RESUMEN
3-Hydroxyanthranillic acid (3HAA) is one of the key metabolites from the tryptophan (TRP) metabolism pathway and is associated with aging, age-associated diseases, and healthy lifespan extension. This study aims to detect 3HAA in the sweat of healthy older adults using simple, high-performance liquid chromatography (HPLC) method. Chromatographic separation using 20 mmol/L sodium acetate, 3 mmol/L zinc acetate, and 7% (v/v) acetonitrile as mobile phase is possible to simultaneous detect 3HAA, KYN, and TRP with UV and fluorescence detection, respectively, under 6 min. This method demonstrated excellent linearity with coefficient of determination (r2) greater than 0.998 for all analytes. The linear range were 0.05-6 µg/mL for TRP, 0.1-6 µg/mL for KYN and 0.2-6 µg/mL for 3HAA. Percentage recoveries from spiked in human sweat ranged from 90 ± 7-101 ± 3 for TRP, 86 ± 1-92 ± 3 for KYN, and 96 ± 1-103 ± 4 for 3HAA. The precision (%RSD) of repeatability and reproducibility is less than 3% and 6%, respectively. This method was used in a cross-sectional study with 81 participants aged 50-79 years, selected randomly from a local primary healthcare hospital's sampling frame. A detectable amount of 3HAA was observed in all sweat samples, marking the first report of 3HAA presence in human sweat. Additionally, the results revealed that the 3HAA sweat levels increased with age analyzed in three different age groups ranging from 50-59, 60-69, and 70-79. These findings enhance our understanding of sweat profiles and their correlation with aging, potentially further improving early diagnosis, disease monitoring, and development of customized treatment programs for older adults.
Asunto(s)
Ácido 3-Hidroxiantranílico , Sudor , Humanos , Sudor/química , Sudor/metabolismo , Anciano , Masculino , Femenino , Cromatografía Líquida de Alta Presión/métodos , Persona de Mediana Edad , Ácido 3-Hidroxiantranílico/análisis , Ácido 3-Hidroxiantranílico/metabolismo , Triptófano/análisis , Triptófano/metabolismo , Reproducibilidad de los ResultadosRESUMEN
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic, complex illness characterized by severe and often disabling physical and mental fatigue. So far, scientists have not been able to fully pinpoint the biological cause of the illness and yet it affects millions of people worldwide. To gain a better understanding of ME/CFS, we compared the metabolic networks in the plasma of 38 ME/CFS patients to those of 24 healthy control participants. This involved an untargeted metabolomics approach in addition to the measurement of targeted substances including tryptophan and its metabolites, as well as tyrosine, phenylalanine, B vitamins, and hypoxanthine using liquid chromatography coupled to mass spectrometry. We observed significant alterations in several metabolic pathways, including the vitamin B3, arginine-proline, and aspartate-asparagine pathways, in the untargeted analysis. The targeted analysis revealed changes in the levels of 3-hydroxyanthranilic acid, 3-hydroxykynurenine, hypoxanthine, and phenylalanine in ME/CFS patients compared to the control group. These findings suggest potential alterations in immune system response and oxidative stress in ME/CFS patients.
Asunto(s)
Síndrome de Fatiga Crónica , Metabolómica , Triptófano , Humanos , Triptófano/metabolismo , Triptófano/sangre , Metabolómica/métodos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Síndrome de Fatiga Crónica/metabolismo , Síndrome de Fatiga Crónica/sangre , Espectrometría de Masas/métodos , Quinurenina/metabolismo , Quinurenina/sangre , Quinurenina/análogos & derivados , Voluntarios Sanos , Fenilalanina/sangre , Fenilalanina/metabolismo , Hipoxantina/sangre , Hipoxantina/metabolismo , Ácido 3-Hidroxiantranílico/metabolismo , Cromatografía Liquida/métodosRESUMEN
BACKGROUND: We have developed and validated methods for the determination of three major tryptophan metabolites metabolized by the kynurenine pathway, namely kynurenine (KYN), 3-hydroxykynurenine (3-HK), and 3-hydroxyanthranilic acid (3-HAA). KYN and 3-HK were determined using RP-HPLC-UV, and 3-HAA using RP-HPLC-FL. We then developed a comparative method based on CE-UV. The developed methods were validated and 36 samples of human brain glioma tissue homogenates were assayed in all 4 grades of malignancy, and the concentration levels of assayed metabolites were compared with available clinical data. RESULTS: Each of the methods is characterized by high precision, accuracy and repeatability, and the determined LOQ values indicate the possibility of performing quantitative analysis on the available samples of human glioma tumors (36 samples in grades G1-G4). The concentration values of selected metabolites obtained using HPLC methods were subjected to statistical analysis and preliminary clinical data processing. We found statistically significant differences in the concentrations of KYN, 3-HK and 3-HAA between the various grades of the disease, and characterized these differences more precisely by means of the Dunn-Bonferroni post hoc test. We did not find that the patient's environment or habits significantly affected the metabolites concentration of the study samples population. In addition, we showed a high positive correlation between KYN, 3-HK and 3-HAA, which appears to be a characteristic that describes metabolic changes of Trp in relation to KYN, 3-HK and 3-HAA, and indicates potential diagnostic value. SIGNIFICANCE: The preliminary studies carried out contribute new knowledge on the molecular basis of human brain glioma. They also provide valuable information useful for the development of glioma diagnostics, differentiation of disease grades and assessment of the patient's condition. The obtained relationships between metabolite concentrations and the grade of malignancy of the disease and correlations between metabolite concentrations constitute the basis for further broader biochemical and clinical analysis.
