Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1459968, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39224846

RESUMEN

Wheat exhibits complex characteristics during its growth, such as extensive tillering, slender and soft leaves, and severe organ cross-obscuration, posing a considerable challenge in full-cycle phenotypic monitoring. To address this, this study presents a synthesized method based on SFM-MVS (Structure-from-Motion, Multi-View Stereo) processing for handling and segmenting wheat point clouds, covering the entire growth cycle from seedling to grain filling stages. First, a multi-view image acquisition platform was constructed to capture image sequences of wheat plants, and dense point clouds were generated using SFM-MVS technology. High-quality dense point clouds were produced by implementing improved Euclidean clustering combined with centroids, color filtering, and statistical filtering methods. Subsequently, the segmentation of wheat plant stems and leaves was performed using the region growth segmentation algorithm. Although segmentation performance was suboptimal during the tillering, jointing, and booting stages due to the glut leaves and severe overlap, there was a salient improvement in wheat leaf segmentation efficiency over the entire growth cycle. Finally, phenotypic parameters were analyzed across different growth stages, comparing automated measurements of plant height, leaf length, and leaf width with actual measurements. The results demonstrated coefficients of determination ( R 2 ) of 0.9979, 0.9977, and 0.995; root mean square errors (RMSE) of 1.0773 cm, 0.2612 cm, and 0.0335 cm; and relative root mean square errors (RRMSE) of 2.1858%, 1.7483%, and 2.8462%, respectively. These results validate the reliability and accuracy of our proposed workflow in processing wheat point clouds and automatically extracting plant height, leaf length, and leaf width, indicating that our 3D reconstructed wheat model achieves high precision and can quickly, accurately, and non-destructively extract phenotypic parameters. Additionally, plant height, convex hull volume, plant surface area, and Crown area were extracted, providing a detailed analysis of dynamic changes in wheat throughout its growth cycle. ANOVA was conducted across different cultivars, accurately revealing significant differences at various growth stages. This study proposes a convenient, rapid, and quantitative analysis method, offering crucial technical support for wheat plant phenotypic analysis and growth dynamics monitoring, applicable for precise full-cycle phenotypic monitoring of wheat.

2.
Sci Rep ; 14(1): 11952, 2024 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796501

RESUMEN

Heavy metal accumulation is one of the major agronomic challenges that has seriously threatened food safety. As a result, metal-induced phytotoxicity concerns require quick and urgent action to retain and maintain the physiological activities of microorganisms, the nitrogen pool of soils, and the continuous yields of wheat in a constantly worsening environment. The current study was conducted to evaluate the plant growth-promoting endophytic Aspergillus flavus AUMC 16,068 and its EPS for improvement of plant growth, phytoremediation capacity, and physiological consequences on wheat plants (Triticum aestivum) under lead stress. After 60 days of planting, the heading stage of wheat plants, data on growth metrics, physiological properties, minerals content, and lead content in wheat root, shoot, and grains were recorded. Results evoked that lead pollution reduced wheat plants' physiological traits as well as growth at all lead stress concentrations; however, inoculation with lead tolerant endophytic A. flavus AUMC 16,068 and its respective EPS alleviated the detrimental impact of lead on the plants and promoted the growth and physiological characteristics of wheat in lead-contaminated conditions and also lowering oxidative stress through decreasing (CAT, POD, and MDA), in contrast to plants growing in the un-inoculated lead polluted dealings. In conclusion, endophytic A. flavus AUMC 16,068 spores and its EPS are regarded as eco-friendly, safe, and powerful inducers of wheat plants versus contamination with heavy metals, with a view of protecting plant, soil, and human health.


Asunto(s)
Aspergillus flavus , Endófitos , Plomo , Triticum , Triticum/microbiología , Triticum/efectos de los fármacos , Triticum/crecimiento & desarrollo , Plomo/toxicidad , Plomo/metabolismo , Aspergillus flavus/efectos de los fármacos , Aspergillus flavus/metabolismo , Endófitos/fisiología , Endófitos/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Polisacáridos/farmacología , Biodegradación Ambiental , Contaminantes del Suelo/toxicidad , Estrés Oxidativo/efectos de los fármacos , Raíces de Plantas/microbiología , Raíces de Plantas/efectos de los fármacos
3.
Planta ; 260(1): 13, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809276

