Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.176
Filtrar
1.
FASEB J ; 38(18): e70064, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39295162

RESUMEN

12-hydroxyeicosatetraenoic acid (12-HETE), a major metabolite of arachidonic acid, is converted by 12/15-lipoxygenase and implicated in diabetic retinopathy (DR). Our previous study demonstrated a positive correlation between 12-HETE and the prevalence of DR. However, reasons for the increased production of 12-HETE are unclear, and the underlying mechanisms through which 12-HETE promotes DR are unknown. This study aimed to elucidate the correlation between 12-HETE and DR onset, investigate potential mechanisms through which 12-HETE promotes DR, and seek explanations for the increased production of 12-HETE in diabetes. We conducted a prospective cohort study, which revealed that higher serum 12-HETE levels could induce DR. Additionally, G protein-coupled receptor 31 (GPR31), a high-affinity receptor for 12-HETE, was expressed in human retinal microvascular endothelial cells (HRMECs). 12-HETE/GPR31-mediated HRMEC inflammation occurred via the p38 MAPK pathway. 12-HETE levels were significantly higher in the retina of mice with high-fat diet (HFD)- and streptozotocin (STZ)-induced diabetes than in those with only STZ-induced diabetes and healthy controls. They were positively correlated with the levels of inflammatory cytokines in the retina, indicating that HFD could induce increased 12-HETE synthesis in patients with diabetes in addition to hyperglycemia. Conclusively, 12-HETE is a potential risk factor for DR. The 12-HETE/GPR31 axis plays a crucial role in HRMEC dysfunction and could be a novel target for DR prevention and control. Nevertheless, further research is warranted to provide comprehensive insights into the complex underlying mechanisms of 12-HETE in DR.


Asunto(s)
Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico , Diabetes Mellitus Experimental , Retinopatía Diabética , Ratones Endogámicos C57BL , Receptores Acoplados a Proteínas G , Retinopatía Diabética/metabolismo , Retinopatía Diabética/etiología , Retinopatía Diabética/patología , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Humanos , Animales , Receptores Acoplados a Proteínas G/metabolismo , Ratones , Masculino , Diabetes Mellitus Experimental/metabolismo , Femenino , Células Endoteliales/metabolismo , Persona de Mediana Edad , Estudios Prospectivos , Células Cultivadas
2.
Artículo en Inglés | MEDLINE | ID: mdl-39059107

RESUMEN

Hydroxyeicosatetraenoic acids (HETE) are dramatically increased under brain ischemia and significantly affect post-ischemic recovery. However, the exact mechanism of HETE increase and their origin under ischemia are poorly understood. HETE might be produced de novo through lipoxygenase (LOX) -dependent synthesis with possible esterification into a lipid storage pool, or non-enzymatically through free radical oxidation of esterified arachidonic acid (20:4n6). Because HETE synthesized through LOX exhibit stereospecificity, chiral analysis allows separation of enzymatic from non-enzymatic pools. In the present study, we analyzed free HETE stereoisomers at 30 sec, 2 min, and 10 min of ischemia. Consistent with previous reports, we demonstrated a significant, gradual increase in all analyzed HETE over 10 min of brain ischemia, likely attributed to release of the esterified pool. The R/S ratio for 5-HETE, 8-HETE, and 15-HETE was not different from a racemic standard mix, indicating their non-enzymatic origin, which was in opposition to the inflamed tissue used as a positive control in our study. However, 12(S)-HETE was the predominant isoform under ischemia, indicating that ∼90 % of 12-HETE are produced enzymatically. These data demonstrate, for the first time, that 12-LOX is the major LOX isoform responsible for the enzymatic formation of the inducible HETE pool under ischemia. We also confirmed the requirement for enzyme inactivation with high-energy focused microwave irradiation (MW) for accurate HETE quantification and validated its application for chiral HETE analysis. Together, our data suggest that 12-LOX and HETE-releasing enzymes are promising targets for HETE level modulation upon brain ischemia.


Asunto(s)
Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico , Isquemia Encefálica , Ácidos Hidroxieicosatetraenoicos , Isquemia Encefálica/metabolismo , Animales , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Ácidos Hidroxieicosatetraenoicos/metabolismo , Masculino , Estereoisomerismo , Ratas , Lipooxigenasa/metabolismo , Ratones , Ácido Araquidónico/metabolismo
3.
J Proteome Res ; 23(6): 2054-2066, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38775738

RESUMEN

The metabolites and microbiota in tongue coating display distinct characteristics in certain digestive disorders, yet their relationship with colorectal cancer (CRC) remains unexplored. Here, we employed liquid chromatography coupled with tandem mass spectrometry to analyze the lipid composition of tongue coating using a nontargeted approach in 30 individuals with colorectal adenomas (CRA), 32 with CRC, and 30 healthy controls (HC). We identified 21 tongue coating lipids that effectively distinguished CRC from HC (AUC = 0.89), and 9 lipids that differentiated CRC from CRA (AUC = 0.9). Furthermore, we observed significant alterations in the tongue coating lipid composition in the CRC group compared to HC/CRA groups. As the adenoma-cancer sequence progressed, there was an increase in long-chain unsaturated triglycerides (TG) levels and a decrease in phosphatidylethanolamine plasmalogen (PE-P) levels. Furthermore, we noted a positive correlation between N-acyl ornithine (NAOrn), sphingomyelin (SM), and ceramide phosphoethanolamine (PE-Cer), potentially produced by members of the Bacteroidetes phylum. The levels of inflammatory lipid metabolite 12-HETE showed a decreasing trend with colorectal tumor progression, indicating the potential involvement of tongue coating microbiota and tumor immune regulation in early CRC development. Our findings highlight the potential utility of tongue coating lipid analysis as a noninvasive tool for CRC diagnosis.


