Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 376
Filtrar
1.
Chemosphere ; 361: 142513, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38830462

RESUMEN

This study focused on evaluating the efficacy of a magnetic activated carbon material (CPAC@Fe3O4) derived from pods of copper pod tree in adsorbing the toxic herbicide, 2,4- (2,4-D) from aqueous solutions. The synthesized CPAC@Fe3O4 adsorbent, underwent various characterization techniques. FESEM images indicated a rough surface, incorporating iron oxide nanoparticles, while EDS analysis confirmed the presence of elements like Fe, O, and C. Notably, the CPAC@Fe3O4 exhibited high surface area (749.10 m2/g) and pore volume (0.5351 cm³/g), confirming its mesoporous nature. XRD investigations identified distinct signals associated with graphitic carbon and magnetite nanoparticles, while VSM analysis verified its magnetic properties with a high magnetic saturation value (2.72 emu/g). The adsorption process was exothermic, with a decrease in adsorption capacity at higher temperatures. Freundlich isotherm provided the best fit for the adsorption, and the pseudo-second-order equation effectively described the kinetics. Remarkably, the maximum adsorption capacity ranged from 246.43 to 261.03 mg/g, surpassing previously reported values. The ΔH° value (-8.67 kJ/mol) suggested a physisorption mechanism, and the negative ΔG° values established the spontaneous nature. Furthermore, the synthesized adsorbent demonstrated exceptional reusability, allowing for up to five cycles of adsorption-desorption operations. When applied to simulated agricultural runoff, CPAC@Fe3O4 showcased a significant adsorption capacity of 160.71 mg/g for 50 mg/L 2,4-D, using a 0.2 g/L dosage at pH 2. This study showcased the transformation of copper pod biomass into a valuable magnetic nanoadsorbent capable of efficiently eliminating the noxious 2,4-D pollutant from aqueous environments.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético , Biomasa , Carbón Orgánico , Herbicidas , Nanocompuestos , Contaminantes Químicos del Agua , Ácido 2,4-Diclorofenoxiacético/química , Adsorción , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Carbón Orgánico/química , Herbicidas/química , Nanocompuestos/química , Cinética , Purificación del Agua/métodos , Agricultura/métodos , Nanopartículas de Magnetita/química , Termodinámica , Concentración de Iones de Hidrógeno
2.
J Chromatogr A ; 1725: 464876, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38718697

RESUMEN

Herein, 2,4-dichlorophenoxyacetic acid (2,4-D) was used as a model template in a rational design strategy to produce water-compatible noncovalent imprinted microspheres. The proposed approach involved computational modelling for screening functional monomers and a simple method for preparing monodisperse and highly cross-linked microspheres. The fabricated non-imprinted polymer (NIP) and 2,4-d-imprinted polymer (2,4-d-MIP) were characterised, and their adsorption capabilities in an aqueous environment were evaluated. Results reveal that the pseudo-second-order kinetics model was appropriate for representing the adsorption of 2,4-D on NIP and 2,4-d-MIP, with R2 values of 0.97 and 0.99, respectively. The amount of 2,4-D adsorbed on 2,4-d-MIP (97.75 mg g-1) was considerably higher than those of phenoxyacetic acid (35.77 mg g-1), chlorogenic acid (9.72 mg g-1), spiramycin (1.56 mg g-1) and tylosin (1.67 mg g-1). Furthermore, it exhibited strong resistance to protein adsorption in an aqueous medium. These findings confirmed the feasibility of the proposed approach, providing a reference for the development of water-compatible noncovalent imprinted polymers.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético , Microesferas , Impresión Molecular , Agua , Adsorción , Agua/química , Ácido 2,4-Diclorofenoxiacético/análisis , Ácido 2,4-Diclorofenoxiacético/química , Polímeros/química , Cinética , Polímeros Impresos Molecularmente/química
3.
Environ Sci Pollut Res Int ; 31(25): 36814-36833, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38760604