RESUMEN

MAIN CONCLUSION: PM3 and PM8 alleles carried by two CIMMYT wheat lines confer powdery mildew resistance in seedlings and/or adult plants. A stage-specific epistatic interaction was observed between PM3 and PM8. Powdery mildew is an important foliar disease of wheat. Major genes for resistance, which have been widely used in wheat breeding programs, are typically effective against only limited numbers of virulence genes of the pathogen. The main aim of this study was to map resistance loci in wheat lines 7HRWSN58 and ZWW09-149 from the International Maize and Wheat Improvement Center (CIMMYT). Doubled haploid populations (Magenta/7HRWSN58 and Emu Rock/ZWW09-149) were developed and grown in controlled environment experiments and inoculated with a composite of Blumeria graminis f.sp. tritici isolates that had been collected at various locations in Western Australia. Plants were assessed for powdery mildew symptoms (percentage leaf area diseased) on seedlings and adult plants. Populations were subjected to genotyping-by-sequencing and assayed for known SNPs in the resistance gene PM3. Linkage maps were constructed, and markers were anchored to the wheat reference genome sequence. In both populations, there were asymptomatic lines that exhibited no symptoms. Among symptomatic lines, disease severity varied widely. In the Magenta/7HRWSN58 population, most of the observed variation was attributed to the PM3 region of chromosome 1A, with the allele from 7HRWSN58 conferring resistance in seedlings and adult plants. In the Emu Rock/ZWW09-149 population, two interacting quantitative trait loci were mapped: one at PM3 and the other on chromosome 1B. The Emu Rock/ZWW09-149 population was confirmed to segregate for a 1BL·1RS translocation that carries the PM8 powdery mildew resistance gene from rye. Consistent with previous reports that PM8-derived resistance can be suppressed by PM3 alleles, the observed interaction between the quantitative trait loci on chromosomes 1A and 1B indicated that the PM3 allele carried by ZWW09-149 suppresses PM8-derived resistance from ZWW09-149, but only at the seedling stage. In adult plants, the PM8 region conferred resistance regardless of the PM3 genotype. The resistance sources and molecular markers that were investigated here could be useful in wheat breeding.


Asunto(s)
Ascomicetos , Mapeo Cromosómico , Resistencia a la Enfermedad , Enfermedades de las Plantas , Plantones , Triticum , Triticum/genética , Triticum/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Ascomicetos/fisiología , Ascomicetos/patogenicidad , Plantones/genética , Plantones/microbiología , Resistencia a la Enfermedad/genética , Alelos , Sitios de Carácter Cuantitativo/genética , Polimorfismo de Nucleótido Simple/genética , Ligamiento Genético , Genes de Plantas , Fitomejoramiento , Genotipo
4.
Microb Pathog ; 187: 106500, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38104674

RESUMEN

Cyanobacteria have been recognized for their advantageous impact on plant growth and development. The application of certain techniques has the potential to enhance various aspects of plant development, including growth, yield, proximate content (such as protein and carbohydrate levels), as well as the ability to withstand abiotic stresses such as herbicide exposure. The current investigation focused on examining the influence of bioactive compounds derived from the cyanobacterium Neowestiellopsis persica strain A1387 on enhancing the antioxidant and anyimicrobial activity of wheat plants in their defense against the plant pathogenic Sunn pest. The findings of the study indicate that the levels of H2O2 and GPx in wheat plants that were infected with aphids were significantly elevated compared to the treatments where aphids and cyanobacteria extract were present. The confirmation of these results was achieved through the utilization of confocal and fluorescent microscope tests, respectively. Furthermore, the findings indicated that the constituents of the cyanobacterial extract augmented the plant's capacity to withstand stress by enhancing its defense mechanisms. In a broader context, the utilization of cyanobacterial extract demonstrated the ability to regulate the generation and impact of oxygen (O2) and hydrogen peroxide (H2O2), while concurrently enhancing the functionality of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) enzymes within wheat plants. This facilitation enabled the plants to effectively manage oxidative stress. Moreover, the findings of the antibacterial activity assessment conducted on the extract derived from cyanobacteria demonstrated notable susceptibility. The bacteria that exhibited the highest sensitivity to the extract of cyanobacterium Neowestiellopsis persica strain A1387 were staphylococcus aureus and pseudomonas aeruginosa. Conversely, salmonella typhi demonstrated the greatest resistance to the aforementioned extract. The potential impact of cyanobacteria extract on the antioxidative response of wheat plants to sunn pest infestation represents a novel contribution to the existing body of knowledge on the interaction between wheat plants and aphids.