Asunto(s)
Neoplasias Encefálicas , Glioma , Quinurenina , Triptófano , Humanos , Triptófano/metabolismo , Triptófano/análisis , Glioma/metabolismo , Cromatografía Líquida de Alta Presión , Quinurenina/metabolismo , Quinurenina/análogos & derivados , Quinurenina/análisis , Masculino , Persona de Mediana Edad , Femenino , Neoplasias Encefálicas/metabolismo , Ácido 3-Hidroxiantranílico/metabolismo , Ácido 3-Hidroxiantranílico/análisis , Adulto , AncianoRESUMEN
Tryptophan (TRP) metabolites along the kynurenine (KYN) pathway (KP) have been found to influence muscle. Proinflammatory cytokines are known to stimulate the degradation of TRP down the KP. Given that both inflammation and KP metabolites have been connected with loss of muscle, we assessed the potential mediating role of KP metabolites on inflammation and muscle mass in older men. Five hundred and five men (85.0â ±â 4.2 years) from the Osteoporotic Fractures in Men cohort study with measured D3-creatine dilution (D3Cr) muscle mass, KP metabolites, and inflammation markers (C-reactive protein [CRP], alpha-1-acid glycoprotein [AGP] and a subsample [nâ =â 305] with interleukin [IL-6, IL-1ß, IL-17A] and tumor necrosis factor-α [TNF-α]) were included in the analysis. KP metabolites and inflammatory markers were measured using liquid chromatography-tandem mass spectrometry and immunoassays, respectively. 23%-92% of the inverse relationship between inflammatory markers and D3Cr muscle mass was mediated by KP metabolites (indirect effect pâ <â .05). 3-hydroxyanthranilic acid (3-HAA), quinolinic acid (QA), TRP, xanthurenic acid (XA), KYN/TRP, 3-hydroxykynurenine (3-HK)/3-HAA, QA/3-HAA, and nicotinamide (NAM)/QA mediated the AGP relationship. 3-HAA, QA, KYN/TRP, 3-HK/XA, HKr ratio, 3-HK/3-HAA, QA/3-HAA, and NAM/QA mediated the CRP. KYN/TRP, 3-HK/XA, and NAM/QA explained the relationship for IL-6 and 3-HK/XA and QA/3-HAA for TNF-α. No mediation effect was observed for the other cytokines (indirect effect pâ >â .05). KP metabolites, particularly higher ratios of KYN/TRP, 3-HK/XA, 3-HK/3-HAA, QA/3-HAA, and a lower ratio of NAM/QA, mediated the relationship between inflammation and low muscle mass. Our preliminary cross-sectional data suggest that interventions to alter D3Cr muscle mass may focus on KP metabolites rather than inflammation per se.
Asunto(s)
Biomarcadores , Inflamación , Quinurenina , Músculo Esquelético , Triptófano , Humanos , Masculino , Quinurenina/metabolismo , Quinurenina/análogos & derivados , Inflamación/metabolismo , Anciano de 80 o más Años , Biomarcadores/metabolismo , Triptófano/metabolismo , Músculo Esquelético/metabolismo , Proteína C-Reactiva/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Sarcopenia/metabolismo , Ácido 3-Hidroxiantranílico/metabolismo , Citocinas/metabolismo , Xanturenatos/metabolismoRESUMEN
Age is the primary risk factor for neurodegenerative diseases such as Alzheimer's and Huntington's disease. Alzheimer's disease is the most common form of dementia and a leading cause of death in the elderly population of the United States. No effective treatments for these diseases currently exist. Identifying effective treatments for Alzheimer's, Huntington's, and other neurodegenerative diseases is a major current focus of national scientific resources, and there is a critical need for novel therapeutic strategies. Here, we investigate the potential for targeting the kynurenine pathway metabolite 3-hydroxyanthranilic acid (3HAA) using Caenorhabditis elegans expressing amyloid-beta or a polyglutamine peptide in body wall muscle, modeling the proteotoxicity in Alzheimer's and Huntington's disease, respectively. We show that knocking down the enzyme that degrades 3HAA, 3HAA dioxygenase (HAAO), delays the age-associated paralysis in both models. This effect on paralysis was independent of the protein aggregation in the polyglutamine model. We also show that the mechanism of protection against proteotoxicity from HAAO knockdown is mimicked by 3HAA supplementation, supporting elevated 3HAA as the mediating event linking HAAO knockdown to delayed paralysis. This work demonstrates the potential for 3HAA as a targeted therapeutic in neurodegenerative disease, though the mechanism is yet to be explored.