RESUMEN

The capacity of zinc-based 2-amino-4-(1H-1,2,4-triazole-4-yl)benzoic acid coordination complex (Zn(NH2-TBA)2) and modified Zn(NH-TBA)2COMe complex for removal of 2,4-dichlorophenoxyacetic acid (2,4-D) from aqueous solutions was investigated through adsorption modeling and artificial intelligence tools. Analyzing the adsorption characteristics of pesticides helps in studying the groundwater pollution by pesticides in agriculture area.In this study, Zn(NH2-TBA)2 was synthesized using Schiff base and its surface was modified using acetic anhydride group and their physical characteristics were identified using proton NMR, FTIR, and XRD. NMR results showed maximum modification yield obtained was 65% after 5 days. The porous structure and surface area monitored using nitrogen isotherm and BET surface area analysis presented relatively less surface area and porosity after modification. Adsorption modelling indicated that Toth model with a maximum adsorption capacity of 150.8 mg/g and 100.7 mg/g represents the homogenous adsorption systems which satisfy both low- and high-end boundary of adsorbate concentration in all settings according to the optimum point, while the kinetics and rate of 2,4-D adsorption follow the pseudo-first-order kinetic model in all situations. Artificial neural network (ANN), support vector regression, and particle swarm optimized least squares-support vector regression (PSO-LSSVR) were used for the optimization and modelling of adsorbent mass, adsorbate concentration, contact time, and temperature to develop predictive equations for the simulation of the adsorption efficiency of 2,4-D pesticide. The obtained results exhibited the better performance of ANN and PSO-LSSVR for prediction of adsorption results. The mean square error values of ANN (0.001, 0.012) and PSO-LSSVR (0.121, 0.105) were obtained for Zn(NH2-TBA)2 and Zn(NH-TBA)2COMe, respectively, while their respective coefficient of determination (R2) obtained were 0.999 and 0.988 for ANN and 0.980 and 0.825 for PSO-LSSVR. The study specified that machine learning predictive behavior performed better for Zn(NH2-TBA)2 compared to Zn(NH-TBA)2COMe that is also supported by theoretical kinetics and isotherm models. The research concludes that artificial intelligence models are the most efficient tools for studying the predictive behavior of adsorption data.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético , Aprendizaje Automático , Plaguicidas , Zinc , Adsorción , Plaguicidas/química , Zinc/química , Ácido 2,4-Diclorofenoxiacético/química , Triazoles/química , Contaminantes Químicos del Agua/química , Ácido Benzoico/química , Complejos de Coordinación/química
4.
Environ Sci Pollut Res Int ; 31(27): 39331-39349, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38816631

RESUMEN

In this study, a biogenic magnetic nanocomposite, HAP@DEX@MNP, using hydroxyapatite from eggshell waste and dextran was developed to efficiently remove 2,4-D from aqueous solutions. The magnetic nano biocomposite underwent rigorous characterization using a comprehensive suite of analytical techniques, including FTIR, XRD, FESEM, EDX, TEM, and VSM. FTIR analysis was used to validate the existence of pivotal functional groups, such as phosphate, carbonyl, hydroxyl, and iron oxide. XRD analysis verified both the crystalline nature of hydroxyapatite and the successful integration of dextran and hematite within the composite structure. FESEM and EDX examinations provided valuable insights into the surface morphology and elemental composition. TEM observations elucidated the existence of nano-sized particles underscoring the unique structural characteristics of the nanocomposite. Batch adsorption experiments were conducted under optimized conditions, highlighting the critical role of pH 2 for efficient 2,4-D removal. The mechanisms driving the binding of 2,4-D to HAP@DEX@MNP were found to encompass diverse interactions, encompassing electrostatic forces, hydrogen bonding, π-π interactions, and van der Waals forces. Adsorption isotherm studies revealed both monolayer and multilayer adsorption, with the Langmuir and Freundlich models fitting well, indicating a maximal adsorption capacity of 217.39 µg/g at 25 °C. Kinetic investigations supported the pseudo-second-order model for efficient adsorption dynamics, and thermodynamic analysis emphasized the versatility of HAP@DEX@MNP across different temperatures. Importantly, the study highlighted the remarkable regenerative capacity of the nanocomposite using a 0.1 M NaOH solution, positioning it as an environmentally friendly option for water treatment. In conclusion, HAP@DEX@MNP holds significant potential for diverse applications in addressing global water treatment and environmental challenges.


Asunto(s)
Dextranos , Durapatita , Nanocompuestos , Contaminantes Químicos del Agua , Durapatita/química , Nanocompuestos/química , Adsorción , Dextranos/química , Contaminantes Químicos del Agua/química , Ácido 2,4-Diclorofenoxiacético/química , Purificación del Agua/métodos , Cinética
5.
Int J Biol Macromol ; 267(Pt 2): 131465, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38604427

RESUMEN

This research focused on synthesizing a CdIn2Se4@Ch nanocomposite by doping CdIn2Se4 into chitosan using a photolysis assisted ultrasonic process. The aim was to enhance the photodegradation efficiency of ofloxacin and 2,4-dichlorophenoxyacetic acid under sunlight. The synthesized CdIn2Se4@Ch nanocomposite was investigated via different techniques, including XRD, XPS, FTIR, TEM, DSC, TGA, UV-Vis and PL. The study also investigated the influence of various reaction parameters, including the effects of inorganic and organic ions. The synthesized nanocomposite demonstrated exceptional efficiency, achieving 86 % and 95 % removal rates, with corresponding rate constants of 0.025 and 0.047 min-1. This performance surpasses that of CdIn2Se4 by approximately 1.35 and 2.25 times, respectively. The values of COD were decreased to 78 and 86 % for ofloxacin and 2,4-dichlorophenoxyacetic, while the TOC values decreased to 71 and 84 %, respectively, from their premier values. The improvement in performance is associated with the introduction of CdIn2Se4 into chitosan, resulting in the self-integration of Cd into the catalyst. This creates a localized accumulation point for electrons, enhancing the efficiency of charge separation and further reducing the surface charge of chitosan. Experimental evidence suggests that superoxide and hydroxyl radicals play a significant role in the photodegradation of pollutants. Additionally, the nanocomposite exhibits excellent stability and can be reused up to five times, indicating remarkable stability and reusability of the developed photocatalyst.


