Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.775
Filtrar
1.
PeerJ ; 12: e17650, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952965

RESUMEN

Background: This study explored the utilization of luffa sponge (LS) in enhancing acetification processes. LS is known for having high porosity and specific surface area, and can provide a novel means of supporting the growth of acetic acid bacteria (AAB) to improve biomass yield and acetification rate, and thereby promote more efficient and sustainable vinegar production. Moreover, the promising potential of LS and luffa sponge coated with κ-carrageenan (LSK) means they may represent effective alternatives for the co-production of industrially valuable bioproducts, for example bacterial cellulose (BC) and acetic acid. Methods: LS and LSK were employed as adsorbents for Acetobacter pasteurianus UMCC 2951 in a submerged semi-continuous acetification process. Experiments were conducted under reciprocal shaking at 1 Hz and a temperature of 32 °C. The performance of the two systems (LS-AAB and LSK-AAB respectively) was evaluated based on cell dry weight (CDW), acetification rate, and BC biofilm formation. Results: The use of LS significantly increased the biomass yield during acetification, achieving a CDW of 3.34 mg/L versus the 0.91 mg/L obtained with planktonic cells. Coating LS with κ-carrageenan further enhanced yield, with a CDW of 4.45 mg/L. Acetification rates were also higher in the LSK-AAB system, reaching 3.33 ± 0.05 g/L d as opposed to 2.45 ± 0.05 g/L d for LS-AAB and 1.13 ± 0.05 g/L d for planktonic cells. Additionally, BC biofilm formation during the second operational cycle was more pronounced in the LSK-AAB system (37.0 ± 3.0 mg/L, as opposed to 25.0 ± 2.0 mg/L in LS-AAB). Conclusions: This study demonstrates that LS significantly improves the efficiency of the acetification process, particularly when enhanced with κ-carrageenan. The increased biomass yield, accelerated acetification, and enhanced BC biofilm formation highlight the potential of the LS-AAB system, and especially the LSK-AAB variant, in sustainable and effective vinegar production. These systems offer a promising approach for small-scale, semi-continuous acetification processes that aligns with eco-friendly practices and caters to specialized market needs. Finally, this innovative method facilitates the dual production of acetic acid and bacterial cellulose, with potential applications in biotechnological fields.


Asunto(s)
Ácido Acético , Acetobacter , Biomasa , Carragenina , Carragenina/química , Acetobacter/metabolismo , Ácido Acético/química , Ácido Acético/metabolismo , Luffa/química , Adsorción , Celulosa/metabolismo , Celulosa/química , Biopelículas/crecimiento & desarrollo
2.
Anal Methods ; 16(25): 4060-4065, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38873980

RESUMEN

Methyl parathion, a highly toxic, efficient, and persistent organophosphorus pesticide, is widely used in China. Sibutramine, a non-amphetamine central nervous system depressant, helps lose weight by disrupting hormone regulation, stimulating sympathetic nerves, and suppressing appetite. However, some unethical businesses fail to properly handle raw materials in foods like apple cider vinegar, leading to residual methyl parathion in apples or illegal excessive addition of sibutramine. Therefore, it is imperative to develop an immunoassay for the rapid detection of methyl parathion and sibutramine. The corresponding two haptens were prepared and coupled with the carrier proteins according to methyl parathion-sulfur-bovine serum protein (BSA)/chicken ovalbumin (OVA)-sibutramine (20 : 1 : excess, 15 : 1 : excess, 10 : 1 : excess, and 5 : 1 : excess), and sibutramine-BSA/OVA-methyl parathion (20 : 1 : excess, 10 : 1 : excess: 5 : 1 : excess, and 0 : 1 : excess). The result shows that the inhibition rate of the antibody obtained by methyl parathion-BSA/OVA-sibutramine (20 : 1 : excess) was higher than that of sibutramine-BSA/OVA-methyl parathion, which was 67.93%, and the concentration of methyl parathion was 8.65 ng mL-1 at this inhibition rate. Thus, methyl parathion-BSA/OVA-sibutramine (8.65 : 1 : excess) and the corresponding antibodies were selected for subsequent method establishment. By changing the concentration of the coating and antibody, the inhibition rate was found when the coating was 0.125 ng mL-1 and the antibody was diluted 4000 times. The antibody was used to develop a standard curve for the detection of sibutramine at the half-maximum inhibitory concentration (IC50) is 4.59 ng mL-1, the limit of detection (IC10) is 2.21 ng mL-1, the detection range is 2.89 to 7.28 ng mL-1, methyl p-phosphorus at the half-maximum inhibitory concentration (IC50) is 15.34 ng mL-1, the limit of detection (IC10) is 0.42 ng mL-1, the detection range is ng mL-1. Under these conditions, the recovery rate was between 88% and 102%, within reasonable limits, indicating the successful establishment of a rapid enzyme-linked ELISA assay.


