Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 537
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 80(Pt 4): 347-359, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39136540

RESUMEN

In the course of an investigation of the supramolecular behaviour of copper(II) complexes with the 5-phenylimidazole/perchlorate ligand system (`blend') remarkable solvatomorphism has been observed. By employing a variety of crystallization solvents (polar protic, polar/non-polar aprotic), a series of 12 crystalline solvatomorphs with the general formula [Cu(ClO4)2(LH)4]·x(solvent) have been obtained [LH = 5-phenylimidazole, x(solvent) = 3.3(H2O) (1), 2(methanol) (2), 2(ethanol) (3), 2(1-propanol) (4), 2(2-propanol) (5), 2(2-butanol) (6), 2(dimethylformamide) (7), 2(acetone) (8), 2(tetrahydrofurane) (9), 2(1,4-dioxane) (10), 2(ethyl acetate) (11) and 1(diethyl ether) (12)]. The structures have been solved using single-crystal X-ray diffraction and the complexes were characterized by thermal analysis and infrared spectroscopy. The solvatomorphs are isostructural (triclinic, P1), with the exception of compound 9 (monoclinic, P21/n). The supramolecular structures and the role of the various solvents is discussed. All potential hydrogen-bond functionalities, both of the [Cu(ClO4)2(LH)4] units and of the solvents, are utilized in the course of the crystallization process. The supramolecular assembly in all structures is directed by strong recurring Nimidazole-H...Operchlorate motifs leading to robust scaffolds composed of the [Cu(ClO4)2(LH)4] host complexes. The solvents are located in channels and, with the exception of the disordered waters in 1 and the diethyl ether in 12, participate in hydrogen-bonding formation with the [Cu(ClO4)2(LH)4] complexes, serving as both hydrogen-bond acceptors and donors (for the polar protic solvents in 2-6), or solely as hydrogen-bond acceptors (for the polar/non-polar aprotic solvents in 7-11), linking the complexes and contributing to the stability of the crystalline compounds.

2.
FASEB Bioadv ; 6(8): 235-248, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39114449

RESUMEN

Thousands of disease cases and hundreds of deaths occur globally each year due to invasive meningococcal disease. Neisseria meningitidis serogroup B (MenB) is the leading cause of such disease in developed countries. Two vaccines, 4CMenB and MenB-fHbp, that protect against MenB are available and include one or two forms respectively of factor H binding protein (fHbp), a key protective antigen. Studies of circulating meningococci have identified over 1380 different fHbp amino acid sequences, which form three immunologically distinct clusters, termed variants 1, 2, and 3. Neither of the current vaccines contains a variant 2 antigen, which is less well characterized than fHbp variants 1 and 3. We characterized the interaction of fHbp variant 2 with humAb 1B1 using biochemical methods and live meningococcal assays. Further, we determined the crystal structure of the complex at 2.4 Å resolution, clearly revealing the epitope and providing the first detailed report of an antibody with distinct specificity for fHbp variant 2. Extensive mutagenesis and binding studies elucidated key hotspots in the interface. This combination of structural and functional studies provides a molecular explanation for the bactericidal potency and specificity of humAb 1B1 for fHbp variant 2. Our studies, focused on fHbp variant 2, expand the understanding of this previously under characterized group of the vast family of variants of fHbp, a virulence factor present on all meningococci. Moreover, the definition of a protective conformational epitope on fHbp variant 2 may support the design and development of novel variant 2-containing MenB vaccines affording greater breadth of protection.

3.
J Enzyme Inhib Med Chem ; 39(1): 2372734, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39149761

RESUMEN

The current therapies against gastric pathogen Helicobacter pylori are ineffective in over 20% of patients. Enzymes belonging to the purine salvage pathway are considered as novel drug targets in this pathogen. Therefore, the main aim of the current study was to determine the antibacterial activity of pyridoxal 5'-phosphate (PLP), an active form of vitamin B6, against reference and clinical strains of H. pylori. Using a broad set of microbiological, physicochemical (UV absorption, LC-MS, X-ray analysis) and in silico experiments, we were able to prove that PLP inhibits adenylosuccinate synthetase (AdSS) from H. pylori by the competition with GTP (IC50eq ∼30 nM). This behaviour was attributed to formation of a Schiff base with a lysine residue (a covalent bond with Lys322 in the GTP binding site of AdSS) and was potentiated by the presence of vitamin C. This antibacterial activity of PLP gives hope for its future use against H. pylori.