Asunto(s)
Quitosano , Nanocompuestos , Ofloxacino , Quitosano/química , Nanocompuestos/química , Ofloxacino/química , Fotólisis , Ácido 2,4-Diclorofenoxiacético/química , Catálisis , Cadmio/química
6.
Chemosphere ; 339: 139715, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37536539

RESUMEN

Phenoxyacetic acid herbicides are widely used in agriculture for controlling weeds. These organic compounds are persistent and recalcitrant, often contaminating water and soil. Therefore, we studied five pristine biochars (BCs), and southern yellow pine (SYP) based self-activated carbon (SAC) for the adsorptive removal of 2,4-Dichlorophenoxyacetic acid (2,4-D) herbicide. Among the tested adsorbents, SYP-SAC-15 demonstrated higher (>90%) 2,4-D removal from water. The SYP-SAC-15 was produced using a facile and green route where the biomass pyrolysis gases worked as activating agents creating a highly porous structure with a surface area of 1499.79 m2/g. Different adsorption kinetics and isotherm models were assessed for 2,4-D adsorption on SYP-SAC-15, where the data fitted best to pseudo-second order (R2 > 0.999) and Langmuir (R2 > 0.991) models, respectively. Consequently, the adsorption process was mainly dominated by the chemisorption mechanism with monolayer coverage of SYP-SAC-15 surface with 2,4-D molecules. At the optimum pH of 2, the maximum 2,4-D adsorption capacity of SYP-SAC-15 reached 471.70 mg/g. Furthermore, an increase in the water salinity demonstrated a positive influence on 2,4-D adsorption, whereas humic acid (HA) showed a negative impact on 2,4-D adsorption. The regeneration ability of SYP-SAC-15 showed excellent performance by retaining 71.09% adsorption capability at the seventh adsorption-desorption cycle. Based on the operating pH, surface area, spectroscopic data, kinetics, and isotherm modeling, the adsorption mechanism was speculated. The 2,4-D adsorption on SYP-SAC-15 was mainly governed by pore filling, electrostatic interactions, hydrogen bonding, hydrophobic and π-π interactions.


Asunto(s)
Herbicidas , Contaminantes Químicos del Agua , Herbicidas/química , Carbón Orgánico/química , Adsorción , Agua , Contaminantes Químicos del Agua/análisis , Concentración de Iones de Hidrógeno , Ácido 2,4-Diclorofenoxiacético/química , Cinética
7.
Chemosphere ; 336: 139143, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37285973

RESUMEN

The usage of various herbicides in the agricultural field leads to water pollution which is a big threat to the environment. Herein, the pods of the Peltophorum pterocarpum tree were used as a cheap resource to synthesize activated carbon (AC) by low-temperature carbonization to remove 2,4-dichlorophenoxyacetic acid (2,4-D) - an abundantly used herbicide. The exceptional surface area (1078.34 m2/g), mesoporous structure, and the various functional groups of the prepared AC adsorbed 2,4-D effectively. The maximum adsorption capacity was 255.12 mg/g, significantly higher than the existing AC adsorbents. The adsorption data satisfactorily modelled using Langmuir and pseudo-second-order models. Also, the adsorption mechanism was studied using a statistical physics model which substantiated the multi-molecular interaction of 2,4-D with the AC. The adsorption energy (<20 kJ/mol) and thermodynamic studies (ΔH°: -19.50 kJ/mol) revealed the physisorption and exothermicity. The practical application of the AC was successfully tested in various waterbodies by spiking experiments. Hence, this work confirms that the AC prepared from the pods of P. pterocarpum can be applied as a potential adsorbent to remove herbicides from polluted waterbodies.


Asunto(s)
Herbicidas , Contaminantes Químicos del Agua , Ácido 2,4-Diclorofenoxiacético/química , Temperatura , Adsorción , Herbicidas/química , Fenoxiacetatos , Termodinámica , Física , Cinética , Concentración de Iones de Hidrógeno , Contaminantes Químicos del Agua/análisis , Carbón Orgánico/química
8.
Environ Pollut ; 316(Pt 2): 120612, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36368550