Asunto(s)
Ácido 3-Hidroxiantranílico , Péptidos beta-Amiloides , Caenorhabditis elegans , Parálisis , Péptidos , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Animales , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/genética , Péptidos/farmacología , Ácido 3-Hidroxiantranílico/metabolismo , Parálisis/inducido químicamente , Parálisis/metabolismo , Parálisis/genética , Modelos Animales de Enfermedad , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/tratamiento farmacológico , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/genética , Dioxigenasas/metabolismo , Dioxigenasas/genéticaRESUMEN
INTRODUCTION: Colorectal cancer (CRC) survivors often experience neuropsychological symptoms, including anxiety and depression. Mounting evidence suggests a role for the kynurenine pathway in these symptoms due to potential neuroprotective and neurotoxic roles of involved metabolites. However, evidence remains inconclusive and insufficient in cancer survivors. Thus, we aimed to explore longitudinal associations of plasma tryptophan, kynurenines, and their established ratios with anxiety and depression in CRC survivors up to 12 months post-treatment. METHODS: In 249 stage I-III CRC survivors, blood samples were collected at 6 weeks, 6 months, and 12 months post-treatment to analyze plasma concentrations of tryptophan and kynurenines using liquid-chromatography tandem-mass spectrometry (LC/MS-MS). At the same timepoints, anxiety and depression were assessed using the Hospital Anxiety and Depression Scale (HADS). Confounder-adjusted linear mixed models were used to analyze longitudinal associations. Sensitivity analyses with false discovery rate (FDR) correction were conducted to adjust for multiple testing. RESULTS: Higher plasma tryptophan concentrations were associated with lower depression scores (ß as change in depression score per 1 SD increase in the ln-transformed kynurenine concentration: -0.31; 95%CI: -0.56,-0.05), and higher plasma 3-hydroxyanthranilic acid concentrations with lower anxiety scores (-0.26; -0.52,-0.01). A higher 3-hydroxykynurenine ratio (HKr; the ratio of 3-hydroxykynurenine to the sum of kynurenic acid, xanthurenic acid, anthranilic acid, and 3-hydroxyanthranilic acid) was associated with higher depression scores (0.34; 0.04,0.63) and higher total anxiety and depression scores (0.53; 0.02,1.04). Overall associations appeared to be mainly driven by inter-individual associations, which were statistically significant for tryptophan with depression (-0.60; -1.12,-0.09), xanthurenic acid with total anxiety and depression (-1.04; -1.99,-0.10), anxiety (-0.51; -1.01,-0.01), and depression (-0.56; -1.08,-0.05), and kynurenic-acid-to-quinolinic-acid ratio with depression (-0.47; -0.93,-0.01). In sensitivity analyses, associations did not remain statistically significant after FDR adjustment. CONCLUSION: We observed that plasma concentrations of tryptophan, 3-hydroxyanthranilic acid, xanthurenic acid, 3-hydroxykynurenine ratio, and kynurenic-acid-to-quinolinic-acid ratio tended to be longitudinally associated with anxiety and depression in CRC survivors up to 12 months post-treatment. Future studies are warranted to further elucidate the association of plasma kynurenines with anxiety and depression.
Asunto(s)
Supervivientes de Cáncer , Neoplasias , Humanos , Quinurenina/metabolismo , Triptófano/metabolismo , Ácido 3-Hidroxiantranílico/metabolismo , Depresión , Biomarcadores , Ácido Quinurénico , AnsiedadRESUMEN
Tryptophan metabolism through the kynurenine pathway influences molecular processes critical to healthy aging including immune signaling, redox homeostasis, and energy production. Aberrant kynurenine metabolism occurs during normal aging and is implicated in many age-associated pathologies including chronic inflammation, atherosclerosis, neurodegeneration, and cancer. We and others previously identified three kynurenine pathway genes-tdo-2, kynu-1, and acsd-1-for which decreasing expression extends lifespan in invertebrates. Here we report that knockdown of haao-1, a fourth gene encoding the enzyme 3-hydroxyanthranilic acid (3HAA) dioxygenase (HAAO), extends lifespan by ~30% and delays age-associated health decline in Caenorhabditis elegans. Lifespan extension is mediated by increased physiological levels of the HAAO substrate 3HAA. 3HAA increases oxidative stress resistance and activates the Nrf2/SKN-1 oxidative stress response. In pilot studies, female Haao knockout mice or aging wild type male mice fed 3HAA supplemented diet were also long-lived. HAAO and 3HAA represent potential therapeutic targets for aging and age-associated disease.