Asunto(s)
Adenilosuccinato Sintasa , Antibacterianos , Relación Dosis-Respuesta a Droga , Helicobacter pylori , Pruebas de Sensibilidad Microbiana , Vitamina B 6 , Helicobacter pylori/efectos de los fármacos , Helicobacter pylori/enzimología , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Vitamina B 6/farmacología , Vitamina B 6/química , Vitamina B 6/síntesis química , Relación Estructura-Actividad , Adenilosuccinato Sintasa/metabolismo , Adenilosuccinato Sintasa/química , Adenilosuccinato Sintasa/antagonistas & inhibidores , Adenilosuccinato Sintasa/farmacología , Estructura Molecular , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Farmacorresistencia Bacteriana/efectos de los fármacos , Fosfato de Piridoxal/farmacología , Fosfato de Piridoxal/química , Modelos Moleculares
4.
MAbs ; 16(1): 2373325, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962811

RESUMEN

T-cell engaging (TCE) bispecific antibodies are potent drugs that trigger the immune system to eliminate cancer cells, but administration can be accompanied by toxic side effects that limit dosing. TCEs function by binding to cell surface receptors on T cells, frequently CD3, with one arm of the bispecific antibody while the other arm binds to cell surface antigens on cancer cells. On-target, off-tumor toxicity can arise when the target antigen is also present on healthy cells. The toxicity of TCEs may be ameliorated through the use of pro-drug forms of the TCE, which are not fully functional until recruited to the tumor microenvironment. This can be accomplished by masking the anti-CD3 arm of the TCE with an autoinhibitory motif that is released by tumor-enriched proteases. Here, we solve the crystal structure of the antigen-binding fragment of a novel anti-CD3 antibody, E10, in complex with its epitope from CD3 and use this information to engineer a masked form of the antibody that can activate by the tumor-enriched protease matrix metalloproteinase 2 (MMP-2). We demonstrate with binding experiments and in vitro T-cell activation and killing assays that our designed prodrug TCE is capable of tumor-selective T-cell activity that is dependent upon MMP-2. Furthermore, we demonstrate that a similar masking strategy can be used to create a pro-drug form of the frequently used anti-CD3 antibody SP34. This study showcases an approach to developing immune-modulating therapeutics that prioritizes safety and has the potential to advance cancer immunotherapy treatment strategies.


Asunto(s)
Anticuerpos Biespecíficos , Complejo CD3 , Inmunoterapia , Profármacos , Linfocitos T , Anticuerpos Biespecíficos/inmunología , Anticuerpos Biespecíficos/farmacología , Humanos , Complejo CD3/inmunología , Inmunoterapia/métodos , Linfocitos T/inmunología , Profármacos/farmacología , Profármacos/química , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Ingeniería de Proteínas/métodos , Metaloproteinasa 2 de la Matriz/inmunología
5.
J Mol Med (Berl) ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39052065

RESUMEN

The optimal efficacy of xenogeneically generated proteins intended for application in humans requires that their own antigenicity be minimized. This necessary adaptation of antibodies to a humanized version poses challenges since modifications even distant from the binding sites can greatly influence antigen recognition and this is the primary feature that must be maintained during all modifications. Current strategies often rely on grafting and/or randomization/selection to arrive at a humanized variant retaining the binding properties of the original molecule. However, in terms of speed and efficiency, rationally directed approaches can be superior, provided the requisite structural information is available. We present here a humanization procedure based on the high-resolution X-ray structure of a chimaeric IgG against a marker for multiple myeloma. Based on in silico modelling of humanizing amino acid substitutions identified from sequence alignments, we devised a straightforward cloning procedure to rapidly evaluate the proposed sequence changes. Careful inspection of the structure allowed the identification of a potentially problematic amino acid change that indeed disrupted antigen binding. Subsequent optimization of the antigen binding loop sequences resulted in substantial recovery of binding affinity lost in the completely humanized antibody. X-ray structures of the humanized and optimized variants demonstrate that the antigen binding mode is preserved, with surprisingly few direct contacts to antibody atoms. These results underline the importance of structural information for the efficient optimization of protein therapeutics. KEY MESSAGES: Structure-based humanization of an IgG against BCMA, a marker for Multiple Myeloma. Identification of problematic mutations and unexpected modification sites. Structures of the modified IgG-antigen complexes verified predictions. Provision of humanized high-affinity IgGs against BCMA for therapeutic applications.