Asunto(s)
Antiinfecciosos , Cianobacterias , Plaguicidas , Antioxidantes/farmacología , Antioxidantes/metabolismo , Triticum/microbiología , Plaguicidas/metabolismo , Peróxido de Hidrógeno/metabolismo , Estrés Oxidativo , Superóxido Dismutasa/metabolismo , Oxígeno/metabolismo , Cianobacterias/metabolismo , Antiinfecciosos/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/metabolismo
5.
Food Sci Nutr ; 11(9): 5296-5303, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37701213

RESUMEN

Plant biotechnology helps to develop different types of new products with increased resistance to disease, greater tolerance to drought and salt stress, and better nutritional value. The interaction of plants and microorganisms will play a significant role to achieve this purpose. The aims of this study were to isolate endophyte Actinobacteria strains of some medicinal plants and the investigation of their bioactive potential. 15 Actinobacteria strains were selectively isolated from Persian iris and Echium amoenum plants, and then their belonging to Actinobacteria phylum was confirmed using an Actinobacteria-specific primer pair. The antioxidant activity of the crude extract obtained from the isolated strains was investigated based on DPPH method. Investigating the antioxidant activity of the crude extract showed that at a concentration of 100 µg/mL, the two strains EG1 and EG2 had 71% and 78% antioxidant activity, respectively. According to the phylogeny studies, it was determined that two strains belonged to the Streptomyces genus. The effect of supernatant achieved from selected endophytic strain on 35-day wheat plants showed that the supernatant considerably promotes root and shoot growth and chlorophyll content under salinity stress (150 mM NaCl). In general, it can be concluded strains that live symbiotically with medicinal plants are rich sources of bioactive compounds. Therefore, identification of the bioactive compounds in the extract of isolated Actinobacteria from medicinal plants and further studies on their metabolism are suggested.

6.
Front Plant Sci ; 14: 1154372, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37235036

RESUMEN

Low availability of phosphorus (P) in both acidic and alkaline soils is a major problem for sustainable improvement in wheat crops yield. Optimization of crops productivity can be achieved by increasing the bioavailability of P by phosphate solubilizing Actinomycetota (PSA). However, their effectiveness may vary with changing agro-climatic conditions. In this regard, a greenhouse experiment was conducted to assess the interaction inoculation of five potential PSA (P16-P18-BC3-BC10 and BC11) and RPs (RP1- RP2-RP3 and RP4) on the growth and yield of wheat crop in unsterilized P- deficient alkaline and acidic soils. Their performance was compared with single super phosphate (TSP) and reactive RP (BG4). The in-vitro tests showed that all PSA colonize wheat root and form a strong biofilm except Streptomyces anulatus strain P16. Our findings revealed that all PSA significantly improve the shoot/root dry weights, spike biomass, chlorophyll contents as well as nutrients uptake in plants fertilized with RP3 and RP4. However, the combined application of Nocardiopsis alba BC11 along with RP4 in alkaline soil, was effective in optimizing wheat yield attributes and improve the yield biomass up to 19.7% as compared to the triple superphosphate (TSP). This study supports the view that the inoculation with Nocardiopsis alba BC11 has a broad RP solubilization and could alleviate the agricultural losses due to P limitation in acidic and alkaline soils.

7.
Chemosphere ; 322: 138080, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36781001

RESUMEN

Research on ionic liquids (ILs) and biochars (BCs) is a novel site of scientific interest. An experiment was designed to assess the effect of 1-propanenitrile imidazolium trifluoro methane sulfonate ([C2NIM][CF3SO3]) ionic liquid (IL) and IL-BC combination on the wheat plant. Three working standards of the IL; 50, 250, 500 and 1000 mg/L, prepared in deionized water, were tested in the absence and presence of BC on wheat seedling. Results indicated significant decrease in seed germination (%), length, fresh weight, chlorophyll a, b and carotenoid contents of wheat seedlings at 250, 500 and 1000 mg/L of the IL. An admirable increase in phenolic and 2,2-diphenyl-1-picrylhydrazyl (DPPH) contents of wheat seedlings was noted at 250, 500 and 1000 mg/L of the IL. The application of BC significantly ameliorated the negative effects of IL on the selected parameters of wheat. It is inferred that the undesirable effects of the IL on wheat growth can be positively restored by addition of BC.