RESUMEN

Alarming rates of water contamination by toxic herbicides have prompted the need and attention for easy, efficient, and affordable treatment options with a touch of circular economy aspects. This study valorized date palm leaf (DPL) wastes into a valuable adsorbent for remediating agricultural wastewater polluted with 2,4-Dichlorophenoxyacetic acid (2,4-DPA) herbicide. The DPL precursor was modified with H2SO4 treatment and both biomass samples were characterized by various analytical techniques. Acid treatment modified the morphology, thermal, and textural properties of the final product (TDPL) while maintaining the structure and surface chemistry intact. Simulated wastewaters containing 2,4-DPA were subsequently treated using TDPL as an adsorbent. Optimum adsorption conditions of pH 2, dosage 0.95 g/L, shaking speed 200 rpm, time 120 min, and temperature 30 °C showed a good herbicide removal efficiency in the range of 55.1-72.6% for different initial feed concentrations (50-250 mg/L). Experimental kinetic data were better represented by the pseudo-second-order model, while the Freundlich isotherm was reliable in describing the equilibrium behavior of the adsorption system. Further, the thermodynamic analysis revealed that the adsorption occurred spontaneously, favorably, and exothermically. Plausible sorption mechanism involved electrostatic interactions, weak van der Waals forces, hydrogen bonds, and π-π interactions between the participating phases. Conspicuously, TDPL application to real-world situations of treating actual herbicide-polluted agricultural runoff resulted in a 69.4% remediation efficiency. Thus, the study demonstrated the valorization of date palm leaves into a valuable and industry-ready adsorbent that can sequester toxic 2,4-DPA herbicide contaminant from aqueous streams.


Asunto(s)
Herbicidas , Phoeniceae , Contaminantes Químicos del Agua , Adsorción , Herbicidas/análisis , Contaminantes Químicos del Agua/análisis , Concentración de Iones de Hidrógeno , Cinética , Termodinámica , Fenoxiacetatos , Ácido 2,4-Diclorofenoxiacético/química , Hojas de la Planta/química
9.
Biosensors (Basel) ; 12(2)2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-35200344

RESUMEN

2,4-Dichlorophenoxyacetic acid (2,4-D) is a systemic conductive herbicide widely used across the world. With the large-scale and continuous use of 2,4-D, its possible harm to the environment and non-target organisms has attracted increasing attention, and the construction of a stable rapid on-site detection method is particularly important. In order to achieve on-site rapid detection of 2,4-D, we developed a gold nanoparticle immunochromatographic strip method with the visual elimination value was 50 ng/mL, and a quantitative detection limit of 11 ng/mL based on a nanobody. By combing with the color snap, the immunochromatographic strip could quantitatively analyze the amounts of 2,4-D. Meanwhile, a colorimetric card based on the true color of the test strips was developed for the qualitative analysis of 2,4-D on-site. The samples (water, fruits and vegetables) with and without 2,4-D were detected by the immunochromatographic strips, and the results showed the accuracy and reliability. Thus, this assay is a rapid and simple on-site analytical tool to detect and quantify 2,4-D levels in environmental samples, and the analytical results can be obtained in about ten minutes. In addition, the nanobody technology used in this study provides an inexhaustible supply of a relatively stable antibodies that can be archived as a nanobody, plasmid or even its sequence.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético/análisis , Herbicidas , Nanopartículas del Metal , Ácido 2,4-Diclorofenoxiacético/química , Oro/química , Límite de Detección , Nanopartículas del Metal/química , Reproducibilidad de los Resultados
10.
ACS Nano ; 16(3): 4892-4904, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35191690

RESUMEN

The side effects caused by some pesticides with high off-target movement have brought great risks to the environment and human health. Here, taking 2,4-dichlorophenoxyacetic acid (2,4-D) as a model herbicide to reduce its volatilization and leaching, a supramolecular self-assembly mediated by branched polyethylenimine (B-PEI) was constructed through noncovalent molecular recognition. The results showed that 2,4-D/B-PEI nanoparticles (NPs) with a mean particle size of 168 nm can be formed by electrostatic interaction, hydrophobic effect, and π-π stacking when the mass ratio of 2,4-D to B-PEI with the average molecular weight of 10 000 (B-PEI 10k) was 40:20, and their generation was not susceptible to common inorganic ions such as Ca2+, Na+, Cl-, and SO42-. Compared with 2,4-D, the self-assembled NPs with improved physicochemical properties including strong positive charges (+58.2 mV), reduced volatilization rate (2.50%), low surface tension (56.10 mN m-1), and decreased leaching potential could minimize the adverse impacts of this herbicide on the environment. The biological activity experiments in the greenhouse and field demonstrated that the control efficacy of NPs without using any surfactant against weeds was almost the same as that of the 2,4-D sodium salt form containing Tween 80. The safety tests showed that the self-assembled NPs had the same genotoxicity as 2,4-D to Vicia faba and little effect on the soil enzyme activities. Overall, the development of self-assembled herbicidal nanoformulations with desirable physicochemical properties and low risks to the environment would have potential application in agricultural production.