Asunto(s)
Proteínas de Caenorhabditis elegans , Quinurenina , Animales , Masculino , Femenino , Ratones , Quinurenina/metabolismo , Triptófano/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Ácido 3-Hidroxiantranílico/metabolismo , Longevidad/genética , Ratones Noqueados , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismoRESUMEN
OBJECTIVE: To develop a method for determining cinnabarinic acid (CA) and its immediate precursor 3-hydroxyanthranylic acid (3HAA) in blood plasma and to study their concentrations in patients with schizophrenia before and after treatment. MATERIAL AND METHODS: The study was carried out on a sample of 23 female patients with an attack-like progredient schizophrenia (F20.01). The levels of CA and 3HAA in blood plasma were measured using liquid chromatography with tandem mass spectrometry. RESULTS: We found an inverse statistically significant correlation of the sum of CA and 3HAA concentrations before treatment with the total PANSS score after treatment (R=-0.50; p<0.05). There was also an inverse correlation of the CA concentration of before treatment with the total PANSS score after treatment (R=-0.41, p=0.052), statistically significant at the trend level (0.05
Asunto(s)
Ácido 3-Hidroxiantranílico , Esquizofrenia , Humanos , Femenino , Pronóstico , Oxazinas , QuinureninaRESUMEN
Background: Tryptophan (TRP) is an essential amino acid that must be provided in the diet. The kynurenine pathway (KP) is the main route of TRP catabolism into nicotinamide adenosine dinucleotide (NAD+), and metabolites of this pathway may have protective or degenerative effects on the nervous system. Thus, the KP may be involved in neurodegenerative diseases. Objectives: The purpose of this systematic review and meta-analysis is to assess the changes in KP metabolites such as TRP, kynurenine (KYN), kynurenic acid (KYNA), Anthranilic acid (AA), 3-hydroxykynurenine (3-HK), 5-Hydroxyindoleacetic acid (5-HIAA), and 3-Hydroxyanthranilic acid (3-HANA) in Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD) patients compared to the control group. Methods: We conducted a literature search using PubMed/Medline, Scopus, Google Scholar, Web of Science, and EMBASE electronic databases to find articles published up to 2022. Studies measuring TRP, KYN, KYNA, AA, 3-HK, 5-HIAA, 3-HANA in AD, PD, or HD patients and controls were identified. Standardized mean differences (SMDs) were used to determine the differences in the levels of the KP metabolites between the two groups. Results: A total of 30 studies compromising 689 patients and 774 controls were included in our meta-analysis. Our results showed that the blood levels of TRP was significantly lower in the AD (SMD=-0.68, 95% CI=-0.97 to -0.40, p=0.000, I2 = 41.8%, k=8, n=382), PD (SMD=-0.77, 95% CI=-1.24 to -0.30, p=0.001, I2 = 74.9%, k=4, n=352), and HD (SMD=-0.90, 95% CI=-1.71 to -0.10, p=0.028, I2 = 91.0%, k=5, n=369) patients compared to the controls. Moreover, the CSF levels of 3-HK in AD patients (p=0.020) and the blood levels of KYN in HD patients (p=0.020) were lower compared with controls. Conclusion: Overall, the findings of this meta-analysis support the hypothesis that the alterations in the KP may be involved in the pathogenesis of AD, PD, and HD. However, additional research is needed to show whether other KP metabolites also vary in AD, PD, and HD patients. So, the metabolites of KP can be used for better diagnosing these diseases.
Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Huntington , Enfermedad de Parkinson , Humanos , Quinurenina/metabolismo , Ácido Quinurénico/metabolismo , Triptófano/metabolismo , Ácido Hidroxiindolacético , Ácido 3-Hidroxiantranílico , NAD , Adenosina , NiacinamidaRESUMEN
BACKGROUND: Epileptic (previously infantile) spasms is the most common epileptic encephalopathy occurring during infancy and is frequently associated with abnormal neurodevelopmental outcomes. Epileptic spasms have a diverse range of known (genetic, structural) and unknown aetiologies. High dose corticosteroid treatment for 4 weeks often induces remission of spasms, although the mechanism of action of corticosteroid is unclear. Animal models of epileptic spasms have shown decreased brain kynurenic acid, which is increased after treatment with the ketogenic diet. We quantified kynurenine pathway metabolites in the cerebrospinal fluid (CSF) of infants with epileptic spasms and explored clinical correlations. METHODS: A panel of nine metabolites in the kynurenine pathway (tryptophan, kynurenine, kynurenic acid, 3-hydroxykynurenine, xanthurenic acid, anthranilic acid, 3-hydroxyanthranilic acid, quinolinic acid, and picolinic acid) were measured using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). CSF collected from paediatric patients less than 3 years of age with epileptic spasms (n=34, 19 males, mean age 0.85, median 0.6, range 0.3-3 yrs) were compared with other epilepsy syndromes (n=26, 9 males, mean age 1.44, median 1.45, range 0.3-3 yrs), other non-inflammatory neurological diseases (OND) (n=29, 18 males, mean age 1.47, median 1.6, range 0.1-2.9 yrs) and inflammatory neurological controls (n=12, 4 males, mean age 1.80, median 1.80, range 0.8-2.5 yrs). FINDINGS: There was a statistically significant decrease of CSF kynurenic acid in patients with epileptic spasms compared to OND (p<0.0001). In addition, the kynurenic acid/kynurenine (KYNA/KYN) ratio was lower in the epileptic spasms subgroup compared to OND (p<0.0001). Epileptic spasms patients who were steroid responders or partial steroid responders had lower KYNA/KYN ratio compared to patients who were refractory to steroids (p<0.005, p<0.05 respectively). INTERPRETATION: This study demonstrates decreased CSF kynurenic acid and KYNA/KYN in epileptic spasms, which may also represent a biomarker for steroid responsiveness. Given the anti-inflammatory and neuroprotective properties of kynurenic acid, further therapeutics able to increase kynurenic acid should be explored. FUNDING: Financial support for the study was granted by Dale NHMRC Investigator grant APP1193648, Petre Foundation, Cerebral Palsy Alliance and Department of Biochemistry at the Children's Hospital at Westmead. Prof Guillemin is funded by NHMRC Investigator grant APP1176660 and Macquarie University.
Asunto(s)
Epilepsia , Ácido Quinurénico , Ácido 3-Hidroxiantranílico , Corticoesteroides , Animales , Biomarcadores , Cromatografía Liquida , Epilepsia/tratamiento farmacológico , Ácido Quinurénico/líquido cefalorraquídeo , Quinurenina/líquido cefalorraquídeo , Masculino , Ácido Quinolínico/líquido cefalorraquídeo , Espasmo , Espectrometría de Masas en Tándem , Triptófano/metabolismoRESUMEN
OBJECTIVE: To prospectively establish an early diagnosis model of acute colon cancerous bowel obstruction by applying nuclear magnetic resonance hydrogen spectroscopy(1H NMR) technology based metabolomics methods, combined with machine learning. METHODS: In this study, serum samples of 71 patients with acute bowel obstruction requiring emergency surgery who were admitted to the Emergency Department of Sichuan Provincial People's Hospital from December 2018 to November 2020 were collected within 2 hours after admission, and NMR spectroscopy data was taken after pretreatment. After postoperative pathological confirmation, they were divided into colon cancerous bowel obstruction (CBO) group and adhesive bowel obstruction (ABO) control group. Used MestReNova software to extract the two sets of spectra bins, and used the MetaboAnalyst5.0 website to perform partial least square discrimination (PLS-DA), combining the human metabolome database (HMDB) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) to find possible different Metabolites and related metabolic pathways. RESULTS: 22 patients were classified as CBO group and 30 were classified as ABO control group. Compared with ABO group, the level of Xanthurenic acid, 3-Hydroxyanthranilic acid, Gentisic acid, Salicyluric acid, Ferulic acid, Kynurenic acid, CDP, Mandelic acid, NADPH, FAD, Phenylpyruvate, Allyl isothiocyanate, and Vanillylmandelic acid increased in the CBO group; while the lecel of L-Tryptophan and Bilirubin decreased. There were significant differences between two groups in the tryptophan metabolism, tyrosine metabolism, glutathione metabolism, phenylalanine metabolism and synthesis pathways of phenylalanine, tyrosine and tryptophan (all P<0.05). Tryptophan metabolism pathway had the greatest impact (Impact = 0.19). The early diagnosis model of colon cancerous bowel was established based on the levels of six metabolites: Xanthurenic acid, 3-Hydroxyanthranilic acid, Gentisic acid, Salicylic acid, Ferulic acid and Kynurenic acid (R2 = 0.995, Q2 = 0.931, RMSE = 0.239, AUC = 0.962). CONCLUSION: This study firstly used serum to determine the difference in metabolome between patients with colon cancerous bowel obstruction and those with adhesive bowel obstruction. The study found that the metabolic information carried by the serum was sufficient to discriminate the two groups of patients and provided the theoretical supporting for the future using of the more convenient sample for the differential diagnosis of patients with colon cancerous bowel obstruction. Quantitative experiments on a large number of samples were still needed in the future.
