Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 335
Filtrar
1.
Adv Sci (Weinh) ; 11(26): e2309602, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38682481

RESUMEN

Living organisms ranging from bacteria to animals have developed their own ways to accumulate and store phosphate during evolution, in particular as the polyphosphate (polyP) granules in bacteria. Degradation of polyP into phosphate is involved in phosphorus cycling, and exopolyphosphatase (PPX) is the key enzyme for polyP degradation in bacteria. Thus, understanding the structure basis of PPX is crucial to reveal the polyP degradation mechanism. Here, it is found that PPX structure varies in the length of ɑ-helical interdomain linker (ɑ-linker) across various bacteria, which is negatively correlated with their enzymatic activity and thermostability - those with shorter ɑ-linkers demonstrate higher polyP degradation ability. Moreover, the artificial DrPPX mutants with shorter ɑ-linker tend to have more compact pockets for polyP binding and stronger subunit interactions, as well as higher enzymatic efficiency (kcat/Km) than that of DrPPX wild type. In Deinococcus-Thermus, the PPXs from thermophilic species possess a shorter ɑ-linker and retain their catalytic ability at high temperatures (70 °C), which may facilitate the thermophilic species to utilize polyP in high-temperature environments. These findings provide insights into the interdomain linker length-dependent evolution of PPXs, which shed light on enzymatic adaption for phosphorus cycling during natural evolution and rational design of enzyme.


Asunto(s)
Ácido Anhídrido Hidrolasas , Fósforo , Polifosfatos , Polifosfatos/metabolismo , Ácido Anhídrido Hidrolasas/metabolismo , Ácido Anhídrido Hidrolasas/genética , Ácido Anhídrido Hidrolasas/química , Fósforo/metabolismo , Bacterias/genética , Bacterias/enzimología , Bacterias/metabolismo , Evolución Molecular
2.
Int J Biol Macromol ; 262(Pt 2): 129796, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38311144

RESUMEN

Rapid adaptation of metabolic capabilities is crucial for bacterial survival in habitats with fluctuating nutrient availability. In such conditions, the bacterial stringent response is a central regulatory mechanism activated by nutrient starvation or other stressors. This response is primarily controlled by exopolyphosphatase/guanosine pentaphosphate phosphohydrolase (PPX/GPPA) enzymes. To gain further insight into these enzymes, the high-resolution crystal structure of PPX from Zymomonas mobilis (ZmPPX) was determined at 1.8 Å. The phosphatase activity of PPX was strictly dependent on the presence of divalent metal cations. Notably, the structure of ZmPPX revealed the presence of two magnesium ions in the active site center, which is atypical compared to other PPX structures where only one divalent ion is observed. ZmPPX exists as a dimer in solution and belongs to the "long" PPX group consisting of four domains. Remarkably, the dimer configuration exhibits a substantial and deep aqueduct with positive potential along its interface. This aqueduct appears to extend towards the active site region, suggesting that this positively charged aqueduct could potentially serve as a binding site for polyP.


Asunto(s)
Magnesio , Zymomonas , Zymomonas/metabolismo , Ácido Anhídrido Hidrolasas/química , Ácido Anhídrido Hidrolasas/metabolismo , Bacterias/metabolismo , Iones
3.
J Struct Biol ; 213(3): 107767, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34214602

RESUMEN

The enzymes exopolyphosphatase/guanosine pentaphosphate phosphohydrolase (PPX/GppA) play important roles in the bacterial stringent response. PPX degrades inorganic polyphosphate (polyP), a polymer composed of a few to hundreds of phosphate residues supporting cell survival in the stationary phase. The crystal structure of PPX from Porphyromonas gingivalis (PgPPX) in complex with catalytic magnesium ions and several sulfate ions was solved. PgPPX contained two domains and represented a "closed" configuration. Four sulfate ions forming a linear dispersed chain were observed in the aqueduct of the PPX dimer, which the long polyP chain most likely occupied. The side chain of R255 stretched into the cavity where polyP could be located, obstructing the entrance of larger substrates such as NTP and NDP. This study provided the first view into the structure of the PPX/GppA homolog in complex with magnesium ions and substrate analogs and explained how PgPPX implemented its functionality.