6.
Eur J Med Chem ; 276: 116697, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39047610

RESUMEN

Copper complexes have shown promising anticancer properties, but they are often poorly soluble in aqueous solutions, thus limiting their possible medical developments and applications. We have recently isolated some copper(II) complexes with salicylaldehyde thiosemicarbazone ligands exhibiting remarkable nanomolar cytotoxic activity, but in vivo tests evidenced several difficulties related to their poor solubility. To overcome these limitations and increase solubility in aqueous solution, herein we report the synthetic strategy that led to the introduction of the sulfonic group on the ligands, then separated as salts (NaH2L1 - NaH2L5), as well as the synthesis and characterization of the related copper(II) complexes. The characterization of the complexes is completed by the analysis of the structures obtained by X-rays diffraction on single crystals on the species [Cu(HL5)(H2O)]2.2H2O, [Cu(HL2)(H2O)2].2H2O, and [Cu(HL1)(H2O]2.2H2O. While the uncoordinated ligands do not affect cancer cell viability, copper(II) complexes exhibit low to sub-micromolar cytotoxic activity, which is maintained in 3D (HCT-15 and 2008) spheroidal models of cancer cell. Notably, copper(II) complexes were selective towards cancer cells, showing high selectivity indexes. Investigations focused on elucidating the mechanism of action evidenced the protein disulfide-isomerase as an innovative molecular target for this class of water-soluble copper(II) complexes. Finally, preliminary in vivo experiments performed with the most representative derivative in the murine Lewis Lung Carcinoma, highlight its significant antitumor efficacy and better tolerability profile with respect to the reference metallodrug, suggesting for this sulfonated Cu(II) complex a potential clinical relevance.


Asunto(s)
Antineoplásicos , Cobre , Ensayos de Selección de Medicamentos Antitumorales , Proteína Disulfuro Isomerasas , Solubilidad , Tiosemicarbazonas , Agua , Tiosemicarbazonas/química , Tiosemicarbazonas/farmacología , Tiosemicarbazonas/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Humanos , Agua/química , Animales , Cobre/química , Cobre/farmacología , Ratones , Proteína Disulfuro Isomerasas/antagonistas & inhibidores , Proteína Disulfuro Isomerasas/metabolismo , Estructura Molecular , Relación Estructura-Actividad , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral
7.
Proc Natl Acad Sci U S A ; 121(28): e2407066121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38959038

RESUMEN

Mammalian transglutaminases, a family of Ca2+-dependent proteins, are implicated in a variety of diseases. For example, celiac disease (CeD) is an autoimmune disorder whose pathogenesis requires transglutaminase 2 (TG2) to deamidate select glutamine residues in diet-derived gluten peptides. Deamidation involves the formation of transient γ-glutamyl thioester intermediates. Recent studies have revealed that in addition to the deamidated gluten peptides themselves, their corresponding thioester intermediates are also pathogenically relevant. A mechanistic understanding of this relevance is hindered by the absence of any structure of Ca2+-bound TG2. We report the X-ray crystallographic structure of human TG2 bound to an inhibitory gluten peptidomimetic and two Ca2+ ions in sites previously designated as S1 and S3. Together with additional structure-guided experiments, this structure provides a mechanistic explanation for how S1 regulates formation of an inhibitory disulfide bond in TG2, while also establishing that S3 is essential for γ-glutamyl thioester formation. Furthermore, our crystallographic findings and associated analyses have revealed that i) two interacting residues, H305 and E363, play a critical role in resolving the thioester intermediate into an isopeptide bond (transamidation) but not in thioester hydrolysis (deamidation); and ii) residues N333 and K176 stabilize preferred TG2 substrates and inhibitors via hydrogen bonding to nonreactive backbone atoms. Overall, the intermediate-state conformer of TG2 reported here represents a superior model to previously characterized conformers for both transition states of the TG2-catalyzed reaction.