Asunto(s)
Ácido 3-Hidroxiantranílico , Triptófano , Biomarcadores , Colon , Diagnóstico Precoz , Humanos , Ácido Quinurénico , Metaboloma , Metabolómica/métodos , Fenilalanina , Espectroscopía de Protones por Resonancia Magnética/métodos , TirosinaRESUMEN
As global pollution, microplastics pollution has aroused growing concerns. In our experiment, the effect of microplastics acute exposure on the liver of swordtail fish was investigated by using LC-MS metabolomics. Fishes treated with high concentration polystyrene microspheres (1 µm) for 72 h were divided into three concentration groups: (A) no microplastics, (B): 1 × 106 microspheres L-1, (C): 1 × 107 microspheres L-1. Metabolomic analysis indicated that exposure to microplastics caused alterations of metabolic profiles in swordtail fish, including 37 differential metabolites were identified in B vs. A, screened out ten significant metabolites, which involved 14 metabolic pathways. One hundred three differential metabolites were identified in C vs. A, screened out 16 significant metabolites, which involved 30 metabolic pathways. Six significant metabolites were overlapping in group B vs. A and C vs. A; they are 3-hydroxyanthranilic acid, l-histidine, citrulline, linoleic acid, pantothenate, and xanthine. In addition, four metabolic pathways are overlapping in group B vs. A and C vs. A; they are beta-alanine metabolism, biosynthesis of amino acids, linoleic acid metabolism, and aminoacyl-tRNA biosynthesis. These differential metabolites were involved in oxidative stress, immune function, energy metabolism, sugar metabolism, lipid metabolism, molecule transport, and weakened feed utilization, growth performance, nutrient metabolism, and animal growth. Furthermore, we found that the number of interfered amino acids and microplastics showed a dose-effect. In summary, great attention should be paid to the potential impact of microplastics on aquatic organisms.
Asunto(s)
Ciprinodontiformes , Contaminantes Químicos del Agua , Ácido 3-Hidroxiantranílico/metabolismo , Ácido 3-Hidroxiantranílico/farmacología , Animales , Cromatografía Liquida , Citrulina/metabolismo , Citrulina/farmacología , Ciprinodontiformes/metabolismo , Histidina/metabolismo , Histidina/farmacología , Ácidos Linoleicos/metabolismo , Ácidos Linoleicos/farmacología , Hígado/metabolismo , Metabolómica , Microplásticos/toxicidad , Plásticos/metabolismo , Poliestirenos/metabolismo , Poliestirenos/toxicidad , ARN de Transferencia/metabolismo , ARN de Transferencia/farmacología , Azúcares/metabolismo , Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua/metabolismo , Xantinas/metabolismo , Xantinas/farmacología , beta-Alanina/metabolismo , beta-Alanina/farmacologíaRESUMEN
By far, no revolutionary breakthrough in the treatment of Parkinson's disease (PD) was found. It is indeed a knotty problem to select a satisfactory strategy for treating some patients with advanced stage PD. Development of novel therapeutic targets against PD has been an urgent task faced by global PD researchers. Targets in the tryptophan-kynurenine pathway (KP) were then considered. Metabolites in the KP are liposoluble. Some neurotoxic metabolites, including 3-hydroxykynurenine and its downstream 3-hydroxyanthranilic acid and quinolinic acid, are mainly produced peripherally. They can easily cross the blood-brain barrier (BBB) and exert their neurotoxic effects in the central neuron system (CNS), which is considered as a potential pathophysiological mechanism of neurodegenerative diseases. Hence, agents against the targets in the KP have two characteristics: (1) being independent from the dopaminergic system and (2) being seldom affected by the BBB. Inspiringly, one agent, namely, the inhibitor of indoleamine 2,3-dioxygenase 1, has been currently reported to present satisfactory efficacy comparable to levodopa, implying that the KP might be a potential novel target for PD. This review collected and summarized the updated information regarding the association of the KP with PD, which is helpful for understanding the clinical value of the KP in the PD scenario.