Asunto(s)
Polifosfatos , Porphyromonas gingivalis , Ácido Anhídrido Hidrolasas/química , Magnesio , Polifosfatos/metabolismo , Porphyromonas gingivalis/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33753520

RESUMEN

Protein stability affects the physiological functions of proteins and is also a desirable trait in many protein engineering tasks, yet improving protein stability is challenging because of limitations in methods for directly monitoring protein stability in cells. Here, we report an in vivo stability biosensor wherein a protein of interest (POI) is inserted into a microbial enzyme (CysGA) that catalyzes the formation of endogenous fluorescent compounds, thereby coupling POI stability to simple fluorescence readouts. We demonstrate the utility of the biosensor in directed evolution to obtain stabilized, less aggregation-prone variants of two POIs (including nonamyloidogenic variants of human islet amyloid polypeptide). Beyond engineering applications, we exploited our biosensor in deep mutational scanning for experimental delineation of the stability-related contributions of all residues throughout the catalytic domain of a histone H3K4 methyltransferase, thereby revealing its scientifically informative stability landscape. Thus, our highly accessible method for in vivo monitoring of the stability of diverse proteins will facilitate both basic research and applied protein engineering efforts.


Asunto(s)
Técnicas Biosensibles , Evolución Molecular Dirigida/métodos , Metiltransferasas/química , Ingeniería de Proteínas , Estabilidad Proteica , Ácido Anhídrido Hidrolasas/química , Ácido Anhídrido Hidrolasas/genética , Dominio Catalítico , Escherichia coli , Fluorescencia , Ensayos Analíticos de Alto Rendimiento , Humanos , Metiltransferasas/genética , Mutación , Acilfosfatasa
5.
J Zhejiang Univ Sci B ; 22(1): 31-37, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33448185

RESUMEN

Genome stability can be threatened by both endogenous and exogenous agents. Organisms have evolved numerous mechanisms to repair DNA damage, including homologous recombination (HR) and non-homologous end joining (NHEJ). Among the factors associated with DNA repair, the MRE11-RAD50-NBS1 (MRN) complex (MRE11-RAD50-XRS2 in Saccharomyces cerevisiae) plays important roles not only in DNA damage recognition and signaling but also in subsequent HR or NHEJ repair. Upon detecting DNA damage, the MRN complex activates signaling molecules, such as the protein kinase ataxia-telangiectasia mutated (ATM), to trigger a broad DNA damage response, including cell cycle arrest. The nuclease activity of the MRN complex is responsible for DNA end resection, which guides DNA repair to HR in the presence of sister chromatids. The MRN complex is also involved in NHEJ, and has a species-specific role in hairpin repair. This review focuses on the structure of the MRN complex and its function in DNA damage repair.


Asunto(s)
Daño del ADN , Reparación del ADN/fisiología , Ácido Anhídrido Hidrolasas/química , Ácido Anhídrido Hidrolasas/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/química , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Recombinación Homóloga , Humanos , Proteína Homóloga de MRE11/química , Proteína Homóloga de MRE11/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas
6.
FASEB J ; 35(2): e21275, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33475202

RESUMEN

Nudix hydrolases attract considerable attention for their wide range of specialized activities in all domains of life. One particular group of Nudix phosphohydrolases (DIPPs), through their metabolism of diphosphoinositol polyphosphates (PP-InsPs), regulates the actions of these polyphosphates upon bioenergetic homeostasis. In the current study, we describe, at an atomic level, hitherto unknown properties of human DIPP1.We provide X-ray analysis of the catalytic core of DIPP1 in crystals complexed with either natural PP-InsPs, alternative PP-InsP stereoisomers, or non-hydrolysable methylene bisphosphonate analogs ("PCP-InsPs"). The conclusions that we draw from these data are interrogated by studying the impact upon catalytic activity upon mutagenesis of certain key residues. We present a picture of a V-shaped catalytic furrow with overhanging ridges constructed from flexible positively charged side chains; within this cavity, the labile phosphoanhydride bond is appropriately positioned at the catalytic site by an extensive series of interlocking polar contacts which we analogize as "suspension cables." We demonstrate functionality for a triglycine peptide within a ß-strand which represents a non-canonical addition to the standard Nudix catalytic core structure. We describe pre-reaction enzyme/substrate states which we posit to reflect a role for electrostatic steering in substrate capture. Finally, through time-resolved analysis, we uncover a chronological sequence of DIPP1/product post-reaction states, one of which may rationalize a role for InsP6 as an inhibitor of catalytic activity.