Asunto(s)
Calcio , Proteínas de Unión al GTP , Proteína Glutamina Gamma Glutamiltransferasa 2 , Transglutaminasas , Transglutaminasas/metabolismo , Transglutaminasas/química , Proteína Glutamina Gamma Glutamiltransferasa 2/metabolismo , Humanos , Calcio/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/química , Cristalografía por Rayos X , Glútenes/metabolismo , Glútenes/química , Modelos Moleculares , Conformación Proteica , Enfermedad Celíaca/metabolismo , Unión Proteica
8.
Chemistry ; : e202400785, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958609

RESUMEN

Organic halogen compounds are cornerstones of applied chemical sciences. Halogen substitution is a smart molecular design strategy adopted to influence reactivity, membrane permeability and receptor interaction. Chiral bioreceptors may restrict the stereochemical requirements in the halo-ligand design. Straightforward (but expensive) catalyzed stereospecific halogenation has been reported. Historically, PCl5 served access to uncatalyzed stereoselective chlorination although the stereochemical outcomes were influenced by steric parameters. Nonetheless, stereochemical investigation of PCl5 reaction mechanism with carbamoyl (RCONHX) compounds has never been addressed. Herein, we provide the first comprehensive stereochemical mechanistic explanation outlining halogenation of carbamoyl compounds with PCl5; the key regioselectivity-limiting nitrilimine intermediate (8-Z.HCl); how substitution pattern influences regioselectivity; why oxadiazole byproduct (P1) is encountered; stereo-electronic factors influencing the hydrazonoyl chloride (P2) production; and discovery of two stereoselectivity-limiting parallel mechanisms (stepwise and concerted) of elimination of HCl and POCl3. DFT calculations, synthetic methodology optimization, X-ray evidence and experimental reaction kinetics study evidence all supported the suggested mechanism proposal (Scheme 2). Finally, we provide mechanism-inspired future recommendations for directing the reaction stereoselectivity toward elusive and stereochemically inaccessible (E)-bis-hydrazonoyl chlorides along with potentially pivotal applications of both (E/Z)-stereoisomers especially in medicinal chemistry and protein modification.

9.
Adv Sci (Weinh) ; 11(30): e2403945, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38870234

RESUMEN

The N─Oxide oxygen in the 111 C─I···â»O─N+ halogen bond (XB) complexes, formed by five perfluoroiodobenzene XB donors and 32 pyridine N-oxides (PyNO) XB acceptors, exhibits three XB modes: bidentate, tridentate, and monodentate. Their C─I···O XB angles range from 148° to 180°, reflecting the iodine σ-hole's structure-guiding influence. The I···â»O─N+ angles range from 87° to 152°. On the contrary, the I···â»O─N+ angles have a narrower range from 107° to 125° in stronger monodentate N─I···â»O─N+ XBs of N-iodoimides and PyNOs. The C─I···â»O─N+ systems exhibit a larger variation in I···â»O─N+ angles due to weaker XB donor perfluoroiodoaromatics forming weak I···O XBs, which allows wider access to electron-rich N-O group regions. Density Functional Theory analysis shows that I···O interactions are attractive even when the I···â»O─N+ angle is ≈80°. Correlation analysis of structural parameters showed that weak I···O XBs in perfluoroiodobenzene-PyNO complexes affect the C─I bond via n(O)→σ*(C─I) donation less than the N─I bond via n(O)→σ*(N─I) donation in very strong I···O XBs of N-iodoimide-PyNO complexes. This implies that PyNOs' oxygen self-tunes its XB acceptor property, dependent on the XB donor σ-hole strength affecting the bonding denticity, geometry, and interaction energies.