Asunto(s)
Ciclobutanos , Ensayo de Inmunoadsorción Enzimática , Malus , Metil Paratión , Ciclobutanos/química , Ensayo de Inmunoadsorción Enzimática/métodos , Malus/química , Metil Paratión/análisis , Ácido Acético/química , Depresores del Apetito/análisis , Depresores del Apetito/química , Contaminación de Alimentos/análisis , Animales , Límite de Detección
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124539, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-38870693

RESUMEN

The quality of the grains during the fumigation process can significantly affect the flavour and nutritional value of Shanxi aged vinegar (SAV). Hyperspectral imaging (HSI) was used to monitor the extent of fumigated grains, and it was combined with chemometrics to quantitatively predict three key physicochemical constituents: moisture content (MC), total acid (TA) and amino acid nitrogen (AAN). The noise reduction effects of five spectral preprocessing methods were compared, followed by the screening of optimal wavelengths using competitive adaptive reweighted sampling. Support vector machine classification was employed to establish a model for discriminating fumigated grains, and the best recognition accuracy reached 100%. Furthermore, the results of partial least squares regression slightly outperformed support vector machine regression, with correlation coefficient for prediction (Rp) of 0.9697, 0.9716, and 0.9098 for MC, TA, and AAN, respectively. The study demonstrates that HSI can be employed for rapid non-destructive monitoring and quality assessment of the fumigation process in SAV.


Asunto(s)
Ácido Acético , Algoritmos , Fumigación , Imágenes Hiperespectrales , Espectroscopía Infrarroja Corta , Fumigación/métodos , Espectroscopía Infrarroja Corta/métodos , Ácido Acético/química , Imágenes Hiperespectrales/métodos , Quimiometría/métodos , Máquina de Vectores de Soporte , Análisis de los Mínimos Cuadrados
4.
Biomacromolecules ; 25(7): 4246-4254, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38868864

RESUMEN

The increased interest in the utilization of lignin in biobased applications is evident from the rise in lignin valorization studies. The present study explores the responsiveness of lignin toward oxidative valorization using acetic acid and hydrogen peroxide. The pristine lignins and their oxidized equivalents were analyzed comprehensively using NMR and SEC. The study revealed ring opening of phenolic rings yielding muconic acid- and ester-end groups and side-chain oxidations of the benzylic hydroxyls. Syringyl units were more responsive to these reactions than guaiacyl units. The high selectivity of the reaction yielded oligomeric oxidation products with a narrower dispersity than pristine lignins. Mild alkaline hydrolysis of methyl esters enhanced the carboxylic acid content of oxidized lignin, presenting the potential to adjust the carboxylic acid content of lignin. While oxidation reactions in lignin valorization are well documented, this study showed the feasibility of employing optimized oxidation conditions to engineer tailored lignin-based material precursors.


Asunto(s)
Lignina , Oxidación-Reducción , Lignina/química , Peróxido de Hidrógeno/química , Ácidos Carboxílicos/química , Ácido Acético/química , Hidrólisis
5.
Nanotechnology ; 35(38)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38906121

RESUMEN

In the present study, pyroligneous acid, also known as wood vinegar, has been employed as reducing and stabilizing agent in the synthesis of silver nanoparticles (AgNPs) anchored on nanocellulose (NC). The idea is to confer the latter bactericidal properties for its typical uses such as in cosmetics and food-packing. It has been demonstrated that AgNPs can be directly produced onto NC in one-pot fashion while dramatically enhancing the kinetics of AgNPs synthesis (2 h for reaction completion) in comparison to the NC-less counterpart (10 days for reaction completion). Furthermore, NC allowed for a narrower size distribution of AgNPs. NC-supported and non-supported AgNPs had sizes of 5.1 ± 1.6 nm and 16.7 ± 4.62 nm, respectively. Immortalized human keratinocytes (HaCat) cells were then employed as model to evaluate the cytotoxicity of the AgNPs-NC compound. The latter was found not to impact cell proliferation at any formulation, while decreasing the viability by only 6.8% after 72 h. This study contributes to the development of more environmentally benign routes to produce nanomaterials and to the understanding of their impact on cells.