Asunto(s)
Ácido Anhídrido Hidrolasas/química , Fosfatos de Inositol/metabolismo , Ácido Anhídrido Hidrolasas/genética , Ácido Anhídrido Hidrolasas/metabolismo , Sustitución de Aminoácidos , Sitios de Unión , Humanos , Hidrólisis , Fosfatos de Inositol/química , Cinética , Simulación del Acoplamiento Molecular , Unión Proteica
7.
Biochem J ; 478(1): 135-156, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33439989

RESUMEN

Genomic integrity is most threatened by double-strand breaks, which, if left unrepaired, lead to carcinogenesis or cell death. The cell generates a network of protein-protein signaling interactions that emanate from the DNA damage which are now recognized as a rich basis for anti-cancer therapy development. Deciphering the structures of signaling proteins has been an uphill task owing to their large size and complex domain organization. Recent advances in mammalian protein expression/purification and cryo-EM-based structure determination have led to significant progress in our understanding of these large multidomain proteins. This review is an overview of the structural principles that underlie some of the key signaling proteins that function at the double-strand break site. We also discuss some plausible ideas that could be considered for future structural approaches to visualize and build a more complete understanding of protein dynamics at the break site.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Transducción de Señal/genética , Ácido Anhídrido Hidrolasas/química , Ácido Anhídrido Hidrolasas/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada/química , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Daño del ADN/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Humanos , Proteína Homóloga de MRE11/química , Proteína Homóloga de MRE11/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Procesamiento Proteico-Postraduccional/genética , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/química , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo
8.
Biochem Biophys Res Commun ; 532(2): 173-178, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-32838967

RESUMEN

Acylphosphatase is the smallest enzyme that is widely distributed in many diverse organisms ranging from archaebacteria to higher-eukaryotes including the humans. The enzyme hydrolyzes the carboxyl-phosphate bonds of the acyl phosphates which are important intermediates in glycolysis, membrane pumps, tricarboxylic acid cycle, and urea biosynthesis. Despite its biological importance in critical cellular functions, very limited structural investigations have been conducted on bacterial acylphosphatases. Here, we first unveiled the crystal structure of SaAcP, an acylphosphatase from gram-positive S. aureus at the atomic level. Structural insights on the active site together with mutation study provided greater understanding of the catalytic mechanism of SaAcP as a bacterial acylphosphatase and as a putative apyrase. Furthermore, through NMR titration experiment of SaAcP in its solution state, the dynamics and the alterations of residues affected by the phosphate ion were validated. Our findings elucidate the structure-function relationship of acylphosphatases in gram-positive bacteria and will provide a valuable basis for researchers in the field related to bacterial acylphosphatases.


Asunto(s)
Ácido Anhídrido Hidrolasas/química , Ácido Anhídrido Hidrolasas/metabolismo , Staphylococcus aureus/enzimología , Ácido Anhídrido Hidrolasas/genética , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Benzoatos/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación Proteica , Acilfosfatasa
9.
J Bacteriol ; 202(10)2020 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-32152217