10.
Bioorg Chem ; 148: 107435, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38762999

RESUMEN

BACKGROUND: Pyridine and its derivatives play a vital role in medicinal chemistry, serving as key scaffolds for drugs. The ability to bind to biological targets makes pyridine compounds significant, sparking interest in creating new pyridine-based drugs. Thus, the purpose of the research is to synthesize new thioalkyl derivatives of pyridine, predict their biological spectrum, study their psychotropic properties, and based on these findings, perform structure-activity relationships to assess pharmacophore functional groups. METHODS: Classical organic methods were employed for synthesizing new thioalkyl derivatives of pyridine, with a multifaceted pharmacological profiles. Various software packages and methods were employed to evaluate the biological spectrum of the newly synthesized compounds. For the evaluation of neurotropic activity of new synthesized compounds, some biological methods were used according to indicators characterizing anticonvulsant, sedative and antianxiety activity as well as side effects. RESULTS: Effective synthetic methods for 6-amino-4-phenyl-2-thio-2H-thiopyran-5-carboxylic acid ethyl ester, 2-amino substituted thiopyridine derivatives and 6-cycloamino-2-thioalkyl-4-phenylnicotinate derivatives were obtained in high yield. Predicted biological spectra and pharmacokinetic data indicated high gastrointestinal absorption and low blood-brain barrier passage for most compounds and demonstrated potential various biological effects, particularly psychotropic properties. Studied compounds demonstrated high anticonvulsant activity through antagonism with pentylenetetrazole. They exhibited low toxicity without inducing muscle relaxation in the studied doses. In psychotropic studies, the compounds displayed activating, sedative, and anxiolytic effects. Notably, the 6-amino-2-thioalkyl-4-phenylnicotinate derivatives demonstrated significant anxiolytic activity (about four times more compared to diazepam). They also exhibited pronounced sedative effects. Ethyl 2-({2-[(diphenylmethyl)amino]-2-oxoethyl}thio)-4-phenyl-6-pyrrolidin-1-ylnicotinate exhibited anxiolytic activity even two times greater than diazepam. Moreover, all studied compounds showed statistically significant antidepressant effects. Noteworthy ethyl 2-({2-oxo-2-[(tetrahydrofuran-2-ylmethyl)amino]ethyl}thio)-4-phenyl-6-pyrrolidin-1-ylnicotinate showcasing its unique psychotropic effect. CONCLUSIONS: The selected compounds demonstrate anticonvulsant properties, activating behavior, and anxiolytic effects, while simultaneously exhibiting antidepressant effects and these compounds as promising candidates for further exploration in the development of therapeutics with a broad spectrum of neuropsychiatric applications.


Asunto(s)
Ansiolíticos , Anticonvulsivantes , Piridinas , Relación Estructura-Actividad , Piridinas/química , Piridinas/farmacología , Piridinas/síntesis química , Animales , Anticonvulsivantes/síntesis química , Anticonvulsivantes/farmacología , Anticonvulsivantes/química , Ratones , Ansiolíticos/farmacología , Ansiolíticos/síntesis química , Ansiolíticos/química , Estructura Molecular , Relación Dosis-Respuesta a Droga , Masculino , Convulsiones/tratamiento farmacológico , Hipnóticos y Sedantes/farmacología , Hipnóticos y Sedantes/síntesis química , Hipnóticos y Sedantes/química , Pentilenotetrazol
11.
Structure ; 32(7): 878-888.e4, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38582076

RESUMEN

The translation factor IF5A is highly conserved in Eukarya and Archaea and undergoes a unique post-translational hypusine modification by the deoxyhypusine synthase (DHS) enzyme. DHS transfers the butylamine moiety from spermidine to IF5A using NAD as a cofactor, forming a deoxyhypusine intermediate. IF5A is a key player in protein synthesis, preventing ribosome stalling in proline-rich sequences during translation elongation and facilitating translation elongation and termination. Additionally, human eIF5A participates in various essential cellular processes and contributes to cancer metastasis, with inhibiting hypusination showing anti-proliferative effects. The hypusination pathway of IF5A is therefore an attractive new therapeutic target. We elucidated the 2.0 Å X-ray crystal structure of the archaeal DHS-IF5A complex, revealing hetero-octameric architecture and providing a detailed view of the complex active site including the hypusination loop. This structure, along with biophysical data and molecular dynamics simulations, provides new insights into the catalytic mechanism of the hypusination reaction.


Asunto(s)
Dominio Catalítico , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH , Factores de Iniciación de Péptidos , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Cristalografía por Rayos X , Factor 5A Eucariótico de Iniciación de Traducción , Lisina/química , Lisina/metabolismo , Lisina/análogos & derivados , Modelos Moleculares , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Factores de Iniciación de Péptidos/química , Factores de Iniciación de Péptidos/metabolismo , Unión Proteica
12.
Biochem Biophys Res Commun ; 715: 149957, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688057