Asunto(s)
Neoplasias Colorrectales , Lipidómica , Fosfatidiletanolaminas , Espectrometría de Masas en Tándem , Lengua , Humanos , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/microbiología , Lipidómica/métodos , Masculino , Femenino , Lengua/microbiología , Lengua/metabolismo , Lengua/patología , Lengua/química , Persona de Mediana Edad , Espectrometría de Masas en Tándem/métodos , Fosfatidiletanolaminas/metabolismo , Fosfatidiletanolaminas/análisis , Anciano , Cromatografía Liquida , Lípidos/análisis , Lípidos/química , Triglicéridos/metabolismo , Triglicéridos/análisis , Adenoma/metabolismo , Adenoma/microbiología , Esfingomielinas/análisis , Esfingomielinas/metabolismo , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/química , Plasmalógenos/análisis , Plasmalógenos/metabolismo , Plasmalógenos/química , Estudios de Casos y Controles , Etanolaminas/metabolismo , Etanolaminas/análisis , Etanolaminas/química , Ceramidas/metabolismo , Ceramidas/análisis , Adulto
4.
J Proteome Res ; 23(8): 3064-3075, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-38520676

RESUMEN

Metabolomics is an emerging and powerful bioanalytical method supporting clinical investigations. Serum and plasma are commonly used without rational prioritization. Serum is collected after blood coagulation, a complex biochemical process involving active platelet metabolism. This may affect the metabolome and increase the variance, as platelet counts and function may vary substantially in individuals. A multiomics approach systematically investigating the suitability of serum and plasma for clinical studies demonstrated that metabolites correlated well (n = 461, R2 = 0.991), whereas lipid mediators (n = 83, R2 = 0.906) and proteins (n = 322, R2 = 0.860) differed substantially between specimen. Independently, analysis of platelet releasates identified most biomolecules significantly enriched in serum compared to plasma. A prospective, randomized, controlled parallel group metabolomics trial with acetylsalicylic acid administered for 7 days demonstrated that the apparent drug effects significantly differ depending on the analyzed specimen. Only serum analyses of healthy individuals suggested a significant downregulation of TXB2 and 12-HETE, which were specifically formed during coagulation in vitro. Plasma analyses reliably identified acetylsalicylic acid effects on metabolites and lipids occurring in vivo such as an increase in serotonin, 15-deoxy-PGJ2 and sphingosine-1-phosphate and a decrease in polyunsaturated fatty acids. The present data suggest that plasma should be preferred above serum for clinical metabolomics studies as the serum metabolome may be substantially confounded by platelets.


Asunto(s)
Aspirina , Plaquetas , Metabolómica , Plasma , Humanos , Plaquetas/metabolismo , Plaquetas/efectos de los fármacos , Metabolómica/métodos , Aspirina/farmacología , Plasma/metabolismo , Plasma/química , Suero/metabolismo , Suero/química , Lisofosfolípidos/sangre , Esfingosina/análogos & derivados , Esfingosina/sangre , Metaboloma/efectos de los fármacos , Tromboxano B2/sangre , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/sangre , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Masculino , Femenino , Estudios Prospectivos , Adulto
5.
Prostaglandins Other Lipid Mediat ; 171: 106805, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38141777

RESUMEN

Diabetic retinopathy (DR) is a neurovascular complication of diabetes, driven by an intricate network of cellular and molecular mechanisms. This study sought to explore the mechanisms by investigating the role of 12-hydroxyeicosatetraenoic acid (12-HETE), its receptor GPR31, and microRNA (miR-29) in the context of DR, specifically focusing on their impact on Müller glial cells. We found that 12-HETE activates Müller cells (MCs), elevates glutamate production, and induces inflammatory and oxidative responses, all of which are instrumental in DR progression. The expression of GPR31, the receptor for 12-HETE, was prominently found in the retina, especially in MCs and retinal ganglion cells, and was upregulated in diabetes. Interestingly, miR29 showed potential as a protective agent, mitigating the harmful effects of 12-HETE by attenuating inflammation and oxidative stress, and restoring the expression of pigment epithelium-derived factor (PEDF). Our results underline the central role of 12-HETE in DR progression through activation of a neurovascular toxic pathway in MCs and illuminate the protective capabilities of miR-29, highlighting both as promising therapeutic targets for the management of DR.