Asunto(s)
Herbicidas , Nanopartículas , Ácido 2,4-Diclorofenoxiacético/química , Herbicidas/química , Humanos , Nanopartículas/química , Tamaño de la Partícula , Polietileneimina/química
11.
J Environ Sci Health B ; 56(12): 995-1006, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34727841

RESUMEN

The residual bark of the tree species Campomanesia guazumifolia was successfully modified with H2SO4 and applied to remove the toxic herbicide 2.4-dichlorophenoxyacetic (2.4-D) from aqueous solutions. The characterization techniques made it possible to observe that the material maintained its amorphous structure; however, a new FTIR band emerged, indicating the interaction of the lignocellulosic matrix with sulfuric acid. Micrographs showed that the material maintained its irregular shape; however, new spaces and cavities appeared after the acidic modification. Regardless of the herbicide concentration, the system tended to equilibrium after 120 min. Using the best statistical coefficients, the Elovich model was the one that best fitted the kinetic data. The temperature increase in the system negatively influenced the adsorption of 2.4-D, reaching a maximum capacity of 312.81 mg g-1 at 298 K. The equilibrium curves showed a better fit to the Tóth model. Thermodynamic parameters confirmed the exothermic nature of the system (ΔH0 = -59.86 kJ mol-1). As a residue obtained from urban pruning, the bark of Campomanesia guazumifolia treated with sulfuric acid is a promising and highly efficient alternative for removing the widely used and toxic 2.4-D herbicide from aqueous solutions.


Asunto(s)
Herbicidas , Contaminantes Químicos del Agua , Ácido 2,4-Diclorofenoxiacético/química , Adsorción , Herbicidas/química , Concentración de Iones de Hidrógeno , Cinética , Corteza de la Planta/química , Termodinámica , Contaminantes Químicos del Agua/análisis
12.
Pak J Biol Sci ; 24(8): 858-867, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34486353

RESUMEN

<b>Background and Objective:</b> The cat whiskers plant (<i>Orthosiphon aristatus</i> Blume Miq) is a plant that has been widely used as raw material for traditional medicine. The population of white-purple varieties of <i>O. aristatus</i> is decreasing efforts to maintain the white-purple <i>O. aristatus</i> need to be done keeping in mind its potential as raw material for traditional medicine. This study aims to determine the composition of a suitable medium in growing plantlet <i>O. aristatus</i> white-purple varieties and the content of its secondary metabolites. <b>Materials and Methods:</b> The internode explants were induced on MS medium added by various combinations of zeatin and 2,4-Dichlorophenoxyacetic acid (2,4-D). Root induction was carried out on shoots formed on MS medium with Indole-3-Butyric Acid (IBA). The acclimatization process was carried out using soil media. Determination of secondary metabolite levels was carried out on <i>O. aristatus</i> (<i>in vitro</i> culture) and wild-type plants aged ten months using high-performance liquid chromatography (HPLC). <b>Results:</b> MS+BAP 2ppm+NAA3 ppm media was the optimal medium for growing shoots in leaf explants. Media MS+zeatin 3 ppm+2,4-D 2 ppm produced good shoot growth on internode explants. The best root induction occurred in MS+IBA media of 0.75 ppm. The acclimatization process was successful on shoots originating from the internode, while those from leaf explants had not succeeded in growing and developing. <b>Conclusion:</b> The levels of rosmarinic acid and sinensetin in the white-purple variety <i>O. aristatus</i> (<i>in vitro</i> culture) were 1.08 and 1.62% w/w and higher than those of wild varieties.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético/química , Agricultura/métodos , Flavonoides/química , Orthosiphon/química , Hojas de la Planta/metabolismo , Zeatina/química , Cromatografía Líquida de Alta Presión , Cinamatos , Color , Medios de Cultivo , Depsidos , Extractos Vegetales/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Hojas de la Planta/química , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/crecimiento & desarrollo , Ácido Rosmarínico
13.
ACS Appl Mater Interfaces ; 13(36): 43374-43386, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34469104

RESUMEN

The development of modern agriculture has prompted the greater input of herbicides, insecticides, and fertilizers. However, precision release and targeted delivery of these agrochemicals still remain a challenge. Here, a pesticide-fertilizer all-in-one combination (PFAC) strategy and deep learning are employed to form a system for controlled and targeted delivery of agrochemicals. This system mainly consists of three components: (1) hollow mesoporous silica (HMS), to encapsulate herbicides and phase-change material; (2) polydopamine (PDA) coating, to provide a photothermal effect; and (3) a zeolitic imidazolate framework (ZIF8), to provide micronutrient Zn2+ and encapsulate insecticides. Results show that the PFAC at concentration of 5 mg mL-1 reaches the phase transition temperature of 1-tetradecanol (37.5 °C) after 5 min of near-infrared (NIR) irradiation (800 nm, 0.5 W cm-2). The data of corn and weed are collected and relayed to deep learning algorithms for model building to realize object detection and further targeted weeding. In-field treatment results indicated that the growth of chicory herb was significantly inhibited when treated with the PFAC compared with the blank group after 24 h under NIR irradiation for 2 h. This system combines agrochemical innovation and artificial intelligence technology, achieves synergistic effects of weeding and insecticide and nutrient supply, and will potentially achieve precision and sustainable agriculture.