Asunto(s)
Líquidos Iónicos , Líquidos Iónicos/química , Clorofila A , Triticum , Plantones
8.
Life (Basel) ; 12(11)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36362916

RESUMEN

Herein, two seaweed extracts (Sargassum latifolium and Corallina elongate), and two commercial seaweed products (Canada power and Oligo-X) with a concentration of 5% were used to alleviate the drought stress on wheat plants. The extract of C. elongate had the highest capacity to ameliorate the deleterious effects of water scarcity followed by S. latifolium and the commercial products. The drought stress reduced wheat shoots length and the contents of pigments (chlorophyll and carotenoids), carbohydrates, and proteins. While the highest increment in the total carbohydrates and protein contents of the wheat shoot after two stages, 37-and 67-days-old, were noted in drought-stressed plants treated with C. elongate extract with values of (34.6% and 22.8%) and (51.9% and 39.5%), respectively, compared to unstressed plants. Decreasing the activity of antioxidant enzymes, peroxidase, superoxidase dismutase, and polyphenol oxidase in drought-stressed plants treated with algal extracts indicated amelioration of the response actions. Analysis of phytohormones in wheat plants exhibited increasing GA3 and IAA contents with percentages of (20.3-13.8%) and (72.7-25%), respectively. Interestingly, all morphological and metabolic characteristics of yield were improved due to the algal treatments compared with untreated drought-stressed plants. Overall, the algal extracts, especially those from seaweed of C. elongate, could represent a sustainable candidate to overcome the damage effects of water deficiency in the wheat plant.

9.
Plants (Basel) ; 11(19)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36235528

RESUMEN

The effects of prolonged heat and drought stress and cool growing conditions on dough mixing quality traits of spring wheat (Triticum aestivum L.) were studied in fifty-six genotypes grown in 2017 and 2018 in southern Sweden. The mixing parameters evaluated by mixograph and the gluten protein characteristics studied by size exclusion high-performance liquid chromatography (SE-HPLC) in dough were compared between the two growing seasons which were very different in length, temperature and precipitation. The genotypes varying in gluten strength between the growing seasons (≤5%, ≤12%, and ≤17%) from three groups (stable (S), moderately stable (MS), and of varying stability (VS)) were studied. The results indicate that most of the mixing parameters were more strongly impacted by the interaction between the group, genotype, and year than by their individual contribution. The excessive prolonged heat and drought did not impact the buildup and mixing time expressed as peak time and time 1-2. The gluten polymeric proteins (unextractable, %UPP; total unextractable, TOTU) and large unextractable monomeric proteins (%LUMP) were closely associated with buildup and water absorption in dough. Major significant differences were found in the dough mixing parameters between the years within each group. In Groups S and MS, the majority of genotypes showed the smallest variation in the dough mixing parameters responsible for the gluten strength and dough development between the years. The mixing parameters such as time 1-2, buildup, and peak time (which were not affected by prolonged heat and drought stress) together with the selected gluten protein parameters (%UPP, TOTU, and %LUMP) are essential components to be used in future screening of dough mixing quality in wheat in severe growing environments.

10.
J Fluoresc ; 32(6): 2159-2172, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35970986

RESUMEN

This paper is an extension of the work published in Journal of Fluorescence (2011) 21: 785-791. In the previous work, we studied the effect of dimethoate (50, 100 and 200 ppm) on growth and photosynthetic activity of wheat seedlings after 10 days of dimethoate treatment. In the present study, new measurement conditions (dimethoate concentration: 25 ppm, treatment period: 20 days and 30 days) were used in addition to those used in the past work. Various plant growth parameters, photosynthetic pigment content, laser-induced chlorophyll fluorescence (LICF) spectra and fluorescence induction kinetics (FIK) curves were recorded after 10, 20 and 30 days of dimethoate treatments. LICF spectra were recorded in the region of 650-780 nm using violet diode laser (405 nm). FIK curves were recorded at 685 nm using red diode laser (635 nm). Fluorescence intensity ratio (FIR) of two fluorescence peaks around 685 and 730 nm, and variable chlorophyll fluorescence decrease ratio (Rfd) were determined from LICF spectra and FIK curves respectively. Curve-fitted parameters of LICF spectra were used for determination of FIR (F685/F730). The effect of treatment of the insecticide dimethoate on growth and photosynthetic activity of wheat seedlings was examined by using these parameters as well as the past work. In 10-days treatment, 25 and 50 ppm dimethoate showed stimulatory effect with better stimulation being observed at 25 ppm. All studied concentrations higher than 50 ppm exhibited inhibitory effect on wheat seedlings. In case of dimethoate treatment studied for longer durations (more than 10 days), all concentrations showed inhibitory effect. Lower doses which showed some positive response for short time duration become toxic with the extension of treatment periods. Thus, this study clearly confirms the toxic effect of dimethoate on wheat plants.