Asunto(s)
Retinopatía Diabética , MicroARNs , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Retinopatía Diabética/genética , Retinopatía Diabética/metabolismo , Células Ependimogliales , MicroARNs/genética , MicroARNs/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Retina/metabolismo
6.
Mol Med ; 29(1): 163, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38049738

RESUMEN

BACKGROUND: Acute kidney injury (AKI) due to ischemia-reperfusion (IR) is a serious and frequent complication in clinical settings, and mortality rates remain high. There are well established sex differences in renal IR, with males exhibiting greater injury following an ischemic insult compared to females. We recently reported that males have impaired renal recovery from ischemic injury vs. females. However, the mechanisms mediating sex differences in renal recovery from IR injury remain poorly understood. Elevated 12/15 lipoxygenase (LOX) activity has been reported to contribute to the progression of numerous kidney diseases. The goal of the current study was to test the hypothesis that enhanced activation of 12/15 LOX contributes to impaired recovery post-IR in males vs. females. METHODS: 13-week-old male and female spontaneously hypertensive rats (SHR) were randomized to sham or 30-minute warm bilateral IR surgery. Additional male and female SHR were randomized to treatment with vehicle or the specific 12/15 LOX inhibitor ML355 1 h prior to sham/IR surgery, and every other day following up to 7-days post-IR. Blood was collected from all rats 1-and 7-days post-IR. Kidneys were harvested 7-days post-IR and processed for biochemical, histological, and Western blot analysis. 12/15 LOX metabolites 12 and 15 HETE were measured in kidney samples by liquid chromatography-mass spectrometry (LC/MS). RESULTS: Male SHR exhibited delayed recovery of renal function post-IR vs. male sham and female IR rats. Delayed recovery in males was associated with activation of renal 12/15 LOX, increased renal 12-HETE, enhanced endoplasmic reticulum (ER) stress, lipid peroxidation, renal cell death and inflammation compared to females 7-days post-IR. Treatment of male SHR with ML355 lowered levels of 12-HETE and resulted in reduced renal lipid peroxidation, ER stress, tubular cell death and inflammation 7-days post-IR with enhanced recovery of renal function compared to vehicle-treated IR male rats. ML355 treatment did not alter IR-induced increases in plasma creatinine in females, however, tubular injury and cell death were attenuated in ML355 treated females compared to vehicle-treated rats 7 days post-IR. CONCLUSION: Our data demonstrate that sustained activation 12/15 LOX contributes to impaired renal recovery post ischemic injury in male and female SHR, although males are more susceptible on this mechanism than females.


Asunto(s)
Lesión Renal Aguda , Daño por Reperfusión , Animales , Femenino , Masculino , Ratas , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Lesión Renal Aguda/metabolismo , Araquidonato 15-Lipooxigenasa/metabolismo , Inflamación/metabolismo , Isquemia/patología , Riñón/metabolismo , Ratas Endogámicas SHR , Daño por Reperfusión/tratamiento farmacológico
7.
Clin Transl Med ; 13(11): e1440, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37948331

RESUMEN

BACKGROUND: Lipids may influence cellular penetrance by viral pathogens and the immune response that they evoke. We deeply phenotyped the lipidomic response to SARs-CoV-2 and compared that with infection with other pathogens in patients admitted with acute respiratory distress syndrome to an intensive care unit (ICU). METHODS: Mass spectrometry was used to characterise lipids and relate them to proteins, peripheral cell immunotypes and disease severity. RESULTS: Circulating phospholipases (sPLA2, cPLA2 (PLA2G4A) and PLA2G2D) were elevated on admission in all ICU groups. Cyclooxygenase, lipoxygenase and epoxygenase products of arachidonic acid (AA) were elevated in all ICU groups compared with controls. sPLA2 predicted severity in COVID-19 and correlated with TxA2, LTE4 and the isoprostane, iPF2α-III, while PLA2G2D correlated with LTE4. The elevation in PGD2, like PGI2 and 12-HETE, exhibited relative specificity for COVID-19 and correlated with sPLA2 and the interleukin-13 receptor to drive lymphopenia, a marker of disease severity. Pro-inflammatory eicosanoids remained correlated with severity in COVID-19 28 days after admission. Amongst non-COVID ICU patients, elevations in 5- and 15-HETE and 9- and 13-HODE reflected viral rather than bacterial disease. Linoleic acid (LA) binds directly to SARS-CoV-2 and both LA and its di-HOME products reflected disease severity in COVID-19. In healthy marines, these lipids rose with seroconversion. Eicosanoids linked variably to the peripheral cellular immune response. PGE2, TxA2 and LTE4 correlated with T cell activation, as did PGD2 with non-B non-T cell activation. In COVID-19, LPS stimulated peripheral blood mononuclear cell PGF2α correlated with memory T cells, dendritic and NK cells while LA and DiHOMEs correlated with exhausted T cells. Three high abundance lipids - ChoE 18:3, LPC-O-16:0 and PC-O-30:0 - were altered specifically in COVID. LPC-O-16:0 was strongly correlated with T helper follicular cell activation and all three negatively correlated with multi-omic inflammatory pathways and disease severity. CONCLUSIONS: A broad based lipidomic storm is a predictor of poor prognosis in ARDS. Alterations in sPLA2, PGD2 and 12-HETE and the high abundance lipids, ChoE 18:3, LPC-O-16:0 and PC-O-30:0 exhibit relative specificity for COVID-19 amongst such patients and correlate with the inflammatory response to link to disease severity.