RESUMEN

Diadenosine tetraphosphate (Ap4A) is a dinucleotide found in both prokaryotes and eukaryotes. In bacteria, its cellular levels increase following exposure to various stress signals and stimuli, and its accumulation is generally correlated with increased sensitivity to a stressor(s), decreased pathogenicity, and enhanced antibiotic susceptibility. Ap4A is produced as a by-product of tRNA aminoacylation, and is cleaved to ADP molecules by hydrolases of the ApaH and Nudix families and/or by specific phosphorylases. Here, considering evidence that the recombinant protein YqeK from Staphylococcus aureus copurified with ADP, and aided by thermal shift and kinetic analyses, we identified the YqeK family of proteins (COG1713) as an unprecedented class of symmetrically cleaving Ap4A hydrolases. We validated the functional assignment by confirming the ability of YqeK to affect in vivo levels of Ap4A in B. subtilis YqeK shows a catalytic efficiency toward Ap4A similar to that of the symmetrically cleaving Ap4A hydrolases of the known ApaH family, although it displays a distinct fold that is typical of proteins of the HD domain superfamily harboring a diiron cluster. Analysis of the available 3D structures of three members of the YqeK family provided hints to the mode of substrate binding. Phylogenetic analysis revealed the occurrence of YqeK proteins in a consistent group of Gram-positive bacteria that lack ApaH enzymes. Comparative genomics highlighted that yqeK and apaH genes share a similar genomic context, where they are frequently found in operons involved in integrated responses to stress signals.IMPORTANCE Elevation of Ap4A level in bacteria is associated with increased sensitivity to heat and oxidative stress, reduced antibiotic tolerance, and decreased pathogenicity. ApaH is the major Ap4A hydrolase in gamma- and betaproteobacteria and has been recently proposed as a novel target to weaken the bacterial resistance to antibiotics. Here, we identified the orphan YqeK protein family (COG1713) as a highly efficient Ap4A hydrolase family, with members distributed in a consistent group of bacterial species that lack the ApaH enzyme. Among them are the pathogens Staphylococcus aureus, Streptococcus pneumoniae, and Mycoplasma pneumoniae By identifying the player contributing to Ap4A homeostasis in these bacteria, we disclose a novel target to develop innovative antibacterial strategies.


Asunto(s)
Ácido Anhídrido Hidrolasas/metabolismo , Proteínas Bacterianas/metabolismo , Staphylococcus aureus/enzimología , Ácido Anhídrido Hidrolasas/química , Ácido Anhídrido Hidrolasas/genética , Adenosina Difosfato/metabolismo , Secuencia de Aminoácidos , Bacterias/química , Bacterias/clasificación , Bacterias/enzimología , Bacterias/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Catálisis , Clonación Molecular , Fosfatos de Dinucleósidos/química , Fosfatos de Dinucleósidos/metabolismo , Cinética , Familia de Multigenes , Filogenia , Alineación de Secuencia , Staphylococcus aureus/química , Staphylococcus aureus/genética
10.
Nucleic Acids Res ; 48(7): 3776-3788, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-31960065

RESUMEN

All enzymes face a challenge of discriminating cognate substrates from similar cellular compounds. Finding a correct substrate is especially difficult for the Escherichia coli Nudix hydrolase RppH, which triggers 5'-end-dependent RNA degradation by removing orthophosphate from the 5'-diphosphorylated transcripts. Here we show that RppH binds and slowly hydrolyzes NTPs, NDPs and (p)ppGpp, which each resemble the 5'-end of RNA. A series of X-ray crystal structures of RppH-nucleotide complexes, trapped in conformations either compatible or incompatible with hydrolysis, explain the low reaction rates of mononucleotides and suggest two distinct mechanisms for their hydrolysis. While RppH adopts the same catalytic arrangement with 5'-diphosphorylated nucleotides as with RNA, the enzyme hydrolyzes 5'-triphosphorylated nucleotides by extending the active site with an additional Mg2+ cation, which coordinates another reactive nucleophile. Although the average intracellular pH minimizes the hydrolysis of nucleotides by slowing their reaction with RppH, they nevertheless compete with RNA for binding and differentially inhibit the reactivity of RppH with triphosphorylated and diphosphorylated RNAs. Thus, E. coli RppH integrates various signals, such as competing non-cognate substrates and a stimulatory protein factor DapF, to achieve the differential degradation of transcripts involved in cellular processes important for the adaptation of bacteria to different growth conditions.