RESUMEN

Clostridioides difficile endolysin (Ecd09610) consists of an unknown domain at its N terminus, followed by two catalytic domains, a glucosaminidase domain and endopeptidase domain. X-ray structure and mutagenesis analyses of the Ecd09610 catalytic domain with glucosaminidase activity (Ecd09610CD53) were performed. Ecd09610CD53 was found to possess an α-bundle-like structure with nine helices, which is well conserved among GH73 family enzymes. The mutagenesis analysis based on X-ray structures showed that Glu405 and Asn470 were essential for enzymatic activity. Ecd09610CD53 may adopt a neighboring-group mechanism for a catalytic reaction in which Glu405 acted as an acid/base catalyst and Asn470 helped to stabilize the oxazolinium ion intermediate. Structural comparisons with the newly identified Clostridium perfringens autolysin catalytic domain (AcpCD) in the P1 form and a zymography analysis demonstrated that AcpCD was 15-fold more active than Ecd09610CD53. The strength of the glucosaminidase activity of the GH73 family appears to be dependent on the depth of the substrate-binding groove.


Asunto(s)
Dominio Catalítico , Clostridioides difficile , Endopeptidasas , Clostridioides difficile/enzimología , Clostridioides difficile/genética , Cristalografía por Rayos X , Endopeptidasas/química , Endopeptidasas/metabolismo , Endopeptidasas/genética , Modelos Moleculares , Hexosaminidasas/química , Hexosaminidasas/genética , Hexosaminidasas/metabolismo , Mutagénesis , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Mutagénesis Sitio-Dirigida , Dominios Proteicos
13.
J Inorg Biochem ; 256: 112546, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38593611

RESUMEN

Two copper(II) complexes [Cu(Hpmoh)(NO3)(NCS)] (1) and [Cu(peoh)(N3)]2 (2) were designed and synthesized by reaction of Cu(NO3)2·3H2O with hydrazone Schiff base ligands,abbreviated with Hpmoh and Hpeoh. Hpmoh and Hpeoh were prepared by condensation reaction of octanoic hydrazide with pyridine-2-carboxyaldehyde and 2-acetylpyridine, respectively. Complexes 1 and 2 were characterized using different analytical techniques such as FT-IR, UV-Vis, IR, EPR and single X-ray diffraction (XRD) analyses as well as computational methods (DFT). The XRD of 1 and 2 shows a mononuclear or a dinuclear structure with the copper(II) centre adopting a slightly distorted square pyramidal geometry. In water-containing solution and in DMSO, 1 and 2 undergo a partial transformation with formation of [Cu(Hpmoh)(NO3)(NCS)] (1) and [Cu(Hpmoh)(NO3)(H2O/DMSO)] (1a) in one system and [Cu(peoh)(N3)] (2a) in the other one, as supported by DFT calculations. Docking simulations confirmed that the intercalation is the preferred binding mode with DNA for 1, 1a and 2a, but suggested that the minor groove binding is also possible. A significant fluorescence quenching of the DNA-ethidium bromide conjugate was observed upon the addition of complexes 1 and 2 with a quenching constant around 104 M-1 s-1. Finally, both 1 and 2 were examined for anti-cancer activity using MDA-MB-231 (human breast adenocarcinoma) and A375 (malignant melanoma) cell lines through in vitro MTT assay which suggest comparable cancer cell killing efficacy, with the higher effectiveness of 2 due to the dissociation into two [Cu(peoh)(N3)] units.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Cobre , ADN , Cobre/química , ADN/química , Humanos , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Ligandos , Hidrazinas/química , Hidrazinas/farmacología , Línea Celular Tumoral , Piridinas/química , Piridinas/farmacología , Simulación del Acoplamiento Molecular , Hidrazonas/química , Hidrazonas/farmacología , Hidrazonas/síntesis química
14.
J Inorg Biochem ; 255: 112540, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38552361