Asunto(s)
COVID-19 , Fosfolipasas A2 Secretoras , Sepsis , Humanos , SARS-CoV-2 , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico , Lipidómica , Leucocitos Mononucleares , Leucotrieno E4 , Prostaglandina D2 , Ciclooxigenasa 2 , Eicosanoides
8.
J Lipid Res ; 64(6): 100374, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37075982

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) is a complex clinical syndrome, but a predominant subset of HFpEF patients has metabolic syndrome (MetS). Mechanistically, systemic, nonresolving inflammation associated with MetS might drive HFpEF remodeling. Free fatty acid receptor 4 (Ffar4) is a GPCR for long-chain fatty acids that attenuates metabolic dysfunction and resolves inflammation. Therefore, we hypothesized that Ffar4 would attenuate remodeling in HFpEF secondary to MetS (HFpEF-MetS). To test this hypothesis, mice with systemic deletion of Ffar4 (Ffar4KO) were fed a high-fat/high-sucrose diet with L-NAME in their water to induce HFpEF-MetS. In male Ffar4KO mice, this HFpEF-MetS diet induced similar metabolic deficits but worsened diastolic function and microvascular rarefaction relative to WT mice. Conversely, in female Ffar4KO mice, the diet produced greater obesity but no worsened ventricular remodeling relative to WT mice. In Ffar4KO males, MetS altered the balance of inflammatory oxylipins systemically in HDL and in the heart, decreasing the eicosapentaenoic acid-derived, proresolving oxylipin 18-hydroxyeicosapentaenoic acid (18-HEPE), while increasing the arachidonic acid-derived, proinflammatory oxylipin 12-hydroxyeicosatetraenoic acid (12-HETE). This increased 12-HETE/18-HEPE ratio reflected a more proinflammatory state both systemically and in the heart in male Ffar4KO mice and was associated with increased macrophage numbers in the heart, which in turn correlated with worsened ventricular remodeling. In summary, our data suggest that Ffar4 controls the proinflammatory/proresolving oxylipin balance systemically and in the heart to resolve inflammation and attenuate HFpEF remodeling.


Asunto(s)
Insuficiencia Cardíaca , Síndrome Metabólico , Masculino , Femenino , Ratones , Animales , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/metabolismo , Oxilipinas , Síndrome Metabólico/complicaciones , Volumen Sistólico/fisiología , Remodelación Ventricular , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico , Inflamación/complicaciones
9.
Nature ; 614(7948): 530-538, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36599368

RESUMEN

Resident-tissue macrophages (RTMs) arise from embryonic precursors1,2, yet the developmental signals that shape their longevity remain largely unknown. Here we demonstrate in mice genetically deficient in 12-lipoxygenase and 15-lipoxygenase (Alox15-/- mice) that neonatal neutrophil-derived 12-HETE is required for self-renewal and maintenance of alveolar macrophages (AMs) during lung development. Although the seeding and differentiation of AM progenitors remained intact, the absence of 12-HETE led to a significant reduction in AMs in adult lungs and enhanced senescence owing to increased prostaglandin E2 production. A compromised AM compartment resulted in increased susceptibility to acute lung injury induced by lipopolysaccharide and to pulmonary infections with influenza A virus or SARS-CoV-2. Our results highlight the complexity of prenatal RTM programming and reveal their dependency on in trans eicosanoid production by neutrophils for lifelong self-renewal.


Asunto(s)
Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico , Autorrenovación de las Células , Macrófagos Alveolares , Neutrófilos , Animales , Ratones , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Lesión Pulmonar Aguda , Animales Recién Nacidos , Araquidonato 12-Lipooxigenasa/deficiencia , Araquidonato 15-Lipooxigenasa/deficiencia , COVID-19 , Virus de la Influenza A , Lipopolisacáridos , Pulmón/citología , Pulmón/virología , Macrófagos Alveolares/citología , Macrófagos Alveolares/metabolismo , Neutrófilos/metabolismo , Infecciones por Orthomyxoviridae , Prostaglandinas E , SARS-CoV-2 , Susceptibilidad a Enfermedades
11.
J Proteomics ; 270: 104741, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36174955