Asunto(s)
Dimetoato , Insecticidas , Dimetoato/farmacología , Plantones , Triticum , Insecticidas/farmacología , Espectrometría de Fluorescencia/métodos , Clorofila/farmacología , Clorofila/química , Fluorescencia , Rayos Láser
11.
Front Microbiol ; 13: 881442, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35694314

RESUMEN

The improvement of plant growth and yield becomes crucial to feed the rising world population, especially in harsh conditions, drought, salt stress, lack of nutrition, and many other challenges. To cope with these stresses, plants developed an adaptation strategy (mycorrhiza), which is an efficient way to reinforce their growth and resistance. For this purpose, we studied the influence of mycorrhizal fungi isolated from a natural rock phosphate mine in the vicinity of some native plants and agricultural soil to assess their capacity in increasing the growth, nutritional profile improvement, and biochemical parameters in the inoculated wheat plants. Results showed a high diversity of isolated arbuscular mycorrhizal fungi (AMF) spores in the agricultural soil, and less diversity in the natural phosphate samples, where three main genera were identified: glomus, gigaspora, and acaulospora. The chlorophyll content increased by 116% in the native inoculum (NM) flowed by Glomus sp2 from agricultural soil (98%) compared to non-mycorrhized plants, which significantly impact the growth and plant biomass (an increase of 90 and 73%, respectively). The same rate of change was shown on total phenolic compounds with an increase of 64% in the plants inoculated with Glomus sp2 in the presence of TSP, compared to the non-mycorrhized plants. In conclusion, the inoculation of wheat plants with AMF spores improved plants' growth via the increase in the density of the root system, which implies better assimilation of nutrients, especially in mycorrhizal plants with phosphorus fertilization regime, triple superphosphate (TSP) or natural rock phosphate (RP). This improvement of the physiological and biochemical parameters (chlorophyll contents and phenolic compound) of the treated plants reflected the positive impact of AMF, especially those originating from RP. AMF in phosphate mine could be an important source of inoculum to improve plant nutrient efficiency with the direct use of RP as fertilizer.

12.
Sci Total Environ ; 838(Pt 3): 156487, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35667431

RESUMEN

The microbial communities are of high importance to the restoration of ecological function and plant health, while little information about the influence of exogenous pollutants on the resilience and temporal dynamics of root microbial communities is available. In this study, a greenhouse experiment was conducted to investigate the effects of exogenous phenanthrene in terms of time and pollution disturbance on the wheat root-associated microbial communities. It was found that a high phenanthrene degradation rate of 86 % was achieved in the rhizosphere of wheat after the first-week planting. Compared to phenanthrene pollution, temporal changes had more significant impacts on the wheat root microbial communities. Obvious change of microbes influenced by PHE had been revealed at the initial three-week planting even most of PHE has been degraded, and the enriched microbes in the rhizosphere were affiliated to Altererythrobacter, Massilia, Mycobacterium, Ramlibacter, Sphingobium, Novosphingobium and Romboutsia. However, at the later stage after four-week incubation, the wheat root-associated microbial communities gradually recovered to the state without pollution. The results of this study were helpful to deepen the understanding of the response of root-associated microbial resilience to the exogenous phenanthrene pollution, and would benefit the stability and balance of agricultural ecology facing exogenous organic pollutants.


Asunto(s)
Contaminantes Ambientales , Microbiota , Fenantrenos , Contaminantes del Suelo , Contaminantes Ambientales/metabolismo , Fenantrenos/metabolismo , Raíces de Plantas/metabolismo , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Triticum/metabolismo
13.
Saudi J Biol Sci ; 26(7): 1400-1410, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31762601

