverse applications and unique advantages of recently developed LLSs, including repellency (e.g., liquid anti-adhesion/transportation/condensation, anti-icing/scaling/waxing, and biofouling repellency) are summarized. Finally, Perspectives on potential innovative advancements and the promotion of technology selection to advance this exciting field are offered.

17.
Heliyon ; 10(13): e33303, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39027528

RESUMEN

Low-Salinity Water Flooding (LSWF) is a technique aimed at modifying the interactions between rock and fluids particularly altering wettability and reducing interfacial tension (IFT). However, there remains limited understanding of how heterogeneous wettability and the presence of Initial Water Saturation (Swi) can impact the effectiveness of LSWF. This study contributes to a deeper understanding of LSWF mechanisms in the context of heterogeneous wettability, while also considering Swi. The simulations were conducted using OpenFOAM, employing a non-reactive quasi-three-phase flow solver that accounts for wettability alteration and IFT reduction during the mixing of Low-Salinity (LSW) and High-Salinity Water (HSW). A heterogeneous pore geometry is designed, and four distinct scenarios are simulated, encompassing both heterogeneous and homogeneous wettability conditions while considering the presence of Swi. These scenarios included secondary High-Salinity Water Flooding (HSWF), tertiary and secondary LSWF. Notably, the simulations reveal that secondary LSWF consistently yields the highest oil recovery across all scenarios, achieving recovery rates of up to 96.98 %. Furthermore, the presence of Swi significantly influences the performance of LSWF in terms of oil recovery, particularly in heterogeneous wettability conditions where it boosts recovery by up to 3.5 %, but in homogeneous wettability, it decreases recovery by nearly 26 %. These simulations also underscore the pivotal role played by the distribution of oil and HSW phases in profoundly affecting the outcomes of LSWF.

18.
Foods ; 13(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39063336

RESUMEN

This study investigated the effects of ultrasound-assisted soybean lecithin (SL) on the rehydration behavior and physical properties of egg white protein powder (EWPP) and its ability to enhance the efficacy of EWPP instant solubility. The results of rehydration, including wettability and dispersibility, indicated that ultrasound (200 W)-assisted SL (5 g/L) addition had the shortest wetting time and dispersion time, which were 307.14 ± 7.00 s and 20.95 ± 2.27 s, respectively. In terms of powder properties, the EWPP with added SL had lower lightness, moisture content and bulk density. In addition, the increase in average particle size, net negative charge, free sulfhydryl group content and surface hydrophobicity indicated that ultrasound treatment facilitated the protein structures unfolding and promoted the formation of SL-EWP complexes. Overall, our study provided a new perspective for the food industry regarding using ultrasound technology to produce instant EWPP with higher biological activity and more complete nutritional value.

19.
ACS Appl Mater Interfaces ; 16(28): 36973-36982, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38966874

RESUMEN

Personal thermal management technology, which adjusts the heat exchange between the human body and the environment, can passively heat or cool the body to maintain a comfortable core temperature, thereby enhancing comfort and reducing energy consumption. However, most existing personal thermal management materials have static properties, such as fixed solar reflectance and infrared emissivity, which do not support real-time dynamic temperature regulation. Moreover, sweat accumulation on the skin surface, while contributing to temperature regulation, can significantly reduce comfort. This study constructs a unidirectional moisture-permeable intelligent thermal management fabric system to achieve superior thermal and moisture comfort in complex environments. The fabric incorporates thermochromic microcapsules into PAN nanofibers by using electrospinning technology for intelligent thermal management. Subsequent hydrophobic treatment of the fiber film surface imparts the fabric with unidirectional wetting properties. The nanofibrous structure provides intrinsic elasticity and breathability. In heating mode, the fabric's average sunlight reflectance is 42.1%, which increases to 82.2% in cooling mode, resulting in a reflectance difference of approximately 40%. The hydrophobic treatment endows the fabric with excellent moisture absorption and perspiration properties, demonstrated by a unidirectional moisture transport index of 696.63 and a perspiration evaporation rate of 5.88 mg/min. When the fabric temperature matches the ambient temperature, the photothermal conversion power difference of the Janus metafabric in two modes reaches 248.37 W m-2. Additionally, Janus metafabrics show the potential for temperature-responsive design and repeated writing applications. The outstanding wearability and dynamic spectral properties of these metafabrics open new pathways for sustainable energy, smart textiles, and thermal-moisture comfort applications.

20.
Carbohydr Polym ; 342: 122374, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39048223

RESUMEN

Jute fibers are characterized by a heterogeneous chemical composition (cellulose and non-cellulosic components) and a complex layered structure with a hydrophobic surface outer layer responsible for their low wettability. In this work, after the removal of water-soluble components, raw jute fibers were subjected to atmospheric pressure dielectric barrier discharge (DBD) under different conditions (at 150 or 300 Hz) to tailor jute fiber surface structure and wettability. The research was focused on the aging effect during natural aging in a standard atmosphere investigated up to three weeks after DBD treatment. Alterations in the surface morphology of DBD-treated jute fibers were investigated by FE-SEM and AFM, while ATR-FTIR, XPS, and electrokinetic measurements were used to assess the changes in the jute fiber surface chemistry. Sorption properties were monitored through wetting time and capillary rise measurements. The sorption properties of DBD-treated jute fibers were improved (about 100 times lower wetting time and 15 % higher capillary rise height in comparison to untreated) due to the changes in surface chemistry (decreased lignin and hemicellulose content in parallel with cellulose oxidation) and morphology (about 4.6 times higher average roughness). The electrokinetic and sorption properties measurement confirmed the significance of aging effects in lignocellulosic fibers' functionalization using plasma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...