RESUMEN

Colorectal cancer (CRC) is one of the main causes of cancer-related deaths worldwide. Sporadic CRC develops from normal mucosa via adenoma to adenocarcinoma, which provides a long screening window for clinical detection. However, early diagnosis of sporadic colorectal adenoma (CRA) and CRC using serum metabolic screening remains unclear. The purpose of this study was to identify some promising signatures for distinguishing the different pathological metabolites of colorectal mucosal malignant transformation. A total of 238 endogenous metabolites were elected. We found that CRA and CRC patients had 72 and 73 different metabolites compared with healthy controls, respectively. There were 20 different metabolites between CRA and CRC patients. The potential metabolites of tumor growth (including patients with CRA and CRC) were found, such as A-d-glucose, D-mannose, N-acetyl-D-glucosamine, L-cystine, Sarcosine, TXB 2, 12-Hete, and chenodeoxycholic acid. Compared with CRA, 3,4,5-trimethoxybenzoic acid was significantly higher in CRC patients. There results prompt us to use the potential serum signatures to screen CRC as the novel strategy. Serum metabolite screening is useful for early detection of mucosal intestinal malignancy. We will further investigate the roles of these promising biomarkers during intestinal tumorigenesis in future. SIGNIFICANCE: CRC is one of the main causes of cancer-related deaths worldwide. Sporadic CRC develops from normal mucosa via adenomas to adenocarcinoma, which provides a long screening window for about 5-10 years. We adopt the metabolic analysis of extensive targeted metabolic technology. The main purpose of the metabolic group analysis is to detect and screen the different metabolites, thereby performing related functional prediction and analysis of the differential metabolites. In our study, 30 samples are selected, divided into 3 groups for metabolic analysis, and 238 metabolites are elected. In 238 metabolites, we find that CRA patients have 72 different metabolites compared with health control. Compared with health control, CRC have 73 different metabolites. Compared with CRA and CRC patients, there are 20 different metabolites. The annotation results of the significantly different metabolites are classified according to the KEGG pathway type. The potential metabolites of tumor growth stage (including patients with CRA and CRC) are found, such as A-d-glucose, D-mannose, N-acetyl-D-glucosamine, L-cystine, sarcosine, TXB 2, 12-Hete and chenodeoxycholic acid. Compared with CRA patients, CRC patients had significantly higher 3,4,5-trimethoxybenzoic acid level. It is prompted to use serum different metabolites to screen CRC to provide new possibilities.


Asunto(s)
Adenocarcinoma , Adenoma , Neoplasias Colorrectales , Humanos , Cromatografía Liquida , Manosa , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico , Sarcosina , Cistina , Acetilglucosamina , Cromatografía Líquida de Alta Presión , Espectrometría de Masas en Tándem , Adenoma/metabolismo , Neoplasias Colorrectales/patología , Ácido Quenodesoxicólico , Glucosa
12.
Cancer Res ; 82(21): 3882-3883, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36321265

RESUMEN

Immunotherapy of cancer is a burgeoning field of research since the realization that our immune system intrinsically has the capacity to restrict tumor occurrence and progression. Though strategies to maximize antitumor T-cell activation are well established, the efficacy of these therapies is limited by an insufficient knowledge of the intricate tumor microenvironment and its capacity to thwart antitumor immunity. Chen and colleagues now uncover a novel immunosuppressive pathway in non-small cell lung carcinoma. Overexpression of cytochrome P450F2 in cancer cells increases production of 20-hydroxyeicosatetraenoic acid, which instructs the expression of immunosuppressive molecules in cancer-associated fibroblasts by binding the GPR75 receptor and activating STAT3/c-Jun signaling. This work proposes several innovative therapeutic anchor points that may improve the efficacy of existing immunotherapies. See related article by Chen et al., p. 4016.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Ácido Araquidónico/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Calor , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Fibroblastos/metabolismo , Neoplasias Pulmonares/metabolismo , Células del Estroma , Inmunosupresores/metabolismo , Fenotipo , Terapia de Inmunosupresión , Catálisis , Microambiente Tumoral
13.
Biomed Res Int ; 2022: 4589191, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36199753

RESUMEN

12/15-lipoxygenase (12/15-LOX) is a member of the lipoxygenase family, which can catalyze a variety of polyunsaturated fatty acids (PUFA) to produce different metabolites, such as 12-hydroxyeicosatetraenoic acid (12-HETE), 15-HETE, lipoxin (LX), hepoxilin, resolvin, protectin, and maresins. 12/15-LOX and its metabolites take part in inflammatory responses and mediate related signalling pathways, playing an essential role in various inflammatory diseases. So the definition, catalytic substrates, metabolites of 12/15-lipoxygenase, and their roles in inflammatory responses are reviewed in this article.


Asunto(s)
Araquidonato 15-Lipooxigenasa , Lipoxinas , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico , Araquidonato 12-Lipooxigenasa/metabolismo , Araquidonato 15-Lipooxigenasa/metabolismo , Antígenos CD59 , Ácidos Grasos , Ácidos Grasos Insaturados/metabolismo , Ácidos Hidroxieicosatetraenoicos/metabolismo
14.
Part Fibre Toxicol ; 19(1): 65, 2022 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-36280873