Asunto(s)
Supervivencia Celular , Celulosa , Células HaCaT , Nanopartículas del Metal , Plata , Humanos , Plata/química , Nanopartículas del Metal/química , Celulosa/química , Celulosa/farmacología , Supervivencia Celular/efectos de los fármacos , Queratinocitos/efectos de los fármacos , Queratinocitos/citología , Tamaño de la Partícula , Proliferación Celular/efectos de los fármacos , Ácido Acético/química , Ácido Acético/farmacología
6.
Molecules ; 29(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38893424

RESUMEN

Acetic acid bacteria (AAB) and other members of the complex microbiotas, whose activity is essential for vinegar production, display biodiversity and richness that is difficult to study in depth due to their highly selective culture conditions. In recent years, liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) has emerged as a powerful tool for rapidly identifying thousands of proteins present in microbial communities, offering broader precision and coverage. In this work, a novel method based on LC-MS/MS was established and developed from previous studies. This methodology was tested in three studies, enabling the characterization of three submerged acetification profiles using innovative raw materials (synthetic alcohol medium, fine wine, and craft beer) while working in a semicontinuous mode. The biodiversity of existing microorganisms was clarified, and both the predominant taxa (Komagataeibacter, Acetobacter, Gluconacetobacter, and Gluconobacter) and others never detected in these media (Asaia and Bombella, among others) were identified. The key functions and adaptive metabolic strategies were determined using comparative studies, mainly those related to cellular material biosynthesis, energy-associated pathways, and cellular detoxification processes. This study provides the groundwork for a highly reliable and reproducible method for the characterization of microbial profiles in the vinegar industry.


Asunto(s)
Ácido Acético , Proteínas Bacterianas , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Ácido Acético/metabolismo , Ácido Acético/análisis , Ácido Acético/química , Cromatografía Liquida/métodos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/análisis , Bacterias/metabolismo
7.
Molecules ; 29(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38792205

RESUMEN

This research presents a new, eco-friendly, and swift method combining solid-phase extraction and hydrophobic deep eutectic solvents (DES) with high-performance liquid chromatography (SPE-DES-HPLC) for extracting and quantifying catechin and epicatechin in Shanxi aged vinegar (SAV). The parameters, such as the elution solvent type, the XAD-2 macroporous resin dosage, the DES ratio, the DES volume, the adsorption time, and the desorption time, were optimized via a one-way experiment. A central composite design using the Box-Behnken methodology was employed to investigate the effects of various factors, including 17 experimental runs and the construction of three-dimensional response surface plots to identify the optimal conditions. The results show that the optimal conditions were an HDES (tetraethylammonium chloride and octanoic acid) ratio of 1:3, an XAD-2 macroporous resin dosage of 188 mg, and an adsorption time of 11 min. Under these optimal conditions, the coefficients of determination of the method were greater than or equal to 0.9917, the precision was less than 5%, and the recoveries ranged from 98.8% to 118.8%. The environmentally friendly nature of the analytical process and sample preparation was assessed via the Analytical Eco-Scale and AGREE, demonstrating that this method is a practical and eco-friendly alternative to conventional determination techniques. In summary, this innovative approach offers a solid foundation for the assessment of flavanol compounds present in SAV samples.


Asunto(s)
Ácido Acético , Catequina , Disolventes Eutécticos Profundos , Interacciones Hidrofóbicas e Hidrofílicas , Extracción en Fase Sólida , Cromatografía Líquida de Alta Presión/métodos , Extracción en Fase Sólida/métodos , Ácido Acético/química , Catequina/química , Catequina/análisis , Disolventes Eutécticos Profundos/química , Adsorción
8.
Anal Biochem ; 691: 115553, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38697592

RESUMEN

We describe a microwave-assisted, methanol and acetic acid-free, inexpensive method for rapid staining of SDS-PAGE proteins. Only citric acid, benzoic acid, and Coomassie brilliant blue G-250 (CBG) were used. Microwave irradiation reduced the detection duration, and proteins in a clear background were visualized within 30 min of destaining, after 2 min of fixing and 12 min of staining. By using this protocol, comparable band intensities were obtained to the conventional methanol/acetic acid method.