Asunto(s)
Portadores de Fármacos/química , Fertilizantes , Herbicidas/química , Insecticidas/química , Nanopartículas/química , Ácido 2,4-Diclorofenoxiacético/química , Ácido 2,4-Diclorofenoxiacético/toxicidad , Animales , Cichorium intybus/efectos de los fármacos , Aprendizaje Profundo , Portadores de Fármacos/efectos de la radiación , Liberación de Fármacos , Alcoholes Grasos/química , Alcoholes Grasos/efectos de la radiación , Guanidinas/química , Guanidinas/toxicidad , Herbicidas/toxicidad , Indoles/química , Indoles/efectos de la radiación , Rayos Infrarrojos , Insectos/efectos de los fármacos , Insecticidas/toxicidad , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/efectos de la radiación , Nanopartículas/efectos de la radiación , Neonicotinoides/química , Neonicotinoides/toxicidad , Nitrocompuestos/química , Nitrocompuestos/toxicidad , Polímeros/química , Polímeros/efectos de la radiación
14.
Microbes Environ ; 36(3)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34511574

RESUMEN

Bradyrhizobium sp. RD5-C2, isolated from soil that is not contaminated with 2,4-dichlorophenoxyacetic acid (2,4-D), degrades the herbicides 2,4-D and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T). It possesses tfdAα and cadA (designated as cadA1), which encode 2,4-D dioxygenase and the oxygenase large subunit, respectively. In the present study, the genome of Bradyrhizobium sp. RD5-C2 was sequenced and a second cadA gene (designated as cadA2) was identified. The two cadA genes belonged to distinct clusters comprising the cadR1A1B1K1C1 and cadR2A2B2C2K2S genes. The proteins encoded by the cad1 cluster exhibited high amino acid sequence similarities to those of other 2,4-D degraders, while Cad2 proteins were more similar to those of non-2,4-D degraders. Both cad clusters were capable of degrading 2,4-D and 2,4,5-T when expressed in non-2,4-D-degrading Bradyrhizobium elkanii USDA94. To examine the contribution of each degradation gene cluster to the degradation activity of Bradyrhizobium sp. RD5-C2, cadA1, cadA2, and tfdAα deletion mutants were constructed. The cadA1 deletion resulted in a more significant decrease in the ability to degrade chlorophenoxy compounds than the cadA2 and tfdAα deletions, indicating that degradation activity was primarily governed by the cad1 cluster. The results of a quantitative reverse transcription-PCR analysis suggested that exposure to 2,4-D and 2,4,5-T markedly up-regulated cadA1 expression. Collectively, these results indicate that the cad1 cluster plays an important role in the degradation of Bradyrhizobium sp. RD5-C2 due to its high expression.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético/metabolismo , Proteínas Bacterianas/genética , Bradyrhizobium/metabolismo , Herbicidas/metabolismo , Familia de Multigenes , Ácido 2,4-Diclorofenoxiacético/química , Proteínas Bacterianas/metabolismo , Biodegradación Ambiental , Bradyrhizobium/clasificación , Bradyrhizobium/enzimología , Bradyrhizobium/genética , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Herbicidas/química , Oxigenasas/genética , Oxigenasas/metabolismo , Filogenia , Microbiología del Suelo
15.
Biotechnol Lett ; 43(9): 1747-1755, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34275026

RESUMEN

The major challenge in utilizing pesticides lies in identifying the precise application that would improve the efficiency of these pesticides and decline their environmental and health hazards at the same time. Such application requires the development of specific formulations that enable controlled, stimuli-responsive release of the pesticides. Gelatin is a relatively cheap material characterized by temperature-sensitivity and abundant amino acid groups, which makes it suitable for the storage and controlled release of pesticides. In this study, gelatin microspheres were prepared by emulsion and cross-linking, then they were loaded with 2,4-dichlorophenoxyacetic acid sodium (2,4-D Na) as a model herbicide. To achieve temperature-tunable release of 2,4-D Na from the microspheres, NH4HCO3 was added to the formulations at different concentrations. The prepared formulations were characterized by SEM, FTIR, and size distribution analyzes, and their drug loading capacities were determined. Based on bioassay experiments, the 2,4-D Na-NH4HCO3-loaded gelatin microspheres can effectively control the spread of dicotyledonous weeds. Therefore, the strategy proposed herein can be used to develop novel, effective herbicide formulations.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético/síntesis química , Compuestos de Amonio/química , Gelatina/química , Herbicidas/síntesis química , Ácido 2,4-Diclorofenoxiacético/química , Cloruro de Amonio/química , Bicarbonatos/química , Composición de Medicamentos , Herbicidas/química , Microesferas , Tamaño de la Partícula , Temperatura , Control de Malezas
16.
Molecules ; 26(11)2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34072168