Asunto(s)
Ácido Anhídrido Hidrolasas/química , Ácido Anhídrido Hidrolasas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , ARN/metabolismo , Ácido Anhídrido Hidrolasas/antagonistas & inhibidores , Adenosina Trifosfato/metabolismo , Isomerasas de Aminoácido/metabolismo , Dominio Catalítico , Proteínas de Escherichia coli/antagonistas & inhibidores , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Concentración de Iones de Hidrógeno , Magnesio/química , Modelos Moleculares , Nucleótidos/química , Nucleótidos/metabolismo , ARN/química , Especificidad por Sustrato
11.
Nat Commun ; 11(1): 370, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31953386

RESUMEN

The human Mre11/Rad50 complex is one of the key factors in genome maintenance pathways. Previous nanoscale imaging by atomic force microscopy (AFM) showed that the ring-like structure of the human Mre11/Rad50 complex transiently opens at the zinc hook of Rad50. However, imaging of the human Mre11/Rad50 complex by high-speed AFM shows that the Rad50 coiled-coil arms are consistently bridged by the dimerized hooks while the Mre11/Rad50 ring opens by disconnecting the head domains; resembling other SMC proteins such as cohesin or condensin. These architectural features are conserved in the yeast and bacterial Mre11/Rad50 complexes. Yeast strains harboring the chimeric Mre11/Rad50 complex containing the SMC hinge of bacterial condensin MukB instead of the RAD50 hook properly functions in DNA repair. We propose that the basic role of the Rad50 hook is similar to that of the SMC hinge, which serves as rather stable dimerization interface.


Asunto(s)
Ácido Anhídrido Hidrolasas/química , Proteínas de Ciclo Celular/química , Proteínas Cromosómicas no Histona/química , Proteínas de Unión al ADN/química , Dimerización , Zinc/metabolismo , Ácido Anhídrido Hidrolasas/metabolismo , Adenosina Trifosfatasas , Animales , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Escherichia coli/metabolismo , Recombinación Homóloga , Humanos , Proteína Homóloga de MRE11/química , Proteína Homóloga de MRE11/metabolismo , Microscopía de Fuerza Atómica , Complejos Multiproteicos , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Unión Proteica , Conformación Proteica , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Células Sf9 , Cohesinas
12.
Proteins ; 88(4): 584-592, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31618488

RESUMEN

Hydrostatic pressure has a vital role in the biological adaptation of the piezophiles, organisms that live under high hydrostatic pressure. However, the mechanisms by which piezophiles are able to adapt their proteins to high hydrostatic pressure is not well understood. One proposed hypothesis is that the volume changes of unfolding (ΔVTot ) for proteins from piezophiles is distinct from those of nonpiezophilic organisms. Since ΔVTot defines pressure dependence of stability, we performed a comprehensive computational analysis of this property for proteins from piezophilic and nonpiezophilic organisms. In addition, we experimentally measured the ΔVTot of acylphosphatases and thioredoxins belonging to piezophilic and nonpiezophilic organisms. Based on this analysis we concluded that there is no difference in ΔVTot for proteins from piezophilic and nonpiezophilic organisms. Finally, we put forward the hypothesis that increased concentrations of osmolytes can provide a systemic increase in pressure stability of proteins from piezophilic organisms and provide experimental thermodynamic evidence in support of this hypothesis.


Asunto(s)
Ácido Anhídrido Hidrolasas/química , Adaptación Fisiológica , Proteínas Arqueales/química , Proteínas Bacterianas/química , Proteoma/química , Tiorredoxinas/química , Ácido Anhídrido Hidrolasas/genética , Ácido Anhídrido Hidrolasas/metabolismo , Organismos Acuáticos , Archaea/química , Archaea/metabolismo , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Bacterias/química , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Fenómenos Biomecánicos , Clonación Molecular , Biología Computacional/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Presión Hidrostática , Concentración Osmolar , Estabilidad Proteica , Proteoma/genética , Proteoma/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Acilfosfatasa
13.
FEBS J ; 287(9): 1865-1885, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31679177

RESUMEN

Rapid adaptation to environmental changes is crucial for bacterial survival. Almost all bacteria possess a conserved stringent response system to prompt transcriptional and metabolic responses toward stress. The adaptive process relies on alarmones, guanosine pentaphosphate (pppGpp), and tetraphosphate (ppGpp), to regulate global gene expression. The ppGpp is more potent than pppGpp in the regulatory activity, and pppGpp phosphohydrolase (GppA) plays a key role in (p)ppGpp homeostasis. Sharing a similar domain structure, GppA is indistinguishable from exopolyphosphatase (PPX), which mediates the metabolism of cellular inorganic polyphosphate. Here, our phylogenetic analysis of PPX/GppA homologs in bacteria shows a wide distribution with several distinct subfamilies, and our structural and functional analysis of Escherichia coli GppA and Helicobacter pylori PPX/GppA reveals unique properties of each homolog. These results explain how each homolog possesses its distinct functionality.