Asunto(s)
Ácido Acético , Electroforesis en Gel de Poliacrilamida , Metanol , Microondas , Proteínas , Electroforesis en Gel de Poliacrilamida/métodos , Metanol/química , Proteínas/análisis , Ácido Acético/química , Coloración y Etiquetado/métodos , Colorantes de Rosanilina/química
9.
Int J Biol Macromol ; 270(Pt 2): 132272, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38734334

RESUMEN

Shanxi aged vinegar microbiome encodes a wide variety of bacteriocins. The aim of this study was to mine, screen and characterize novel broad-spectrum bacteriocins from the large-scale microbiome data of Shanxi aged vinegar through machine learning, molecular simulation and activity validation. A total of 158 potential bacteriocins were innovatively mined from 117,552 representative genes based on metatranscriptomic information from the Shanxi aged vinegar microbiome using machine learning techniques and 12 microorganisms were identified to secrete bacteriocins at the genus level. Subsequently, employing AlphaFold2 structure prediction and molecular dynamics simulations, eight bacteriocins with high stability were further screened, and all of them were confirmed to have bacteriostatic activity by the Escherichia coli BL21 expression system. Then, gene_386319 (named LAB-3) and gene_403047 (named LAB-4) with the strongest antibacterial activities were purified by two-step methods and analyzed by mass spectrometry. The two bacteriocins have broad-spectrum antimicrobial activity with minimum inhibitory concentration values of 6.79 µg/mL-15.31 µg/mL against Staphylococcus aureus and Escherichia coli. Furthermore, molecular docking analysis indicated that LAB-3 and LAB-4 could interact with dihydrofolate reductase through hydrogen bonds, salt-bridge forces and hydrophobic forces. These findings suggested that the two bacteriocins could be considered as promising broad-spectrum antimicrobial agents.


Asunto(s)
Ácido Acético , Antibacterianos , Bacteriocinas , Aprendizaje Automático , Simulación del Acoplamiento Molecular , Ácido Acético/química , Ácido Acético/metabolismo , Ácido Acético/farmacología , Bacteriocinas/química , Bacteriocinas/farmacología , Bacteriocinas/genética , Antibacterianos/farmacología , Antibacterianos/química , Microbiota , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Simulación de Dinámica Molecular , Staphylococcus aureus/efectos de los fármacos , Pruebas de Sensibilidad Microbiana
10.
Ultrason Sonochem ; 105: 106874, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615436

RESUMEN

Vinegar is renowned for its benefits to human health due to the presence of antioxidants and bioactive components. Firstly, this study optimized the production conditions of ultrasound-treated strawberry vinegar (UT-SV), known for its high consumer appeal. The sensory properties of UT-SV were optimized by response surface methodology (RSM) to create the most appreciated strawberry vinegar. Secondly, various quality parameters of conventional strawberry vinegar (C-SV), UT-SV, and thermally pasteurized strawberry vinegar (P-SV) samples were compared. RSM was employed to craft the best strawberry vinegar based on consumers ratings of UT-SV. Sensory characteristics, bioactive values, phenolic contents, and organic acid contents of C-SV, UT-SV, and P-SV samples were assessed. Through optimization, the ultrasound parameters of the independent variables were determined as 5.3 min and 65.5 % amplitude. The RSM modeling levels exhibited high agreement with pungent sensation at 98.06 %, aromatic intensity at 98.98 %, gustatory impression at 99.17 %, and general appreciation at 99.26 %, respectively. Bioactive components in UT-SV samples increased after ultrasound treatment compared to C-SV and P-SV samples. Additionally, the amount of malic acid, lactic acid, and oxalic acid increased after ultrasound treatment compared to C-SV samples. Ultimately, UT-SV with high organoleptic properties was achieved. The ultrasound treatment positively impacted the bioactive values, phenolic and organic acid content, leading to the development of a new and healthy product.