RESUMEN

N-(3-(dimethylamino)propyl-4-(8-hydroxyquinolin-6-yl)benzamide (ML324, HL) is a potent inhibitor of the iron-containing histone demethylase KDM4, a recognized potential target of cancer therapeutics. Herein, we report the proton dissociation and complex formation processes of ML324 with essential metal ions such as Fe(II), Fe(III), Cu(II) and Zn(II) using UV-visible, fluorescence, electron paramagnetic resonance and 1H NMR spectroscopic methods. The electrochemical behaviour of the copper and iron complexes was characterized by cyclic voltammetry and spectroelectrochemistry. The solid phase structure of ML324 analysed by X-ray crystallography is also provided. Based on the solution equilibrium data, ML324 is present in solution in H2L+ form with a protonated dimethylammonium moiety at pH 7.4, and this (N,O) donor bearing ligand forms mono and bis complexes with all the studied metal ions and the tris-ligand species is also observed with Fe(III). At pH 7.4 the metal binding ability of ML324 follows the order: Fe(II) < Zn(II) < Cu(II) < Fe(III). Complexation with iron resulted in a negative redox potential (E'1/2 = -145 mV vs. NHE), further suggesting that the ligand has a preference for Fe(III) over Fe(II). ML324 was tested for its anticancer activity in chemosensitive and resistant human cancer cells overexpressing the efflux pump P-glycoprotein. ML324 exerted similar activity in all tested cells (IC50 = 1.9-3.6 µM). Co-incubation and complexation of the compound with Cu(II) and Zn(II) had no impact on the cytotoxicity of ML324, whereas Fe(III) decreased the toxicity in a concentration-dependent manner, and this effect was more pronounced in the multidrug resistant cells.


Asunto(s)
Cobre , Compuestos Férricos , Humanos , Cobre/química , Compuestos Férricos/química , Ligandos , Metales/química , Hierro/química , Iones , Protones , Compuestos Ferrosos , Benzamidas
15.
Chemistry ; 30(27): e202301687, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38466912

RESUMEN

Spectator ions have known and emerging roles in aqueous metal-cation chemistry, respectively directing solubility, speciation, and reactivity. Here, we isolate and structurally characterize the last two metastable members of the alkali uranyl triperoxide series, the Rb+ and Cs+ salts (Cs-U1 and Rb-U1). We document their rapid solution polymerization via small-angle X-ray scattering, which is compared to the more stable Li+, Na+ and K+ analogues. To understand the role of the alkalis, we also quantify alkali-hydroxide promoted peroxide deprotonation and decomposition, which generally exhibits increasing reactivity with increasing alkali size. Cs-U1, the most unstable of the uranyl triperoxide monomers, undergoes ambient direct air capture of CO2 in the solid-state, converting to Cs4[UVIO2(CO3)3], evidenced by single-crystal X-ray diffraction, transmission electron microscopy, and Raman spectroscopy. We have attempted to benchmark the evolution of Cs-U1 to uranyl tricarbonate, which involves a transient, unstable hygroscopic solid that contains predominantly pentavalent uranium, quantified by X-ray photoelectron spectroscopy. Powder X-ray diffraction suggests this intermediate state contains a hydrous derivative of CsUVO3, where the parent phase has been computationally predicted, but not yet synthesized.

16.
Eur J Med Chem ; 267: 116132, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38335815

RESUMEN

We report the synthesis, biological evaluation, and X-ray structural studies of a series of SARS-CoV-2 Mpro inhibitors based upon the X-ray crystal structure of nirmatrelvir, an FDA approved drug that targets the main protease of SARS-CoV-2. The studies involved examination of various P4 moieties, P1 five- and six-membered lactam rings to improve potency. In particular, the six-membered P1 lactam ring analogs exhibited high SARS-CoV-2 Mpro inhibitory activity. Several compounds effectively blocked SARS-CoV-2 replication in VeroE6 cells. One of these compounds maintained good antiviral activity against variants of concern including Delta and Omicron variants. A high-resolution X-ray crystal structure of an inhibitor bound to SARS-CoV-2 Mpro was determined to gain insight into the ligand-binding properties in the Mpro active site.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Rayos X , Lactamas , Leucina , Nitrilos , Inhibidores de Proteasas/farmacología , Antivirales/farmacología , Simulación del Acoplamiento Molecular
17.
Viruses ; 16(2)2024 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-38400047

RESUMEN

Cross-species spillover to humans of coronaviruses (CoVs) from wildlife animal reservoirs poses marked and global threats to human and animal health. Recently, sporadic infection of canine coronavirus-human pneumonia-2018 (CCoV-HuPn-2018) in hospitalized patients with pneumonia genetically related to canine and feline coronavirus were identified. In addition, swine acute diarrhea syndrome coronavirus (SADS-CoV) had the capability of broad tropism to cultured cells including from humans. Together, the transmission of Alphacoronaviruses that originated in wildlife to humans via intermediate hosts was responsible for the high-impact emerging zoonosis. Entry of CoV is mainly mediated by Spike and formation of a typical six helix bundle (6-HB) structure in the postfusion state of Spike is pivotal. Here, we present the complete fusion core structures of CCoV-HuPn-2018 and SADS-CoV from Alphacoronavirus at 2.10 and 2.59 Å, respectively. The overall structure of the CCoV-HuPn-2018 fusion core is similar to Alphacoronavirus like HCoV-229E, while SADS-CoV is analogous to Betacoronavirus like SARS-CoV-2. Collectively, we provide a structural basis for the development of pan-CoV small molecules and polypeptides based on the HR1-HR2 complex, concerning CCoV-HuPn-2018 and SADS-CoV.