Asunto(s)
Ácido Anhídrido Hidrolasas/química , Ácido Anhídrido Hidrolasas/metabolismo , Escherichia coli/enzimología , Escherichia coli/metabolismo , Guanosina Pentafosfato/metabolismo , Helicobacter pylori/enzimología , Helicobacter pylori/metabolismo , Secuencia de Aminoácidos , Guanosina Pentafosfato/química , Modelos Moleculares , Estructura Molecular , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/metabolismo , Alineación de Secuencia
14.
Biochem Biophys Res Commun ; 523(2): 348-353, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31866010

RESUMEN

Protein cages have recently emerged as an extraordinary drug-delivery system due to its biocompatibility, biodegradability, low toxicity, ease to manipulate and engineer. We have reported earlier the formation and architecture of a do-decameric cage-like architecture of Vibrio cholerae acylphosphatase (VcAcP) at 3.1 Å. High resolution (2.4 Å) crystal structure of VcAcP cage, reported here, illuminates a potential binding site for sulphate/phosphate containing drugs whereas analysis of its subunit association and interfaces indicates high potential for cage engineering. Tryptophan quenching studies indeed discloses noteworthy binding with various sulphate/phosphate containing nucleotide-based drugs and vitamin B6 (PLP) demonstrating that exterior surface of VcAcP protein cage can be exploited as multifunctional carrier. Moreover, a quadruple mutant L30C/T68C/N40C/L81C-VcAcP (QM-VcAcP) capable to form an intricate disulphide bonded VcAcP cage has been designed. SEC, SDS-PAGE analysis and DLS experiment confirmed cysteine mediated engineered VcAcP cage formation.


Asunto(s)
Ácido Anhídrido Hidrolasas/química , Ácido Anhídrido Hidrolasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Vibrio cholerae/enzimología , Ácido Anhídrido Hidrolasas/genética , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Sitios de Unión , Cromatografía en Gel , Cristalografía por Rayos X , Sistemas de Liberación de Medicamentos , Dispersión Dinámica de Luz , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Conformación Proteica , Ingeniería de Proteínas , Estructura Cuaternaria de Proteína , Vibrio cholerae/genética , Acilfosfatasa
15.
J Phys Chem B ; 122(48): 10855-10860, 2018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30411894

RESUMEN

Previous studies conducted on flexible loop regions in proteins revealed that the energetic consequences of changing loop length predominantly arise from the entropic cost of ordering a loop during folding. However, in an earlier study of human acylphosphatase (hmAcP) using experimental and computational approaches, we showed that thermodynamic stabilization upon loop truncation can be attributed mainly to the increased entropy of the folded state. Here, using 15N NMR spectroscopy, we studied the effect of loop truncation on hmAcP backbone dynamics on the picosecond-nanosecond timescale with the aim of confirming the effect of folded state entropy on protein stability. NMR-relaxation-derived N-H squared generalized order parameters reveal that loop truncation results in a significant increase in protein conformational flexibility. Comparison of these results with previously acquired all-atom molecular dynamics simulation, analyzed here in terms of squared generalized NMR order parameters, demonstrates general agreement between the two methods. The NMR study not only provides direct evidence for the enhanced conformational entropy of the folded state of hmAcP upon loop truncation but also gives a quantitative measure of the observed effects.