Asunto(s)
Ácido Acético , Fragaria , Fragaria/química , Ácido Acético/química , Ácido Acético/análisis , Ondas Ultrasónicas , Gusto , Fenoles/análisis
11.
Int J Biol Macromol ; 266(Pt 2): 131284, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569984

RESUMEN

Low bioavailability of quercetin (Que) reduces its preclinical and clinical benefits. In order to improve Que bioavailability, a novel whey protein isolate (WPI)-zein nanogel was prepared by pH-driven self-assembly and heat-induced gelatinization. The results showed that hydrochloric acid can be substituted by both acetic acid and citric acid during the pH-driven process. After encapsulation, the bioavailability of Que in nanogels (composed of 70 % WPI) induced by different acidifiers increased to 19.89 % (citric acid), 21.65 % (hydrochloric acid) and 24.34 % (acetic acid), respectively. Comparatively, nanogels induced by acetic acid showed higher stability (pH and storage stability), re-dispersibility (75.62 %), Que bioavailability (24.34 %), and antioxidant capacity (36.78 % for DPPH scavenging rates). s improved performance of nanogels. In mechanism, acetic acid significantly balanced different intermolecular forces by weakening "acid-induced denaturation" effect. Moreover, the faster binding of Que and protein as well as higher protein molecular flexibility and randomness (higher ratio of random coil) was also observed in nanogels induced by acetic acid. All of these changes contributed to improve nanogels performances. Overall, WPI-zein nanogels induced by acetic acid might be a safe, efficiency and stable delivery system to improve the bioavailability of hydrophobic active ingredients.


Asunto(s)
Antioxidantes , Disponibilidad Biológica , Nanogeles , Quercetina , Proteína de Suero de Leche , Zeína , Quercetina/química , Quercetina/farmacología , Proteína de Suero de Leche/química , Zeína/química , Antioxidantes/química , Antioxidantes/farmacología , Nanogeles/química , Concentración de Iones de Hidrógeno , Ácido Acético/química , Polietileneimina/química , Polietilenglicoles/química , Estabilidad de Medicamentos , Portadores de Fármacos/química
12.
J Food Sci ; 89(5): 2843-2856, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38591333

RESUMEN

The effects of different types of acid coagulants and nano fish bone (NFB) additives on the characteristics of tofu were investigated using texture analyzers, SEM, FT-IR, and other techniques. The breaking force and penetration distance, in descending order, were found in the tofu induced by glucono-d-lactone (GDL) (180.27 g and 0.75 cm), citric acid (152.90 g and 0.74 cm), lactic acid (123.33 g and 0.73 cm), and acetic acid (69.84 g and 0.58 cm), respectively. The syneresis of these tofu samples was in the reverse order (35.00, 35.66, 39.66, and 44.50%). Lightness and whiteness were not significantly different among the different samples. Regardless of the acid type, the soluble calcium content in the soybean milk was significantly increased after adding NFB. As a result, the breaking force and penetration distance of all tofu samples increased significantly, but the syneresis decreased. Compared with tofu coagulated by other acids, GDL tofu formed a more uniform and dense gel network maintained by the highest intermolecular forces (especially hydrophobic interactions). Regarding the secondary structure, the lowest percentage of α-helix (22.72%) and, correspondingly, the highest ß-sheet (48.32%) and random coil (18.81%) were noticed in the GDL tofu. The effects of NFB on the tofu characteristics can be explained by the changes in the gel network, intermolecular forces, and secondary structure, which were in line with the acid type. The characteristics of acid-induced tofu can be most synergistically improved by coagulation with GDL and NFB.


Asunto(s)
Geles , Geles/química , Animales , Glycine max/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Ácido Acético/química , Peces , Ácido Cítrico/química , Gluconatos/química , Ácido Láctico/química , Interacciones Hidrofóbicas e Hidrofílicas , Manipulación de Alimentos/métodos , Microscopía Electrónica de Rastreo/métodos , Lactonas
13.
Food Chem ; 451: 139443, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38678658

RESUMEN

Acetic acid is the key organic substance used to verify the authenticity of vinegar. A new method for precisely determining acetic acid δDCH3 in vinegar via gas chromatography -pyrolytic-stable isotope ratio mass spectrometry (GC-P-IRMS) was established. The δDCH3 values were obtained via calibration with a series of standards. The optimised method demonstrated a repeatability standard deviation within 3 ‰. The standard deviation of accuracy of the new method compared with that of the SNIF-NMR method was within 2.6 ‰. The synthetic acetic acid δDCH3 values was -136.7 ‰ ± 29.6 ‰, and the δDCH3 value of acetic acid in vinegar was -414.9 ‰ ± 40.5 ‰, with significant isotopic distribution characteristics. This methodology serves as a supplementary method for measuring the δDCH3 value of acetic acid in vinegar. It has advantages over other methods in terms of time, sensitivity and operability. And provides a new idea for solving the problem of analyzing substances in the presence of exchangeable groups.