RESUMEN

BACKGROUND: Exposure to particulate matter air pollution is associated with an increased risk of cardiovascular mortality in patients with chronic obstructive pulmonary disease (COPD), but the underlying mechanisms are not yet understood. Enhanced platelet and pro-thrombotic activity in COPD patients may explain their increased cardiovascular risk. We aim to explore whether short-term exposure to ambient particulate matter is associated with pro-thrombotic changes in adults with and without COPD, and investigate the underlying biological mechanisms in a longitudinal panel study. Serum concentration of thromboxane (Tx)B2 was measured to reflect platelet and pro-thrombotic activity. Lipoxygenase-mediated lipid peroxidation products (hydroxyeicosatetraenoic acids [HETEs]) and inflammatory biomarkers (interleukins [ILs], monocyte chemoattractant protein-1 [MCP-1], tumour necrosis factor alpha [TNF-α], and macrophage inflammatory proteins [MIPs]) were measured as potential mediating determinants of particle-associated pro-thrombotic changes. RESULTS: 53 COPD and 82 non-COPD individuals were followed-up on a maximum of four visits conducted from August 2016 to September 2017 in Beijing, China. Compared to non-COPD individuals, the association between exposure to ambient ultrafine particles (UFPs) during the 3-8 days preceding clinical visits and the TxB2 serum concentration was significantly stronger in COPD patients. For example, a 103/cm3 increase in the 6-day average UFP level was associated with a 25.4% increase in the TxB2 level in the COPD group but only an 11.2% increase in the non-COPD group. The association in the COPD group remained robust after adjustment for the levels of fine particulate matter and gaseous pollutants. Compared to the non-COPD group, the COPD group also showed greater increases in the serum concentrations of 12-HETE (16.6% vs. 6.5%) and 15-HETE (9.3% vs. 4.5%) per 103/cm3 increase in the 6-day UFP average. The two lipid peroxidation products mediated 35% and 33% of the UFP-associated increase in the TxB2 level of COPD patients. UFP exposure was also associated with the increased levels of IL-8, MCP-1, MIP-1α, MIP-1ß, TNF-α, and IL-1ß in COPD patients, but these inflammatory biomarkers did not mediate the TxB2 increase. CONCLUSIONS: Short-term exposure to ambient UFPs was associated with a greater pro-thrombotic change among patients with COPD, at least partially driven by lipoxygenase-mediated pathways following exposure. Trial registration ChiCTR1900023692 . Date of registration June 7, 2019, i.e. retrospectively registered.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Enfermedad Pulmonar Obstructiva Crónica , Adulto , Humanos , Material Particulado/toxicidad , Quimiocina CCL2 , Factor de Necrosis Tumoral alfa , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Peroxidación de Lípido , Quimiocina CCL3 , Quimiocina CCL4 , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico , Interleucina-8 , Enfermedad Pulmonar Obstructiva Crónica/inducido químicamente , Inflamación/inducido químicamente , Biomarcadores , Lipooxigenasas , Tromboxanos , Exposición a Riesgos Ambientales/análisis
15.
Biomolecules ; 12(9)2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-36139096

RESUMEN

Pathogen inactivation techniques for blood products have been implemented to optimize clinically safe blood components supply. The INTERCEPT system uses amotosalen together with ultraviolet light wavelength A (UVA) irradiation. Irradiation-induced inactivation of nucleic acids may actually be accompanied by modifications of chemically reactive polyunsaturated fatty acids known to be important mediators of platelet functions. Thus, here, we investigated eicosanoids and the related fatty acids released upon treatment and during storage of platelet concentrates for 7 days, complemented by the analysis of functional and metabolic consequences of these treatments. Metabolic and functional issues like glucose consumption, lactate formation, platelet aggregation, and clot firmness hardly differed between the two treatment groups. In contrast to gamma irradiation, here, we demonstrated that INTERCEPT treatment immediately caused new formation of trans-arachidonic acid isoforms, while 11-hydroxyeicosatetraenoic acid (11-HETE) and 15-HETE were increased and two hydroperoxyoctadecadienoic acid (HpODE) isoforms decreased. During further storage, these alterations remained stable, while the release of 12-lipoxygenase (12-LOX) products such as 12-HETE and 12-hydroxyeicosapentaenoic acid (12-HEPE) was further attenuated. In vitro synthesis of trans-arachidonic acid isoforms suggested that thiol radicals formed by UVA treatment may be responsible for the INTERCEPT-specific effects observed in platelet concentrates. It is reasonable to assume that UVA-induced molecules may have specific biological effects which need to be further investigated.


Asunto(s)
Ácidos Araquidónicos , Ácidos Nucleicos , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/farmacología , Araquidonato 12-Lipooxigenasa/metabolismo , Ácido Araquidónico/metabolismo , Ácido Araquidónico/farmacología , Ácidos Araquidónicos/metabolismo , Plaquetas , Glucosa/metabolismo , Ácidos Hidroxieicosatetraenoicos/metabolismo , Ácidos Hidroxieicosatetraenoicos/farmacología , Lactatos/metabolismo , Ácidos Nucleicos/metabolismo , Compuestos de Sulfhidrilo/metabolismo
16.
Biochem Pharmacol ; 205: 115252, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36130648