RESUMEN

This study aims to investigate whether the in vitro-cultured L. pumila var. alata has higher antioxidant activity than its wild plant. An 8-week-old L. pumila var. alata nodal segment and leaf explants were cultured onto Murashige and Skoog (MS) medium supplemented with various cytokinins (zeatin, kinetin, and 6-benzylaminopurine (BAP)) for shoot multiplication and auxins (2,4-dichlorophenoxyacetic acid (2,4-D) and picloram) for callus induction, respectively. The results showed that 2 mg/L zeatin produced the optimal results for shoot and leaf development, and 0.5 mg/L 2,4-D produced the highest callus induction results (60%). After this, 0.5 mg/L 2,4-D was combined with 0.25 mg/L cytokinins and supplemented to the MS medium. The optimal results for callus induction (100%) with yellowish to greenish and compact texture were obtained using 0.5 mg/L 2,4-D combined with 0.25 mg/L zeatin. Leaves obtained from in vitro plantlets and wild plants as well as callus were extracted and analyzed for their antioxidant activities (DPPH and FRAP methods) and polyphenolic properties (total flavonoid and total phenolic content). When compared with leaf extracts of in vitro plantlets and wild plants of L. pumila var. alata, the callus extract displayed significantly higher antioxidant activities and total phenolic and flavonoid content. Hence, callus culture potentially can be adapted for antioxidant and polyphenolic production to satisfy pharmaceutical and nutraceutical needs while conserving wild L. pumila var. alata.


Asunto(s)
Callo Óseo/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Brotes de la Planta/efectos de los fármacos , Polifenoles/química , Primulaceae/efectos de los fármacos , Ácido 2,4-Diclorofenoxiacético/química , Antioxidantes/química , Compuestos de Bencilo/química , Compuestos de Bifenilo/química , Medios de Cultivo , Suplementos Dietéticos , Flavonoides/química , Técnicas In Vitro , Cinetina/química , Fenol/química , Picloram/química , Picratos/química , Hojas de la Planta , Proteínas de Plantas , Raíces de Plantas/efectos de los fármacos , Plantas/efectos de los fármacos , Purinas/química , Zeatina/química
17.
Ecotoxicol Environ Saf ; 220: 112381, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34091184

RESUMEN

Developing monolithic carbon-based catalyst with low cost, easy separation and high performance to degrade pollutants via PMS activation is crucial. In this work, a series of novel monolithic Me-CA catalysts based on biomass derived carbon aerogel were prepared by hydrothermal method using waste watermelon peel as raw material. Co-CA catalyst showed excellent performance to activate PMS for 2, 4-DCP degradation in different temperature and different water matrices. Different pollutants, such as ciprofloxacin (CIP), bisphenol A (BPA), and 2, 4-dichlorophenoxyacetic acid (2, 4-D) could also be removed in the Co-CA/PMS system. As expected, Co-CA could be easily separated from degraded solution, and show high stability and reusability for PMS activation with a lower cobalt leaching. Based on the results of the quenching tests, electron paramagnetic resonance (EPR) spectra, Chronoamperometric test (i-t curves) and electro-chemical impedance spectroscopy (EIS), the PMS activation mechanism was proposed. The phytotoxicity assessment determined by germination situation of mung bean indicated that PMS activation could eliminate the hazards of 2, 4-D. Therefore, this study provides a low cost, efficient and environmental-friendly monolithic biomass carbon aerogel catalyst for different pollutants degradation, which further advances monolithic catalyst for practical wastewater treatment.


Asunto(s)
Carbono/química , Cobalto/química , Restauración y Remediación Ambiental/métodos , Peróxidos/química , Ácido 2,4-Diclorofenoxiacético/química , Ácido 2,4-Diclorofenoxiacético/toxicidad , Biomasa , Catálisis , Contaminantes Ambientales/química , Contaminantes Ambientales/toxicidad , Eliminación de Residuos , Vigna/efectos de los fármacos
18.
Int J Mol Sci ; 22(7)2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33805949

RESUMEN

Here, we report a biochemical characterization of recombinant maize indole-3-acetyl-ß-d-glucose (IAGlc) synthase which glucosylates indole-3-acetic acid (IAA) and thus abolishes its auxinic activity affecting plant hormonal homeostasis. Substrate specificity analysis revealed that IAA is a preferred substrate of IAGlc synthase; however, the enzyme can also glucosylate indole-3-butyric acid and indole-3-propionic acid with the relative activity of 66% and 49.7%, respectively. KM values determined for IAA and UDP glucose are 0.8 and 0.7 mM, respectively. 2,4-Dichlorophenoxyacetic acid is a competitive inhibitor of the synthase and causes a 1.5-fold decrease in the enzyme affinity towards IAA, with the Ki value determined as 117 µM, while IAA-Asp acts as an activator of the synthase. Two sugar-phosphate compounds, ATP and glucose-1-phosphate, have a unique effect on the enzyme by acting as activators at low concentrations and showing inhibitory effect at higher concentrations (above 0.6 and 4 mM for ATP and glucose-1-phosphate, respectively). Results of molecular docking revealed that both compounds can bind to the PSPG (plant secondary product glycosyltransferase) motif of IAGlc synthase; however, there are also different potential binding sites present in the enzyme. We postulate that IAGlc synthase may contain more than one binding site for ATP and glucose-1-phosphate as reflected in its activity modulation.