Asunto(s)
Ácido Acético , Cromatografía de Gases y Espectrometría de Masas , Ácido Acético/química
14.
Int J Biol Macromol ; 267(Pt 1): 131217, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552683

RESUMEN

Ultrasonic assisted acetic acid hydrolysis was applied to prepare starch nanocrystals (SNCs) from native starches with different crystalline structures (A, B, and C types). The structure properties, morphology, Pickering emulsion stability and curcumin deliver capacity of both SNCs and native starches were investigated and compared. Compared with native starches, SNCs showed smaller size and higher crystallinity. The size of SNCs varied with different crystalline types, with C-type starch exhibiting the smallest SNCs (107.4 nm), followed by A-type (113.8 nm), and B-type displaying the largest particle size (149.0 nm). SNCs-Pickering emulsion showed enhanced stability with smaller emulsion droplets, higher static stability, and denser oil/water interface. SNCs-Pickering emulsions displayed higher curcumin loading efficiency (53.53 %-61.41 %) compared with native starch-Pickering emulsions (13.93 %-19.73 %). During in vitro digestion, SNCs-Pickering emulsions proved to be more proficient in protecting and prolonging the biological activity of curcumin due to their smaller size and better interfacial properties. These findings demonstrated the potential of SNCs for application in Pickering emulsion and delivery of bioactive components.


Asunto(s)
Ácido Acético , Curcumina , Emulsiones , Nanopartículas , Almidón , Curcumina/química , Almidón/química , Emulsiones/química , Nanopartículas/química , Ácido Acético/química , Tamaño de la Partícula , Estabilidad de Medicamentos , Hidrólisis , Cristalización , Ondas Ultrasónicas , Portadores de Fármacos/química
15.
Sensors (Basel) ; 24(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38475060

RESUMEN

Rhodanine-3-acetic acid derivatives are attractive compounds with versatile effects. What is very important is that compounds of this type have many biological properties. They are tested, among others, as fluorescent probes for bioimaging and aldose reductase inhibitors. Rhodanine-3-acetic acid derivatives also have antibacterial, antifungal and anticancer activity. The presented work demonstrates that a slight change in the five-membered heterocyclic substituent significantly affects the properties of the compounds under consideration. Three rhodanine-3-acetic acid derivatives (A-1-A-3) were obtained in the Knoevenagel condensation reaction with good yields, ranging from 54% to 71%. High thermal stability of the tested compounds was also demonstrated above 240 °C. The absorption and emission maxima in polar and non-polar solvents were determined. Then, the possibility of using the considered derivatives for fluorescence bioimaging was checked. Compounds A-1 and A-2 were successfully used as fluorescent dyes of fixed cells of mammalian origin. In addition, biological activity tests against bacteria and fungi were carried out. Our results showed that A-1 and A-2 showed the most excellent antimicrobial activity among the newly synthesized compounds, especially against Gram-positive bacteria.


Asunto(s)
Ácido Acético , Rodanina , Animales , Ácido Acético/química , Rodanina/química , Rodanina/farmacología , Antibacterianos/farmacología , Inhibidores Enzimáticos , Hongos , Pruebas de Sensibilidad Microbiana , Mamíferos
16.
Int J Biol Macromol ; 266(Pt 1): 131096, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522695