RESUMEN

Platelet-type lipoxygenase (pl12-LOX), encoded by ALOX12, catalyzes the production of the lipid mediator 12S-hydroperoxyeicosa-5,8,10,14-tetraenoic acid (12S-HpETE), which is quickly reduced by cellular peroxidases to form 12(S)-hydroxy-5,8,10,14-eicosatetraenoic acid (12S-HETE). Platelets express high levels of pl12-LOX and generate considerable amounts of 12S-HETE from arachidonic acid (AA; C20:4, n-6). The development of sensitive chiral liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods has allowed the accurate quantification of 12S-HETE in biological samples. Moreover, advances in the knowledge of the mechanism of action of 12S-HETE have been achieved. The orphan G-protein-coupled receptor 31 (GPR31) has been identified as the high-affinity 12S-HETE receptor. Moreover, upon platelet activation, 12S-HETE is produced, and significant amounts are found esterified to membrane phospholipids (PLs), such as phosphatidylethanolamine (PE) and phosphatidylcholine (PC), promoting thrombin generation. Platelets play many roles in cancer metastasis. Among them, the platelets' ability to interact with cancer cells and transfer platelet molecules by the release of extracellular vesicles (EVs) is noteworthy. Recently, it was found that platelets induce epithelial-mesenchymal transition(EMT) in cancer cells, a phenomenon known to confer high-grade malignancy, through the transfer of pl12-LOX contained in platelet-derived EVs. These cancer cells now generate 12-HETE, considered a key modulator of cancer metastasis. Interestingly, 12-HETE was mainly found esterified in plasmalogen phospholipids of cancer cells. This review summarizes the current knowledge on the regulation and functions of pl12-LOX in platelets and cancer cells and their crosstalk.Novel approaches to preventing cancer and metastasis by the pharmacological inhibition of pl12-LOX and the internalization of mEVs are discussed.


Asunto(s)
Araquidonato 12-Lipooxigenasa , Neoplasias , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico , Fosfatidiletanolaminas , Ácido Araquidónico , Trombina , Plasmalógenos , Cromatografía Liquida , Espectrometría de Masas en Tándem , Plaquetas , Fosfatidilcolinas , Biología , Peroxidasas , Ácidos Hidroxieicosatetraenoicos
17.
Fish Physiol Biochem ; 48(5): 1389-1400, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36169784

RESUMEN

Changes in the metabolic profile within the intestine of lenok (Brachymystax lenok) when challenged to acute and lethal heat stress (HS) are studied using no-target HPLC-MS/MS metabonomic analysis. A total of 51 differentially expressed metabolites (VIP > 1, P < 0.05) were identified in response to HS, and 34 occurred in the positive ion mode and 17 in negative ion mode, respectively. After heat stress, changes in metabolites related to glycolysis (i.e., alpha-D-glucose, stachyose, and L-lactate) were identified. The metabolites (acetyl carnitine, palmitoylcarnitine, carnitine, and erucic acid) related to fatty acid ß-oxidation accumulated significantly, and many amino acids (L-tryptophan, D-proline, L-leucine, L-phenylalanine, L-aspartate, L-tyrosine, L-methionine, L-histidine, and L-glutamine) were significantly decreased in HS-treated lenok. The mitochondrial ß-oxidation pathway might be inhibited, while severe heat stress might activate the anaerobic glycolysis and catabolism of amino acid for energy expenditure. Oxidative damage in HS-treated lenok was indicated by the decreased glycerophospholipid metabolites (i.e., glycerophosphocholine, 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine, 1-palmitoyl-sn-glycero-3-phosphocholine, 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine, and 1, 2-dioleoyl-sn-glycero-3-phosphatidylcholine) and the increased oxylipin production (12-HETE and 9R, 10S-EpOME). The minor oxidative pathways (omega-oxidation and peroxisomal beta-oxidation) were likely to be induced in HS-treated lenok.


Asunto(s)
Ácidos Erucicos , Salmonidae , Animales , Ácidos Erucicos/metabolismo , Palmitoilcarnitina/metabolismo , Glutamina/metabolismo , Acetilcarnitina/metabolismo , Ácido Aspártico/metabolismo , Leucina , Triptófano , Histidina/metabolismo , Oxilipinas/metabolismo , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Fosforilcolina/metabolismo , Espectrometría de Masas en Tándem , Salmonidae/fisiología , Fosfatidilcolinas/metabolismo , Respuesta al Choque Térmico , Intestinos , Metionina , Prolina/metabolismo , Tirosina , Fenilalanina , Glucosa/metabolismo , Lactatos/metabolismo
18.
Food Funct ; 13(20): 10695-10709, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36172851

RESUMEN

Pulmonary arterial hypertension (PAH) is a progressive disease that significantly endangers human health, where metabolism may drive pathogenesis: a shift from mitochondrial oxidation to glycolysis occurs in diseased pulmonary vessels and the right ventricle. An increase in pulmonary vascular resistance in patients with heart failure with a preserved ejection fraction portends a poor prognosis. Luteolin exists in numerous foods and is marketed as a dietary supplement assisting in many disease treatments. However, little is known about the protective effect of luteolin on metabolism disorders in diseased pulmonary vessels. In this study, we found that luteolin apparently reversed the pulmonary vascular remodeling of PAH rats by inhibiting the abnormal proliferation of pulmonary artery smooth muscle cells (PASMCs). Moreover, network pharmacology and metabolomics results revealed that the arachidonic acid pathway, amino acid pathway and TCA cycle were dysregulated in PAH. A total of 14 differential metabolites were significantly changed during the PAH, including DHA, PGE2, PGD2, LTB4, 12-HETE, 15-HETE, PGF2α, and 8-iso-PGF2α metabolites in the arachidonic acid pathway, and L-asparagine, oxaloacetate, N-acetyl-L-ornithine, butane diacid, ornithine, glutamic acid metabolites in amino acid and TCA pathways. However, treatment with luteolin recovered the LTB4, PGE2, PGD2, 12-HETE, 15-HETE, PGF2α and 8-iso-PGF2α levels close to normal. Meanwhile, we showed that luteolin also downregulated the gene and protein levels of COX 1, 5-LOX, 12-LOX, and 15-LOX in the arachidonic acid pathway. Collectively, this work highlighted the metabolic mechanism of luteolin-protected PAH and showed that luteolin would hold great potential in PAH prevention.