RESUMEN

AIM: The presence of Phosphorus as a macronutrient in soil is necessary for plant growth and its deficiency restricts crop yield. Therefore, the aim of current study is to isolate promising rhizospheric phosphate solubilizing bacteria presenting with plant growth promoting (PGP) traits and their utilization as biofertilizers to improve Triticum aestivum (Var. Galaxy 2013) growth and nutrition. METHOD: Out of 30 isolates obtained from rhizosphere of various plants of different regions, 10 best PSRB strains (WumS-3, WumS-4, WumS-5, WumS-11, WumS-12, WumS-21, WumS-24, WumS-25, WumS-26 and WumS-28) were selected based on their high P solubilization and good PGP (auxin, psiderphore, HCN, Nitrogen fixation) activities. Triticum aestivum (Var. Galaxy 2013) was used as an experimental crop under laboratory and field conditions. RESULTS: In this study, P solubilization capacity of selected strains were found 4-7 solubilization index on agar plate and 30-246 µg/ml in liquid broth respectively. The optimum conditions for phosphate solubilization under in vitro condition were found 35 °C at pH 7, glucose as good carbon source and ammonium nitrate as a good nitrogen source. Furthermore, the selected strains had the ability to produces phytohormones (indole acetic acid), siderophore, ammonia and Hydrogen Cyanide. Finally, PSRB inoculum showed significant (p < 0.05) increase (50%-80%) in seed germination while 10-90% increase in root length and shoot length was found as compared to control in laboratory condition. Under natural conditions, 40-80% increase in seed germination while 5-34.8% increase in shoot length and 5-96% increase in seed weight was also observed. CONCLUSION: Isolated strains are promising PSRB that enhance plant growth and this research is a base for recommending the use of these bacterial strains for biofertilizer, as an alternative of chemical fertilizer, for Triticum aestivum L. production.

14.
J Hazard Mater ; 374: 11-19, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-30974227

RESUMEN

The interactive effects of the types and contents of soil clay fractions (SCFs) and plant-residue addition rates on soil organic carbon (SOC) stabilisation are largely unknown. We conducted incubation experiments by amending a sandy soil sample with kaolinitic-illitic, smectitic and allophanic SCFs and adding wheat residues to the mineral mixtures to compare their C stabilisation capacity. The rate of carbon (C) decomposition was higher in the kaolinitic-illitic SCF followed by smectitic and allophanic clay minerals. The supply of easily degradable C substrate from decomposing residues markedly influenced the SCFs' abilities to stabilise SOC. The removal of sesquioxides from the SCFs significantly decreased their C stabilisation capacity, which coincided with a decrease in the dehydrogenase activity of the mineral-residue mixture. The allophanic SCF showed the least microbial activity and the greatest C stabilisation due to having a higher proportion of micropores (75%). The high C stabilisation capacity of allophanic SCF could also be explained by its high specific surface area (119 m2 g-1). The results of this study are helpful to understand the role of various SCFs in stabilising added C originating from external wheat residue addition but warrant further validation under field conditions.

15.
Environ Sci Pollut Res Int ; 25(1): 552-561, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29047062

RESUMEN

Fungicidal activity of experimental tebuconazole (TEB) formulations was investigated in laboratory soil ecosystems in wheat plant communities infected by Fusarium moniliforme. TEB was embedded in the matrix of poly-3-hydroxybutyrate, shaped as films and microgranules. These formulations were buried in the soil with wheat plants, and their efficacy was compared with that of commercial formulation Raxil and with the effect of pre-sowing treatment of seeds. In the experiment with the initially infected seeds and a relatively low level of natural soil infection caused by Fusarium fungi, the effects of the experimental P(3HB)/TEB formulations and Raxil were comparable. However, when the level of soil infection was increased by adding F. moniliforme spores, P(3HB)/TEB granules and films reduced the total counts of fungi and the abundance of F. moniliforme more effectively than Raxil. Seed treatment or soil treatment with Raxil solution showed an increase in the percentage of rot-damaged roots in the later stages of the experiment. In the early stage (between days 10 and 20), the percentage of rot-damaged roots in the soil with TEB embedded in the slowly degraded P(3HB) matrix was similar to that in the soil with Raxil. However, the efficacy of P(3HB)/TEB formulations lasted longer, and in later stages (between days 20 and 30), the percentage of rot-damaged roots in that group did not grow. In experiments with different TEB formulations and, hence, different fungicidal activities, the increase in plant biomass was 15-17 to 40-60% higher than in the groups where TEB was applied by using conventional techniques.


Asunto(s)
Fungicidas Industriales/farmacología , Fusarium/efectos de los fármacos , Hidroxibutiratos/farmacología , Enfermedades de las Plantas/prevención & control , Poliésteres/farmacología , Microbiología del Suelo , Triazoles/farmacología , Triticum/microbiología , Fusarium/fisiología , Enfermedades de las Plantas/microbiología , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...