RESUMEN

Polysaccharides of vinegar-baked Radix Bupleuri (VBCP) have been reported to exhibit liver-targeting and immunomodulatory activities through oral administration, but the absorption behavior and mechanism of VBCPs have not been extensively studied. In this study, a novel HG type pectin polysaccharide, VBCP1-4, with a high molecular weight of 2.94 × 106 Da, was separated from VBCP. VBCP1-4 backbone was contained 1,4-α-D-GalpA, 1,4-α-D-GalpA6OMe, 1,3,4-α-D-GalpA and 1,2,4-α-D-Rhap. The branches were mainly contained 1,5-α-L-Araf, 1,3,5-α-L-Araf, t-α-L-Araf and t-α-D-Galp, which linked to the 3 position of 1,3,4-α-D-GalpA and the 4 position of 1,2,4-α-D-Rhap. VBCP1-4 could self-assemble to nanoparticles in water, with CMC values of 106.41 µg/mL, particle sizes of 178.20 ± 2.82 nm and zeta potentials of -23.19 ± 1.44 mV. The pharmacokinetic study of VBCP1-4, which detected by marking with FITC, revealed that it could be partially absorbed into the body through Peyer's patches of the ileum. In vitro absorption study demonstrated that VBCP1-4 was difficult to be absorbed by Caco-2 cell monolayer, but could be absorbed by M cells in a time and concentration dependent manner. The absorption mechanism was elucidated that VBCP1-4 entered M cells through clathrin-mediated endocytosis in the form of nanoparticles. These findings provide valuable insights into the absorption behavior of VBCP and contribute to its further development.


Asunto(s)
Ácido Acético , Bupleurum , Nanopartículas , Pectinas , Pectinas/química , Bupleurum/química , Ácido Acético/química , Nanopartículas/química , Humanos , Animales , Células CACO-2 , Tamaño de la Partícula , Peso Molecular , Células M
17.
Environ Sci Pollut Res Int ; 31(19): 27980-27987, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38526713

RESUMEN

The adsorption of ammonium from water was studied on an activated carbon obtained using raw oil palm shell and activated with acetic acid. The performance of this adsorbent was tested at different operating conditions including the solution pH, adsorbent dosage, and initial ammonium concentration. Kinetic and equilibrium studies were carried out, and their results were analyzed with different models. For the adsorption kinetics, the pseudo-first order equation was the best model to correlate this system. Calculated adsorption rate constants ranged from 0.071 to 0.074 g/mg min. The ammonium removal was 70-80% at pH 6-8, and it was significantly affected by electrostatic interaction forces. Ammonium removal (%) increased with the adsorbent dosage, and neutral pH condition favored the adsorption of this pollutant. The best ammonium adsorption conditions were identified with a response surface methodology model where the maximum removal was 91.49% with 2.27 g/L of adsorbent at pH 8.11 for an initial ammonium concentration of 36.90 mg/L. The application of a physical monolayer model developed by statistical physics theory indicated that the removal mechanism of ammonium was multi-ionic and involved physical interactions with adsorption energy of 29 kJ/mol. This activated carbon treated with acetic acid is promising to depollute aqueous solutions containing ammonium.


Asunto(s)
Ácido Acético , Compuestos de Amonio , Contaminantes Químicos del Agua , Adsorción , Ácido Acético/química , Compuestos de Amonio/química , Contaminantes Químicos del Agua/química , Cinética , Concentración de Iones de Hidrógeno , Arecaceae/química , Carbón Orgánico/química , Purificación del Agua/métodos
18.
Rapid Commun Mass Spectrom ; 38(8): e9718, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38419561

RESUMEN

RATIONALE: Vinegar is an everyday condiment made from fermented grains or fruits. It contains acetic acid which is the main organic material produced by fermentation. Vinegar suffers from the authenticity problem of exogenous adulteration due to the indistinguishability of low-cost chemical sources of synthetic acetic acid from acetic acid produced by fermentation. It is necessary to establish a simple and rapid measurement technique. METHODS: Determination was according to the total acid content of vinegar diluted with acetone to a certain concentration. Online separation and determination of acetic acid δD in vinegar were carried out using gas chromatography-pyrolysis-isotope ratio mass spectrometry. RESULTS: An HP-Plot/U column was selected for online separation of acetic acid and water with molecular sieve characteristics. At the same time, combined with the instrument blowback function to remove water. Dilute solvent acetone was treated with a molecular sieve to remove trace water. The reproducibility of this method is less than 3‰. The long-term stability is within a reasonable error range. The accuracy correlation coefficient is greater than 0.99. The δD values of acetic acid in vinegar (-264.5 ± 20.3‰) and from chemical sources (-30.5 ± 90.8‰) were obtained. CONCLUSIONS: A rapid method was developed for identification of different sources of acetic acid. These different sources of acetic acid exhibited significant hydrogen isotope distribution characteristics. Additionally, it was observed that the carboxyl hydrogen of acetic acid exhibited facile exchange with water. In future investigations, we aim to mitigate this interference.