Asunto(s)
Ácido Anhídrido Hidrolasas/química , Entropía , Humanos , Espectroscopía de Resonancia Magnética , Isótopos de Nitrógeno/química , Conformación Proteica , Estabilidad Proteica , Termodinámica , Acilfosfatasa
16.
Mol Microbiol ; 110(6): 973-994, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30230089

RESUMEN

Inorganic polyphosphate (polyP) is a polymer of three to hundreds of phosphate units bound by high-energy phosphoanhydride bonds and present from bacteria to humans. Most polyP in trypanosomatids is concentrated in acidocalcisomes, acidic calcium stores that possess a number of pumps, exchangers, and channels, and are important for their survival. In this work, using polyP as bait we identified > 25 putative protein targets in cell lysates of both Trypanosoma cruzi and Trypanosoma brucei. Gene ontology analysis of the binding partners found a significant over-representation of nucleolar and glycosomal proteins. Using the polyphosphate-binding domain (PPBD) of Escherichia coli exopolyphosphatase (PPX), we localized long-chain polyP to the nucleoli and glycosomes of trypanosomes. A competitive assay based on the pre-incubation of PPBD with exogenous polyP and subsequent immunofluorescence assay of procyclic forms (PCF) of T. brucei showed polyP concentration-dependent and chain length-dependent decrease in the fluorescence signal. Subcellular fractionation experiments confirmed the presence of polyP in glycosomes of T. brucei PCF. Targeting of yeast PPX to the glycosomes of PCF resulted in polyP hydrolysis, alteration in their glycolytic flux and increase in their susceptibility to oxidative stress.


Asunto(s)
Polifosfatos/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/metabolismo , Trypanosoma cruzi/metabolismo , Ácido Anhídrido Hidrolasas/química , Proteínas Bacterianas/química , Núcleo Celular/metabolismo , Microcuerpos/metabolismo
17.
Nucleic Acids Res ; 46(13): 6880-6892, 2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-29931175

RESUMEN

mRNA decay is an important strategy by which bacteria can rapidly adapt to their ever-changing surroundings. The 5'-terminus state of mRNA determines the velocity of decay of many types of RNA. In Escherichia coli, RNA pyrophosphohydrolase (RppH) is responsible for the removal of the 5'-terminal triphosphate from hundreds of mRNAs and triggers its rapid degradation by ribonucleases. A diaminopimelate epimerase, DapF, can directly interact with RppH and stimulate its hydrolysis activity in vivo and in vitro. However, the molecular mechanism remains to be elucidated. Here, we determined the complex structure of DapF-RppH as a heterotetramer in a 2:2 molar ratio. DapF-bound RppH exhibits an RNA-favorable conformation similar to the RNA-bound state, suggesting that association with DapF promotes and stabilizes RppH in a conformation that facilitates substrate RNA binding and thus stimulates the activity of RppH. To our knowledge, this is the first published structure of an RNA-pyrophosphohydrolysis complex in bacteria. Our study provides a framework for further investigation of the potential regulators involved in the RNA-pyrophosphohydrolysis process in prokaryotes.


Asunto(s)
Ácido Anhídrido Hidrolasas/química , Isomerasas de Aminoácido/química , Proteínas de Escherichia coli/química , Ácido Anhídrido Hidrolasas/metabolismo , Isomerasas de Aminoácido/metabolismo , Cristalografía por Rayos X , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica , Multimerización de Proteína , ARN/química , ARN/metabolismo
18.
Nucleic Acids Res ; 46(13): 6841-6856, 2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-29733359

RESUMEN

Vitally important for controlling gene expression in eukaryotes and prokaryotes, the deprotection of mRNA 5' termini is governed by enzymes whose activity is modulated by interactions with ancillary factors. In Escherichia coli, 5'-end-dependent mRNA degradation begins with the generation of monophosphorylated 5' termini by the RNA pyrophosphohydrolase RppH, which can be stimulated by DapF, a diaminopimelate epimerase involved in amino acid and cell wall biosynthesis. We have determined crystal structures of RppH-DapF complexes and measured rates of RNA deprotection. These studies show that DapF potentiates RppH activity in two ways, depending on the nature of the substrate. Its stimulatory effect on the reactivity of diphosphorylated RNAs, the predominant natural substrates of RppH, requires a substrate long enough to reach DapF in the complex, while the enhanced reactivity of triphosphorylated RNAs appears to involve DapF-induced changes in RppH itself and likewise increases with substrate length. This study provides a basis for understanding the intricate relationship between cellular metabolism and mRNA decay and reveals striking parallels with the stimulation of decapping activity in eukaryotes.