Asunto(s)
Alphacoronavirus , Enfermedades de los Gatos , Infecciones por Coronavirus , Coronavirus Canino , Enfermedades de los Perros , Neumonía , Humanos , Animales , Perros , Gatos , Secuencia de Aminoácidos , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/química , Alphacoronavirus/genética
18.
Molecules ; 29(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38257198

RESUMEN

Phosphine-stabilized gold clusters are an important subgroup of metalloid gold cluster compounds and are important model compounds for nanoparticles. Although there are numerous gold clusters with different phosphine ligands, the effect of phosphine on cluster formation and structure remains unclear. While the linear alkyl-substituted phosphine gold chlorides result in a Au32 cluster, the bulky tBu3P leads to a Au20 cluster. The reduction of (iPr2nBuP)AuCl, with the steric demand of the phosphine ligand between the mentioned phosphines, results in the successful synthesis and crystallization of a new metalloid gold cluster, Au30(PiPr2nBu)12Cl6. Its structure is similar to the Au32 cluster but with two missing AuCl units. The UV/Vis studies and quantum chemical calculations show the similarities between the two clusters and the influence of the phosphine ligand in the synthesis of metalloid gold clusters.

19.
Molecules ; 29(2)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38257364

RESUMEN

A reaction in anhydrous toluene between the formally unsaturated fragment [Ln(hfac)3] (Ln3+ = Eu3+, Gd3+ and Er3+; Hhfac = hexafluoroacetylacetone) and [Al(qNO)3] (HqNO = 8-hydroxyquinoline N-oxide), here prepared for the first time from [Al(OtBu)3] and HqNO, affords the dinuclear heterometallic compounds [Ln(hfac)3Al(qNO)3] (Ln3+ = Eu3+, Gd3+ and Er3+) in high yields. The molecular structures of these new compounds revealed a dinuclear species with three phenolic oxygen atoms bridging the two metal atoms. While the europium and gadolinium complexes show the coordination number (CN) 9 for the lanthanide centre, in the complex featuring the smaller erbium ion, only two oxygens bridge the two metal atoms for a resulting CN of 8. The reaction of [Eu(hfac)3] with [Alq3] (Hq = 8-hydroxyquinoline) in the same conditions yields a heterometallic product of composition [Eu(hfac)3Alq3]. A recrystallization attempt from hot heptane in air produced single crystals of two different morphologies and compositions: [Eu2(hfac)6Al2q4(OH)2] and [Eu2(hfac)6(µ-Hq)2]. The latter compound can be directly prepared from [Eu(hfac)3] and Hq at room temperature. Quantum mechanical calculations confirm (i) the higher stability of [Eu(hfac)3Al(qNO)3] vs. the corresponding [Eu(hfac)3Alq3] and (ii) the preference of the Er complexes for the CN 8, justifying the different behaviour in terms of the Lewis acidity of the metal centre.

20.
Chemistry ; 30(16): e202304178, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38193788

RESUMEN

Seven pyridine iodine(I) sulfonate complexes were prepared and isolated at low temperatures and characterized by X-ray diffraction analysis. The inherently instable pyridine iodine(I) cations are stabilized by an oxygen of sulfonate anions via the I⋅⋅⋅O halogen bond. In these complexes, the iodine atom of the pyridine iodine(I) cation acts as an electron acceptor and the sulfonate oxygen as the electron donor. These complexes are stable enough in the crystalline state, yet decompose rapidly under ambient conditions, also being unstable in solution. The (pyridine)N-I bond lengths [2.140(3)-2.197(2) Å] and the I⋅⋅⋅O halogen bonds [2.345(6)-2.227(3) Å] are analogous to (imide)N-I⋅⋅⋅O-N-pyridine uncharged halogen-bonded complexes formed from N-haloimides and pyridine N-oxides, thus confirming the existence of elusive pyridine iodine(I) cation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...