Asunto(s)
Ácido Acético , Hidrógeno , Ácido Acético/química , Acetona , Reproducibilidad de los Resultados , Isótopos de Carbono/análisis , Agua , Fermentación
19.
J Pharm Biomed Anal ; 240: 115944, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38183732

RESUMEN

Curcumae Radix (i.e. Huangsiyujin: HSYJ), a well-known traditional Chinese medicine (TCM), has been widely used in clinical practice for many years to treat depression and primary dysmenorrhea. Modern pharmacological researches have demonstrated its anti-inflammatory, antidepressant, and dysmenorrhea relief effects. According to the processing theory of TCM, it is believed that stir-baked HSYJ with vinegar may enhance the ability to disperse stagnant hepatoqi and alleviate pain. However, whether the vinegar concoction of HSYJ can enhance the therapeutic effect on the Qi stagnation due to liver depression (LDQS) type of dysmenorrhea and what its mechanism has not been well explained. Based on the processing drugs theory of "stir-baked with vinegar into liver", a metabolomic approach was used to investigate the therapeutic effect and mechanism of stir-baked HSYJ with vinegar to enhance the treatment of dysmenorrhea in rats. By establishing a rat model of dysmenorrhea of the "LDQS" type, observation of hemorheology, uterine pathological sections, COX-2 and OTR protein expression and other indicators; analysis of urinary metabolic changes in rats by UPLC-Q-TOF-MS technique, to compare the differential biomarkers and metabolic pathways in the treatment of dysmenorrhea due to "liver stagnation and qi stagnation" before and after stir-baked HSYJ with vinegar. Stir-baked HSYJ with vinegar significantly inhibited the writhing response of rats, improved hemorheology, repaired damaged diseased uterus and inhibited high expression of COX-2 and OTR proteins in uterus; 68 differential metabolites were screened from the urine of rats, compared with the raw HSYJ, the levels of 14 metabolites were significantly changed in stir-baked HSYJ with vinegar, involving the pathways of phenylalanine, tyrosine and tryptophan metabolism, cysteine and methionine metabolism, aspartate and glutamate metabolism. The potentiating effect of stir-baked HSYJ with vinegar may be related to the regulation of multiple amino acid metabolic pathways.


Asunto(s)
Medicamentos Herbarios Chinos , Humanos , Femenino , Ratas , Animales , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/química , Ácido Acético/química , Dismenorrea/tratamiento farmacológico , Cromatografía Líquida de Alta Presión/métodos , Ciclooxigenasa 2 , Metabolómica
20.
Artículo en Inglés | MEDLINE | ID: mdl-37716345

RESUMEN

Tetramethylpyrazine (TMP) is an important bioactive compound in vinegars, contributing to their health-enhancing attributes. It serves as a crucial benchmark for the assessment of vinegar quality. Unfortunately, inaccuracies have arisen due to incomplete extraction techniques and the use of an inappropriate standard substance. These challenges have significantly curtailed comprehensive exploration into the underlying TMP formation mechanisms, impeding advancements within prevailing benchmarks and methodologies governing vinegar products. To address these challenges, several critical parameters, encompassing pH, solvent type, centrifugal force, extraction times and reference materials were investigated and optimized. The TMP content was determined by adjusting the pH to 9 using a sodium hydroxide solution, followed by extraction with ethyl acetate and subsequent re-extraction of the ethyl acetate layer with 0.2 mol/L HCl. A high-performance liquid chromatography method with an ultraviolet detector (UV) was developed and validated. This method demonstrated superior sensitivity compared to existing methods, with a limit of detection (LOD) of 0.0237 µg/g, limit of quantification (LOQ) of 0.0829 µg/g, method limit of detection (MLOD) of 0.10 µg/g and method limit of quantitation (MLOQ) of 0.25 µg/g. The modified method exhibited excellent linearity for TMP in the range of 0.1-118.4 µg/mL, with a good correlation coefficient (R2 > 0.999). The recovery rate of TMP in vinegar products ranged from 82.4 to 96.2%. Consequently, the proposed method exhibits substantial promise for systematic inquiry into TMP formation mechanisms and for ensuring consistent quality control during the production of premium-grade vinegars.


Asunto(s)
Ácido Acético , Extracción Líquido-Líquido , Cromatografía Líquida de Alta Presión/métodos , Ácido Acético/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...