Asunto(s)
Hipertensión Arterial Pulmonar , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/farmacología , Animales , Ácido Araquidónico/metabolismo , Asparagina , Butanos/metabolismo , Butanos/farmacología , Proliferación Celular , Dinoprost/metabolismo , Dinoprost/farmacología , Dinoprostona/metabolismo , Ácido Glutámico/metabolismo , Humanos , Leucotrieno B4/metabolismo , Luteolina/farmacología , Músculo Liso Vascular , Miocitos del Músculo Liso/metabolismo , Farmacología en Red , Ornitina/metabolismo , Oxaloacetatos/metabolismo , Oxaloacetatos/farmacología , Prostaglandina D2/metabolismo , Prostaglandina D2/farmacología , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Ratas
19.
Acta Diabetol ; 59(11): 1505-1513, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35962259

RESUMEN

PURPOSE: To investigate the relationship between serum 12-Hydroxyeicosatetraenoic acid (12-HETE) and diabetic retinopathy (DR) in children with type 1 diabetes mellitus (T1DM) and adults with type 2 diabetes mellitus (T2DM). METHODS: Children from the Shanghai Children and Adolescent Diabetes Eye (SCADE) study and adults from the Shanghai Cohort Study of Diabetic Eye Disease (SCODE) were examined in 2021. Serum 12-HETE levels were detected and compared. Multivariate logistic regression was used to analyze the relationship between 12-HETE and the rate of DR in diabetic patients. RESULTS: The child study included 4 patients with new-onset DR and 24 patients with T1DM without DR. In children with T1DM, the 12-HETE level was significantly higher in those with DR (P = 0.003). The adult study had two sets, for testing and verification. The test set included 28 patients with new-onset DR and 24 T2DM patients with a course of ≥ 20 years who had never developed DR. The verification set included 41 patients with DR, 50 patients without DR and 50 healthy controls. In the adult test set, the 12-HETE level was significantly higher in patients with DR than in those with T2DM without DR (P = 0.003). In the verification set, the 12-HETE level of patients with DR was significantly higher than that of patients without DR (P < 0.0001) and the healthy controls (P < 0.0001). Multivariate logistic regression indicated that 12-HETE was independently associated with DR in both children (odds ratio [OR] 1.06, 95% confidence interval [CI] 1.00-1.13, P = 0.041) and adults (test set [OR 9.26, 95% CI 1.77-48.59, P = 0.008], verification set [OR 10.49, 95% CI 3.23-34.05, P < 0.001]). CONCLUSION: Higher serum 12-HETE levels are positively correlated with an increased risk of DR in children with T1DM and adults with T2DM.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Retinopatía Diabética , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico , Adolescente , Adulto , Niño , China/epidemiología , Estudios de Cohortes , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Retinopatía Diabética/epidemiología , Retinopatía Diabética/etiología , Humanos , Factores de Riesgo
20.
Sci Rep ; 12(1): 11385, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35790870

RESUMEN

Severe and prolonged social stress induces mood and cognitive dysfunctions and precipitates major depression. Neuroinflammation has been associated with chronic stress and depression. Rodent studies showed crucial roles of a few inflammation-related lipid mediators for chronic stress-induced depressive-like behaviors. Despite an increasing number of lipid mediators identified, systematic analyses of synthetic pathways of lipid mediators in chronic stress models have not been performed. Using LC-MS/MS, here we examined the effects of chronic social defeat stress on multiple synthetic pathways of lipid mediators in brain regions associated with stress susceptibility in mice. Chronic social defeat stress increased the amounts of 12-lipoxygenase (LOX) metabolites, 12-HETE and 12-HEPE, specifically in the nucleus accumbens 1 week, but not immediately, after the last stress exposure. The increase was larger in stress-resilient mice than stress-susceptible mice. The S isomer of 12-HETE was selectively increased in amount, indicating the role of 12S-LOX activity. Among the enzymes known to have 12S-LOX activity, only Alox12 mRNA was reliably detected in the brain and enriched in brain endothelial cells. These findings suggest that chronic social stress induces a late increase in the amounts of 12S-LOX metabolites derived from the brain vasculature in the nucleus accumbens in a manner associated with stress resilience.


Asunto(s)
Núcleo Accumbens , Derrota Social , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Animales , Araquidonato 12-Lipooxigenasa/metabolismo , Cromatografía Liquida , Células Endoteliales/metabolismo , Ratones , Ratones Endogámicos C57BL , Núcleo Accumbens/metabolismo , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...