Asunto(s)
Quinurenina , Enfermedad de Parkinson , Ácido 3-Hidroxiantranílico , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Quinurenina/metabolismo , Levodopa , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Ácido Quinolínico/metabolismo , Triptófano/metabolismoRESUMEN
Herein it is reported the development and application of two chromatographic assays for the measurement of the activity of 3-Hydroxyanthranilate-3,4-dioxygenase (3HAO). Such an enzyme converts 3-Hydroxyanthranilic acid (3HAA) to 2-amino-3-carboxymuconic semialdehyde (ACMS), which undergo a spontaneous, non-enzymatic cyclization to produce quinolinic acid (QUIN). The enzyme activity was measured by quantitation of the substrate consumption over time either with spectrophotometric (UV) or mass spectrometric (MS) detection upon reversed-phase chromatographic separation. MS detection resulted more selective and sensitive, but less accurate and precise. However, both methods have sufficient sensitivity to allow the measurement of enzyme activity with consistent results compared to literature data. Since MS detection allowed less sample consumption it was used to calculate the kinetics parameters (i.e., Vmax and Kd) of recombinant 3HAO. Another MS-based method was then developed to measure the amount of QUIN produced, revealing an incomplete conversion of 3HAA to QUIN. As suggested by previous studies, the enzyme activity was apparently sensitive to the redox state of the enzyme thiols. In fact, thiol reducing agents such as dithiothreitol (DTT) and glutathione (GSH), can alter the enzyme activity although the investigation on the exact mechanism involved in such effect was beyond the scope of the research. Interestingly, edaravone (EDA) induced an in vitro suppression of QUIN production through direct, competitive 3HAO inhibition. EDA is a molecule approved for the treatment of amyotrophic lateral sclerosis (ALS), a neurodegenerative disease associated with an increase of QUIN concentrations in both serum and cerebrospinal fluid. Although EDA was reported to mitigate ALS progression its mode of action is still largely unknown. Some studies reported antioxidant and radical scavenger properties of EDA, but none confirm a direct activity as 3HAO enzyme inhibitor. Since QUIN is reported to be a neurotoxic metabolite, 3HAO inhibition can contribute to the beneficial effect of EDA in ALS, although such a mechanism must be then confirmed in vivo. However, EDA might be a convenient scaffold for the design of selective 3HAO inhibitors with potential applications in ALS treatment.
Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , 3-Hidroxiantranilato 3,4-Dioxigenasa/química , 3-Hidroxiantranilato 3,4-Dioxigenasa/metabolismo , Ácido 3-Hidroxiantranílico/metabolismo , Ácido 3-Hidroxiantranílico/farmacología , Edaravona/farmacología , Humanos , Ácido Quinolínico/metabolismoRESUMEN
After thousands of years of evolution and development, traditional fermented soybean foods, with their unique charm, have gained a stable place in the global market. With the explosive development of modern biological technologies, some traditional fermented soybean foods that possess health-promoting benefits are gradually appearing. Physiologically active substances in fermented soybean foods have received extensive attention in recent decades. This review addresses the potential health benefits of several representative fermented soybean foods, as well as the action mechanism and influencing factors of their functional components. Phenolic compounds, low-molecular-weight peptides, melanoidins, furanones and 3-hydroxyanthranilic acid are the antioxidative components predominantly found in fermented soybean foods. Angiotensin I-converting enzyme inhibitory peptides and γ-aminobutyric acid isolated from fermented soy foods provide potential selectivity for hypertension therapy. The potential anti-inflammatory bioactive components in fermented soybean foods include γ-linolenic acid, butyric acid, soy sauce polysaccharides, 2S albumin and isoflavone glycones. Deoxynojirimycin, genistein, and betaine possess high activity against α-glucosidase. Additionally, fermented soybean foods contain neuroprotective constituents, including indole alkaloids, nattokinase, arbutin, and isoflavone vitamin B12. The anticancer activities of fermented soybean foods are associated with surfactin, isolavone, furanones, trypsin inhibitors, and 3-hydroxyanthranilic acid. Nattokinase is highly correlated with antioxidant activity. And a high level of menaquinones-7 is linked to protection against neurodegenerative diseases. Sufficiently recognizing and exploiting the health benefits and functional components of traditional fermented soybean foods could provide a new strategy in the development of the food fermentation industry.
Asunto(s)
Alimentos Fermentados , Isoflavonas , Ácido 3-Hidroxiantranílico , Antioxidantes/farmacología , Péptidos , Glycine max/químicaRESUMEN
Increasing evidence suggests that kynurenine pathway (KP) dyshomeostasis may promote disease progression in dementia. Studies in Alzheimer's disease (AD) patients confirm KP dyshomeostasis in plasma and cerebrospinal fluid (CSF) which correlates with amyloid-ß and tau pathology. Herein, we performed the first comprehensive study assessing baseline levels of KP metabolites in participants enrolling in the Australian Imaging Biomarkers Flagship Study of Aging. Our purpose was to test the hypothesis that changes in KP metabolites may be biomarkers of dementia processes that are largely silent. We used a cross-sectional analytical approach to assess non-progressors (N = 73); cognitively normal (CN) or mild cognitive impairment (MCI) participants at baseline and throughout the study, and progressors (N = 166); CN or MCI at baseline but progressing to either MCI or AD during the study. Significant KP changes in progressors included increased 3-hydroxyanthranilic acid (3-HAA) and 3-hydroxyanthranilic acid/anthranilic acid (3-HAA/AA) ratio, the latter having the largest effect on the odds of an individual being a progressor (OR 35.3; 95% CI between 14 and 104). 3-HAA levels were hence surprisingly bi-phasic, high in progressors but low in non-progressors or participants who had already transitioned to MCI or dementia. This is a new, unexpected and interesting result, as most studies of the KP in neurodegenerative disease show reduced 3-HAA/AA ratio after diagnosis. The neuroprotective metabolite picolinic acid was also significantly decreased while the neurotoxic metabolite 3-hydroxykynurenine increased in progressors. These results were significant even after adjustment for confounders. Considering the magnitude of the OR to predict change in cognition, it is important that these findings are replicated in other populations. Independent validation of our findings may confirm the utility of 3-HAA/AA ratio to predict change in cognition leading to dementia in clinical settings.
Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedades Neurodegenerativas , Ácido 3-Hidroxiantranílico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Australia , Biomarcadores , Disfunción Cognitiva/líquido cefalorraquídeo , Estudios Transversales , Progresión de la Enfermedad , Humanos , Quinurenina , Fragmentos de Péptidos/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeoAsunto(s)
Ácido 3-Hidroxiantranílico/metabolismo , Carcinoma Hepatocelular/fisiopatología , Quinurenina 3-Monooxigenasa/biosíntesis , Ácido 3-Hidroxiantranílico/farmacología , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/fisiopatologíaRESUMEN
COVID-19 is a pandemic with high morbidity and mortality. In an autopsy cohort of COVID-19 patients, we found extensive accumulation of the tryptophan degradation products 3-hydroxy-anthranilic acid and quinolinic acid in the lungs, heart, and brain. This was not related to the expression of the tryptophan-catabolizing indoleamine 2,3-dioxygenase (IDO)-1, but rather to that of its isoform IDO-2, which otherwise is expressed rarely. Bioavailability of tryptophan is an absolute requirement for proper cell functioning and synthesis of hormones, whereas its degradation products can cause cell death. Markers of apoptosis and severe cellular stress were associated with IDO-2 expression in large areas of lung and heart tissue, whereas affected areas in brain were more restricted. Analyses of tissue, cerebrospinal fluid, and sequential plasma samples indicate early initiation of the kynurenine/aryl-hydrocarbon receptor/IDO-2 axis as a positive feedback loop, potentially leading to severe COVID-19 pathology. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Asunto(s)
Encéfalo/enzimología , COVID-19/enzimología , Indolamina-Pirrol 2,3,-Dioxigenasa/análisis , Pulmón/enzimología , Miocardio/enzimología , Ácido 3-Hidroxiantranílico/análisis , Adulto , Anciano , Apoptosis , Autopsia , Encéfalo/patología , COVID-19/mortalidad , COVID-19/patología , COVID-19/virología , Humanos , Quinurenina/análisis , Pulmón/patología , Persona de Mediana Edad , Miocardio/patología , Estudios Prospectivos , Ácido Quinolínico/análisis , Índice de Severidad de la Enfermedad , Triptófano/análisisRESUMEN
Tryptophan (TRP), as an essential amino acid, plays crucial roles in maintaining immune homeostasis due to its complex metabolism pathway, including the microbial metabolism, 5-hydroxytryptamine and kynurenine pathways (KP). Metabolites from these pathways can act antioxidant and endogenous ligand of aryl hydrocarbon receptor (including microbiota metabolites: indole, indole aldehyde, indole acetic acid, indole acrylic acid, indole lactate, indole pyruvate acid, indole propionic acid, skatole, tryptamine, and indoxyl sulfate; and KP metabolites: kynurenine, kynurenic acid, 3-hydroxyanthranilic acid, xanthurenic acid, and cinnabarinic acid) for regulating immune response. In immune-related diseases, the production of pro-inflammatory cytokine activates indoleamine-2,3-dioxygenase, a rate-limiting enzyme of KP, leading to abnormal TRP metabolism in vivo. Many recent studies found that TRP metabolism could be regulated by diet, and the diet regulation on TRP metabolism could therapy related diseases. Accordingly, this review provides a critical overview of the relationships among diet, TRP metabolism and immunity with the aim to seek a treatment opportunity for immune-related diseases.
Asunto(s)
Quinurenina , Triptófano , Quinurenina/metabolismo , Ácido 3-Hidroxiantranílico , Dieta , IndolesRESUMEN
The 3-hydroxyanthranilic acid (3-HAA), a derivative of kynurenine, was reported to suppress tumor growth. However, the function of 3-HAA largely remains unclear. Here, we report that 3-hydroxyanthranilic acid (3-HAA) is lower in tumor cells, while adding exogenous 3-HAA induces apoptosis in hepatocellular carcinoma by binding YY1. This 3-HAA binding of YY1 leads to phosphorylation of YY1 at the Thr 398 by PKCζ, concomitantly enhances YY1 chromatin binding activity to increase expression of target genes. These findings demonstrate that 3-HAA is a ligand of YY1, suggesting it is a promising therapeutic candidate for HCC.