Asunto(s)
Ácido Anhídrido Hidrolasas/química , Ácido Anhídrido Hidrolasas/metabolismo , Isomerasas de Aminoácido/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , ARN Mensajero/metabolismo , Regulación Alostérica , Isomerasas de Aminoácido/metabolismo , Cinética , Modelos Moleculares , Unión Proteica , Multimerización de Proteína
19.
Anal Biochem ; 548: 82-90, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29481774

RESUMEN

Polyacrylamide gel electrophoresis, being the current method of choice for length determination of inorganic polyphosphate (polyP), requires a sequencing apparatus, relies on commercially not available polyP length standards and yields only a chain length distribution. State of the art polyP quantification involves enzymatic hydrolysis of polyP to orthophosphate with the Saccharomyces cerevisiae exopolyphosphatase 1 (scPpx1p) and subsequent colorimetric orthophosphate detection. Because scPpx1p leaves one pyrophosphate per polyP, short chain polyPs are only partially detected. To overcome this analytical limitation, a method involving both the scPpx1p and the S. cerevisiae inorganic pyrophosphatase (scIpp1p) is proposed. Differential enzymatic hydrolysis of polyP with scPpx1p, and a combination of scIpp1p and scPpx1p allows not only for comprehensive quantification of polyP (excluding cyclic polyP) down to a chain length of two, but also absolute average chain length determination in the range of two to approximately 80. An optimized one-reagent method for rapid (2 min) orthophosphate quantification is part of the assay. Biological phosphorous containing molecules at equimolar phosphorous concentrations regarding polyP do not interfere. The method requires 1.5 µg polyP and calls only for a plate reader. This is the first enzymatic method for simultaneous average polyP chain length determination as well as comprehensive quantification.


Asunto(s)
Ácido Anhídrido Hidrolasas/química , Difosfatos/análisis , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología
20.
J Struct Biol ; 199(3): 165-176, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28705712

RESUMEN

Diadenosine polyphosphates (ApnA, n=2-6), particularly Ap4A, are involved in several important physiological processes. The substantial sequence identity of the Nudix hydrolase domain (domain 1) of Mycobacterium smegmatis MutT1 (MsMutT1) with a known Ap4A hydrolase suggested that MsMutT1 could also hydrolyse diadenosine polyphosphates. Biochemical experiments yielded results in conformity with this suggestion, with Ap4A as the best among the substrates. ATP is a product in all experiments; small amounts of ADP were also observed in the experiments involving Ap4A and Ap6A. Hydrolysis was inhibited by fluoride ions in all cases. The mechanism of action and its inhibition in relation to ApnA were explored through the X-ray analysis of the crystals of the MsMutT1 complexes with Ap5A; Ap5A and MnCl2; Ap4A; ATP; and ATP.NaF.MgCl2. The aggregation pattern of molecules in the first four crystals is similar to that found in a majority of MsMutT1-NTP crystals. Substrate molecules occupy the primary binding site and ATP occupies a site at an intermolecular interface, in the first two. ATP occupies both the sites in the third and fourth crystal. The protein-ligand interactions observed in these crystal structures lead to an explanation of the molecular mechanism of hydrolysis of ApnA by MsMutT1. The fifth crystal exhibits a new packing arrangement. The structure of the complex provides an explanation for the fluoride inhibition of the activity of the enzyme. It would thus appear that MutT1 has a major role involving the hydrolysis of diadenosine polyphosphates, which could be elucidated at the molecular level.


Asunto(s)
Ácido Anhídrido Hidrolasas/química , Ácido Anhídrido Hidrolasas/metabolismo , Fosfatos de Dinucleósidos/metabolismo , Mycobacterium smegmatis/enzimología , Adenosina Difosfato/química , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Fosfatos de Dinucleósidos/química , Hidrólisis , Modelos Moleculares , Polifosfatos/química , Polifosfatos/metabolismo , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...