Asunto(s)
Glucosiltransferasas/química , Uridina Difosfato Glucosa/química , Zea mays/enzimología , Ácido 2,4-Diclorofenoxiacético/química , Adenosina Trifosfato/química , Secuencias de Aminoácidos , Sitios de Unión , Cationes , Inhibidores Enzimáticos/farmacología , Escherichia coli/metabolismo , Glucosa/química , Glucofosfatos/química , Glucosiltransferasas/antagonistas & inhibidores , Homeostasis , Concentración de Iones de Hidrógeno , Cinética , Simulación del Acoplamiento Molecular , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas Recombinantes/química , Especificidad por Sustrato , Zea mays/efectos de los fármacos
19.
Plant Physiol Biochem ; 155: 444-454, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32818792

RESUMEN

Two Fabaceae exhibiting rapid osmocontractile pulvinar movements were used in this study because this activity is modified by natural auxin and dramatically by 2,4D. A short chain with a carboxylic group being required for auxinic properties, a critical point to analyze is whether the recently synthesized proherbicide ε-(2,4-dichlorophenoxyacetyl)-L-Lys (2-4D-L-Lys) maintains some biological activity despite the increase in length of the chain and the substitution of the carboxyl group by an α-amino acid function. No trace of 2,4D could be detected in the pulvinar tissues treated for 1 h with 2,4D-L-Lys. Complementary approaches (electrophysiology, pH measurements, use of plasma membrane vesicles) suggest that it was less efficient than 2,4D to activate the plasma membrane H+-ATPase (PM-H+-ATPase). However, it modified the various ion-driven reactions of Mimosa pudica and Cassia fasciculata pulvini in a similar way as 2,4D. Additionally, it was much more effective than fusicoccin to inhibit seismonastic movements of M. pudica leaves and, at low concentrations, to promote leaflet opening in dark, indicating that its mode of action is more complex than the only activation of the PM-H+-ATPase. Various substitutions on 2,4D-L-Lys affected its activity in correlation with the molecular descriptor "halogen ratio" of these derivatives. Conjugation with D-Lys also led to a decrease of pulvinar reaction, suggesting that 2,4D-Lys maintains the main signaling properties of 2,4D involved in pulvinar movements providing that the terminal zwitterion is in a suitable orientation. Our data guide future investigations on the effect of 2,4D and 2,4D-L-Lys on the vacuolar pump activity of motor cells.


Asunto(s)
Cassia/efectos de los fármacos , Herbicidas/química , Mimosa/efectos de los fármacos , Células Vegetales/efectos de los fármacos , Ácido 2,4-Diclorofenoxiacético/química , Membrana Celular/metabolismo , Lisina/análogos & derivados , Lisina/química , ATPasas de Translocación de Protón/metabolismo
20.
J Environ Sci Health B ; 55(11): 974-982, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32757814

RESUMEN

Enantioselective biodegradation of racemic dichlorprop in two soils was investigated in the laboratory. Chiral separation of racemic dichlorprop was achieved by using HPLC with Phenomenex Lux Amylose-2. The first-order kinetic model fitted well the dissipation data of racemic dichlorprop and its pure R- and S-enantiomers. S-dichlorprop was preferentially degraded in both soils and enantioselectivity was affected by soil pH. The half-lives (DT50) of S-dichlorprop were 8.22 days in soil A and 8.06 days in soil D, while R-dichlorprop was more persistent with DT50 of 12.93 days in soil A and 12.38 days in soil D, respectively. Dichlorprop dissipated faster in soil D with lower organic matter content. In sterilized soils, neglected dissipation was observed and enantiomer fraction values remained constant, indicating that the enantioselective degradation was mainly controlled by soil microorganisms. Soil microbial community structure and diversity was assessed by Illumina MiSeq sequencing of 16S rRNA genes from dichlorprop and no dichlorprop contaminated microcosms. Compared with controls, dichlorprop application had no significant effect on microbial community structures at phylum level, but increased bacterial diversity and dichlorprop degradation related taxa in both soils. S-dichlorprop preferential degradation might be attributed to the S-enantiomer preferred degraders in the family of Sphingomonadaceae.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético/análogos & derivados , Microbiota/efectos de los fármacos , Microbiología del Suelo , Contaminantes del Suelo/farmacología , Ácido 2,4-Diclorofenoxiacético/análisis , Ácido 2,4-Diclorofenoxiacético/química , Ácido 2,4-Diclorofenoxiacético/farmacocinética , Ácido 2,4-Diclorofenoxiacético/farmacología , Agricultura , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/metabolismo , Biodegradación Ambiental , Cinética , Michigan , Microbiota/genética , ARN Ribosómico 16S , Suelo/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/química , Contaminantes del Suelo/farmacocinética , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA