Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 359: 142365, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763402

RESUMEN

Although a series of past studies proved the potential usage of Fe-based metal-organic frameworks (MOFs) as photocatalysts, there remains a knowledge gap of the photocatalytic mechanism stemming from the challenge to separate the simultaneous sorption and photocatalytic degradation. Thus, this article aimed to suggest a novel approach by desorbing target molecules during photocatalysis to excavate the underlying mechanisms of sorption and photocatalytic degradation. In this study, two Fe-based MOFs, MIL-101(Fe) and MIL-101(Fe)-NH2, were selected to remove clofibric acid under visible light irradiation. Prior to photocatalysis, sorption mechanism was uncovered based on the sorption kinetic, isotherm, thermodynamic interpretation, and of its dependence on solution pH. The results inferred that the primary sorption mechanism was through the π-π interaction between the benzene ring of clofibric acid and the organic ligand of Fe-based MOFs. Based on these results, photocatalytic mechanism could be independently or jointly assessed during the photocatalytic degradation of clofibric acid. Subsequently, the application of the Tauc method and XPS spectra revealed that the bandgap structure of Fe-based MOFs had the potential to oxidize clofibric acid by producing ROS through the electron excitation upon visible-light illumination. On top of that, the amine functionalization of Fe-based MOF altered the structural moiety that led to an additional strong acid-base interaction with clofibric acid but a decrease in the bandgap limiting the ROS production during photocatalytic activity.


Asunto(s)
Ácido Clofíbrico , Hierro , Luz , Estructuras Metalorgánicas , Estructuras Metalorgánicas/química , Ácido Clofíbrico/química , Catálisis , Hierro/química , Cinética , Fotólisis , Adsorción , Contaminantes Químicos del Agua/química
2.
Bioorg Med Chem Lett ; 44: 128121, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34015506

RESUMEN

Oxidative stress and inflammation have been considered the main factors in the liver injury of clofibrate (CF). To obtain a novel antihyperlipidemic agent with antioxidant, anti-inflammation and hepatoprotection, the combination of sesamol and clofibric acid moieties was performed and achieved sesamol-clofibrate (CF-Sesamol). CF-Sesamol showed significant hypolipidemia effects in hyperlipidemia mice induced by Triton WR 1339, reducing TG by 38.8% (P < 0.01) and TC by 35.1% (P < 0.01). CF-Sesamol also displayed an alleviating effect on hepatotoxicity. The hepatic weight and hepatic coefficient were decreased. The amelioration of liver function was observed, such as aspartate and lactate transaminases (AST and ALT), alkaline phosphatase (ALP) and total proteins (TP) levels. Liver histopathological examination showed that hepatocyte necrosis, cytoplasmic loosening, nuclear degeneration and inflammatory cell infiltration reduced obviously by treatment with CF-Sesamol. Related molecular mechanisms on hepatoprotection showed that CF-Sesamol up-regulated Nrf2 and HO-1 expression and down-regulated p-NF-κB p65 expression in hepatic tissues. CF-Sesamol has significant antioxidant and anti-inflammatory effects. Plasma antioxidant enzymes such as SOD and CAT increased, anti-lipid peroxidation product MDA decreased. The expression of TNF-α and IL-6 inflammatory cytokines in liver was significantly lower than that in the CF group. The results indicated that CF-Sesamol exerted more potent antihyperlipidemic effects and definite hepatoprotective activity partly through the Nrf2/NF-κB-mediated signaling pathway.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Antioxidantes/farmacología , Benzodioxoles/farmacología , Ácido Clofíbrico/farmacología , Hipolipemiantes/farmacología , Fenoles/farmacología , Sustancias Protectoras/farmacología , Animales , Antiinflamatorios no Esteroideos/síntesis química , Antiinflamatorios no Esteroideos/química , Antioxidantes/síntesis química , Antioxidantes/química , Benzodioxoles/sangre , Benzodioxoles/química , Ácido Clofíbrico/sangre , Ácido Clofíbrico/química , Relación Dosis-Respuesta a Droga , Hiperlipidemias/inducido químicamente , Hiperlipidemias/tratamiento farmacológico , Hipolipemiantes/síntesis química , Hipolipemiantes/química , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Ratones , Ratones Endogámicos , Simulación del Acoplamiento Molecular , Estructura Molecular , Estrés Oxidativo/efectos de los fármacos , Fenoles/sangre , Fenoles/química , Polietilenglicoles , Sustancias Protectoras/síntesis química , Sustancias Protectoras/química , Relación Estructura-Actividad
3.
Top Curr Chem (Cham) ; 377(5): 22, 2019 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-31444578

RESUMEN

A methodology for photocatalytic reactor modeling applied to advanced oxidation processes for chemical pollution abatement is presented herein. Three distinct reactor configurations typically employed in the field of air and water purification-wall reactors, slurry reactors, and fixed-bed reactors-are considered to illustrate the suggested approach. Initially, different mechanistically derived kinetic expressions to represent the photocatalytic rate of pollutant degradation are reviewed, indicating the main assumptions made by the authors in the published contributions. These kinetic expressions are needed to solve the mass balances of the reactant species in the photocatalytic reactors. As is well known, at least one of the steps of the reaction mechanism requires evaluation of the rate of electron-hole generation, which depends on the photon absorption rate: a volumetric property for reactions with the catalyst particles in aqueous suspension or a surface property for systems with a fixed catalyst deposited on an inert support. Subsequently, the different techniques for evaluating the optical properties of slurry and immobilized systems, and the numerical methods applied to calculate the photon absorption rate, are described. The experimental and theoretical results of pollutant degradation in each reactor type are then presented and analyzed. Finally, the definition, calculation, and relevance of different efficiency parameters are briefly reviewed. Using these illustrative examples, we emphasize the need for a systematic and rigorous approach for photocatalytic reactor modeling in order to overcome the inherent drawbacks of photocatalysis and to improve the overall efficiency of the process.


Asunto(s)
Luz , Modelos Teóricos , Contaminantes Químicos del Agua/química , Catálisis , Ácido Clofíbrico/química , Cinética , Oxidación-Reducción , Fotones , Titanio/química
4.
Inorg Chem ; 58(13): 8787-8792, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31247848

RESUMEN

Highly efficient and selective removal of pharmaceuticals and personal care products (PPCPs) from wastewater is a great challenge and is significant. In this study, we chose UiO-66-R, which contains eight isostructural metal-organic frameworks (MOFs) with variable functional groups (-R), as a platform for systemically investigating the influence of functionalization on its adsorption behavior with respect to three classic PPCPs. We conducted kinetic, modeling, and structure-function relationship studies on PPCP removal using MOFs. The adsorption kinetics, including the adsorption rate, affinity, and separation factor ( RL), were comprehensively analyzed and simulated. The design and function of MOFs can greatly promote their adsorption capacity and the efficiency of PPCPs. The structure-function relationship study revealed that hydrogen bonding, electrostatic, and π-π interactions between MOFs and PPCP molecules played important roles in the adsorption process and significantly influenced the adsorption efficiency. This study paves a new way for the application of MOFs with respect to the removal of PPCP pollution and provides guidance for the design of new porous materials for environmental treatment and separation applications.


Asunto(s)
Estructuras Metalorgánicas/química , Contaminantes Químicos del Agua/química , Ácido 2,4-Diclorofenoxiacético/química , Adsorción , Antiinflamatorios no Esteroideos/química , Ácido Clofíbrico/química , Diclofenaco/química , Herbicidas/química , Enlace de Hidrógeno , Cinética , Estructuras Metalorgánicas/síntesis química , Mutágenos/química , Porosidad , Electricidad Estática
5.
J Hazard Mater ; 359: 248-257, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30036755

RESUMEN

Recently metal-organic frameworks (MOFs) have attracted great attention in the field of environmental remediation. In this article, rigid MIL-101(Cr) and flexible MIL-53(Cr) were synthesized and used for the adsorption of two typical pharmaceuticals, clofibric acid (CA) and carbamazepine (CBZ), from water. The adsorption equilibrium was rapidly reached within 60 min and the kinetics best fitted with the pseudo-second-order kinetic model. There was no significant difference in the maximum adsorption capacity of CA on MIL-101(Cr) and MIL-53(Cr), and electrostatic interaction was suggested to be the main factor in the adsorption processes. However, for the removal of CBZ, MIL-53(Cr) showed much better adsorptive performance (0.428 mmol/g) than MIL-101(Cr) (0.0570 mmol/g), indicating the adsorption of CBZ on MOFs is affected by the structural property. The Powder X-ray diffraction analysis revealed that MIL-53(Cr) was transformed into large pore form, leading to variations in cell volume up to 33%, lower binding energy and crucial modifications of the hydrophobicity/hydrophilicity. This unusual behavior enhanced its adsorption capacity for CBZ. Moreover, hydrogen bonding and π-π interactions/stacking also contributed to the adsorption of pharmaceuticals on the MOFs. The excellent adsorptive performance of MIL-53(Cr) and its structure/property switching might lead to the applications in water treatment.


Asunto(s)
Carbamazepina/química , Cromo/química , Ácido Clofíbrico/química , Estructuras Metalorgánicas/química , Contaminantes Químicos del Agua/química , Adsorción , Cinética , Electricidad Estática , Purificación del Agua/métodos
6.
Dalton Trans ; 47(25): 8268-8282, 2018 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-29892758

RESUMEN

Multi-action cisplatin-based mono- (1) and di-clofibric acid (2) Pt(iv) "combo" derivatives were synthesized via both traditional and microwave assisted procedures. The two complexes offered very good performances (IC50 values in a nanomolar range) on a panel of human tumor cell lines, including the highly chemoresistant malignant pleural mesothelioma ones. Moreover, both 1 and 2 bypass the cisplatin resistance. Indeed, cisplatin and clofibric acid, the metabolites of the Pt(iv) → Pt(ii) intracellular reduction, proved to act synergistically. The adjuvant action of clofibric acid relies on the activation of peroxisome proliferator-activated receptor α (PPARα) that, in turn, decreases the level of Hypoxia-Inducible Factor-1α. Both compounds induced extensive apoptosis in tumor cells, also via oxidative stress. Finally, 2 exhibited excellent performances also under the hypoxic conditions typical of solid tumors, where cisplatin is less effective.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Cisplatino/análogos & derivados , Cisplatino/farmacología , Ácido Clofíbrico/química , Compuestos Organoplatinos/química , Compuestos Organoplatinos/farmacología , Profármacos/química , Profármacos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Humanos , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Concentración 50 Inhibidora , Estructura Molecular , Estrés Oxidativo/efectos de los fármacos , PPAR alfa/química
7.
Water Res ; 137: 242-250, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29550727

RESUMEN

Degradation of three lipid regulators, i.e., gemfibrozil, bezafibrate and clofibric acid, by a UV/chlorine treatment was systematically investigated. The chlorine oxide radical (ClO•) played an important role in the degradation of gemfibrozil and bezafibrate with second-order rate constants of 4.2 (±0.3) × 108 M-1 s-1 and 3.6 (±0.1) × 107 M-1 s-1, respectively, whereas UV photolysis and the hydroxyl radical (HO•) mainly contributed to the degradation of clofibric acid. The first-order rate constants (k') for the degradation of gemfibrozil and bezafibrate increased linearly with increasing chlorine dosage, primarily due to the linear increase in the ClO• concentration. The k' values for gemfibrozil, bezafibrate, and clofibric acid degradation decreased with increasing pH from 5.0 to 8.4; however, the contribution of the reactive chlorine species (RCS) increased. Degradation of gemfibrozil and bezafibrate was enhanced in the presence of Br-, whereas it was inhibited in the presence of natural organic matter (NOM). The presence of ammonia at a chlorine: ammonia molar ratio of 1:1 resulted in decreases in the k' values for gemfibrozil and bezafibrate of 69.7% and 7%, respectively, but led to an increase in that for clofibric acid of 61.8%. Degradation of gemfibrozil by ClO• was initiated by hydroxylation and chlorine substitution on the benzene ring. Then, subsequent hydroxylation, bond cleavage and chlorination reactions led to the formation of more stable products. Three chlorinated intermediates were identified during ClO• oxidation process. Formation of the chlorinated disinfection by-products chloral hydrate and 1,1,1-trichloropropanone was enhanced relative to that of other by-products. The acute toxicity of gemfibrozil to Vibrio fischeri increased significantly when subjected to direct UV photolysis, whereas it decreased when oxidized by ClO•. This study is the first to report the transformation pathway of a micropollutant by ClO•.


Asunto(s)
Compuestos de Cloro/química , Cloro , Hipolipemiantes , Rayos Ultravioleta , Contaminantes Químicos del Agua , Amoníaco/química , Bezafibrato/química , Bezafibrato/efectos de la radiación , Cloro/química , Cloro/efectos de la radiación , Ácido Clofíbrico/química , Ácido Clofíbrico/efectos de la radiación , Desinfección , Gemfibrozilo/química , Gemfibrozilo/efectos de la radiación , Gemfibrozilo/toxicidad , Halogenación , Radical Hidroxilo/química , Hipolipemiantes/química , Hipolipemiantes/efectos de la radiación , Hipolipemiantes/toxicidad , Cinética , Oxidación-Reducción , Fotólisis , Vibrio/efectos de los fármacos , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/efectos de la radiación , Contaminantes Químicos del Agua/toxicidad , Purificación del Agua/métodos
8.
Water Res ; 130: 127-138, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29216480

RESUMEN

Pharmaceutical abatement in a groundwater (GW), surface water (SW), and secondary effluent (SE) by conventional ozonation, the conventional peroxone (O3/H2O2), and the electro-peroxone (E-peroxone) processes was compared in batch tests. SE had significantly more fast-reacting dissolved organic matter (DOM) moieties than GW and SW. Therefore, O3 decomposed much faster in SE than in GW and SW. At specific ozone doses of 0.5-1.5 mg O3/mg dissolved organic carbon (DOC), the application of O3/H2O2 and E-peroxone process (by adding external H2O2 stocks or in-situ generating H2O2 from cathodic O2 reduction during ozonation) similarly enhanced the OH yield from O3 decomposition by ∼5-12% and 5-7% in GW and SW, respectively, compared to conventional ozonation. In contrast, due to the slower reaction kinetics of O3 with H2O2 than O3 with fast-reacting DOM moieties, the addition or electro-generation of H2O2 hardly increased the OH yield (<4% increases) in SE. Corresponding to the changes in the OH yields, the abatement efficiencies of ozone-resistant pharmaceuticals (ibuprofen and clofibric acid) increased evidently in GW (up to ∼14-18% at a specific ozone dose of 1.5 mg O3/mg DOC), moderately in SW (up to 6-10% at 0.5 mg O3/mg DOC), and negligibly in SE during the O3/H2O2 and E-peroxone treatment compared to conventional ozonation. These results indicate that similar to the conventional O3/H2O2 process, the E-peroxone process can more pronouncedly enhance O3 transformation to OH, and thus increase the abatement efficiency of ozone-resistant pharmaceuticals in water matrices exerting relatively high ozone stability (e.g., groundwater and surface water with low DOM contents). Therefore, by installing electrodes in existing ozone reactors, the E-peroxone process may provide a convenient way to enhance pharmaceutical abatement in drinking water applications, where groundwater and surface water with low DOM contents are used as the source waters.


Asunto(s)
Agua Subterránea/química , Peróxido de Hidrógeno/química , Ozono/química , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Ácido Clofíbrico/análisis , Ácido Clofíbrico/química , Ibuprofeno/análisis , Ibuprofeno/química , Cinética , Oxidación-Reducción , Contaminantes Químicos del Agua/química
9.
Chemosphere ; 191: 817-824, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29080542

RESUMEN

The effect of pore structure of resin on clofibric acid (CA) adsorption behavior was investigated by using magnetic anion exchange resins (ND-1, ND-2, ND-3) with increasing pore diameter by 11.68, 15.37, 24.94 nm. Resin with larger pores showed faster adsorption rates and a higher adsorption capacity because the more opened tunnels provided by larger pores benefit the CA diffusion into the resin matrix. The ion exchange by the electrostatic interactions between Cl-type resin and CA resulted in chloride releasing to the solution, and the ratio of released chloride to CA adsorption amount decreased from 0.90 to 0.65 for ND-1, ND-2 and ND-3, indicating that non-electrostatic interactions obtain a larger proportional part of the adsorption into the pores. Co-existing inorganic anions and organic acids reduced the CA adsorption amounts by the competition effect of electrostatic interaction, whereas resins with more opened pore structures weakened the negative influence on CA adsorption because of the existence of non-electrostatic interactions. 85.2% and 65.1% adsorption amounts decrease are calculated for resin ND-1 and ND-3 by the negative influence of 1 mmol L-1 NaCl. This weaken effect of organic acid is generally depends on its hydrophobicity (Log Kow) for carboxylic acid and its ionization degree (pKb) for sulfonic acid. The resins could be reused with the slightly decreases by 1.9%, 3.2% and 5.4% after 7 cycles of regeneration, respectively for ND-1, ND-2 and ND-3, suggesting the ion exchange resin with larger pores are against its reuse by the brine solution regeneration.


Asunto(s)
Resinas de Intercambio Aniónico/química , Ácido Clofíbrico/química , Modelos Químicos , Adsorción , Ácido Clofíbrico/análisis , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Intercambio Iónico , Resinas de Intercambio Iónico/química , Magnetismo , Sales (Química) , Electricidad Estática
10.
Chemosphere ; 187: 395-403, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28863292

RESUMEN

In this work, we study degradation of clofibric acid (CFA) in aqueous solution using either ionizing radiation from a60Co source or a non-thermal plasma produced by discharges in the air above the solution. The results obtained with the two technologies are compared in terms of effectiveness of CFA degradation and its by-products. In both cases the CFA degradation follows a quasi-exponential decay in time well modelled by a kinetic scheme which considers the competition between CFA and all reaction intermediates for the reactive species generated in solution as well as the amount of the end product formed. A new degradation law is deduced to explain the results. Although the end-product CO2 was detected and the CFA conversion found to be very high under the studied conditions, HPLC analysis reveals several degradation intermediates still bearing the aromatic ring with the chlorine substituent. The extent of mineralization is rather limited. The energy yield is found to be higher in the gamma radiation experiments.


Asunto(s)
Ácido Clofíbrico/química , Restauración y Remediación Ambiental/métodos , Rayos gamma , Contaminantes Químicos del Agua/química , Dióxido de Carbono , Cinética , Oxidación-Reducción , Agua/química , Contaminantes Químicos del Agua/efectos de la radiación
11.
J Hazard Mater ; 340: 179-188, 2017 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-28715741

RESUMEN

A series of metal-azolate frameworks or MAFs-MAF-4, -5, and -6-were synthesized and pyrolyzed to prepare porous carbons derived from MAFs (CDM-4, -5, -6, respectively). Not only the obtained carbons but also MAFs were characterized and applied for the adsorption of organic contaminants of emerging concern (CECs, including pharmaceuticals and personal care products) such as salicylic acid, clofibric acid, diclofenac sodium, bisphenol-A, and oxybenzone (OXB) from water. CDM-6 was found to be the most remarkable adsorbent among the tested ones (including activated carbon) for all the adsorbates. OXB was taken as a representative adsorbate for detailed adsorption studies as well as understanding the adsorption mechanism. H-bonding (H-acceptor: CDM; H-donor: CECs) was suggested as the principal mechanism for the adsorption of tested adsorbates. Finally, CDMs, especially CDM-6, were suggested as highly efficient and easily recyclable adsorbents for water purification.


Asunto(s)
Estructuras Metalorgánicas/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Adsorción , Compuestos de Bencidrilo/química , Benzofenonas/química , Carbono/química , Ácido Clofíbrico/química , Diclofenaco/química , Fenoles/química , Porosidad , Ácido Salicílico/química
12.
Chemosphere ; 172: 193-200, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28068571

RESUMEN

Pharmaceutically emerging micropollutants have become an environmental concern in recent years. In the present paper, the reactive species (RSs)-induced degradation mechanism of clofibric acid (CA) was investigated using a newly sunlight-driven g-C3N4/P25 photocatalyst. A very low g-C3N4 content of 8.0 weight percent resulted in a 3.36 and a 2.29 times faster reaction rate for CA photodegradation than for pristine g-C3N4 and P25, respectively. Electron spin resonance and quenching experiments demonstrated the participation of HO, h+, e-, 1O2 and O2·- in the photocatalytic system, and the contribution rates were calculated to 73.3%, 15.3%, 5.1%, 6.7% and 33.1%, respectively. According to the pulse radiolysis measurements and the competitive kinetics approaches, the bimolecular reaction rate constants for HO, e-, and 1O2 with CA were (8.47 ± 0.33) × 109 M-1s-1, (6.41 ± 0.48) × 109 M-1s-1 and (6.6 ± 0.37) × 106 M-1s-1, respectively. RSs were found to significantly influence the degradation of CA, and the degradation pathways occurred primarily via e- reduction, HO addition and 1O2 attack reactions on the basis of mass spectrometry and theoretical calculations.


Asunto(s)
Ácido Clofíbrico/química , Fotólisis , Luz Solar , Contaminantes Químicos del Agua/química , Anticolesterolemiantes/química , Hipolipemiantes/química , Cinética
13.
Eur J Pharm Sci ; 100: 1-8, 2017 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-28063965

RESUMEN

The synthesis and characterisation of a partially substituted calix[4]arene, namely, 5,11,17,23-tetra-tert-butyl,25,27-bis[aminoethoxy] 26,28-dihydroxycalix[4]arene are reported. Its interaction with commonly used pharmaceuticals (clofibric acid, diclofenac and aspirin) was investigated by spectroscopic (1H NMR and UV), electrochemical (conductance measurements) and thermal (titration calorimetry) techniques. It is concluded on the basis of the experimental work and molecular simulation studies that the receptor interacts selectively with these drugs. Preliminary studies on the selective extraction of these pharmaceuticals from water by the calix receptor are reported and the potential for a carrier mediated sensor based on this ligand for 'on site' monitoring of pharmaceuticals is discussed.


Asunto(s)
Aspirina/química , Calixarenos/química , Ácido Clofíbrico/química , Diclofenaco/química , Fenoles/química , Calorimetría , Conductividad Eléctrica , Modelos Moleculares , Espectroscopía de Protones por Resonancia Magnética , Espectrofotometría Ultravioleta , Termodinámica
14.
Environ Sci Pollut Res Int ; 24(7): 6031-6039, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27215987

RESUMEN

This work presents the photocatalytic degradation of the pharmaceutical drug clofibric acid in a fixed-bed reactor filled with TiO2-coated glass rings. Experiments were carried out under UV radiation. A kinetic model that takes into account radiation absorption by means of the local surface rate of photon absorption (LSRPA) has been developed. The LSRPA was obtained from the results of a radiation model. The Monte Carlo method was employed to solve the radiation model, where the interaction between photons and TiO2-coated rings was considered. Data from experiments carried out with rings with different numbers of catalyst coatings and different irradiation levels were used to estimate the parameters of the kinetic model. A satisfactory agreement was obtained between model simulations and experimental results.


Asunto(s)
Ácido Clofíbrico , Vidrio/química , Modelos Teóricos , Titanio/química , Contaminantes Químicos del Agua , Ácido Clofíbrico/análisis , Ácido Clofíbrico/química , Ácido Clofíbrico/efectos de la radiación , Cinética , Fotólisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/efectos de la radiación
15.
Molecules ; 21(8)2016 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-27529207

RESUMEN

Hemoglobin (Hb) modifiers that stereospecifically inhibit sickle hemoglobin polymer formation and/or allosterically increase Hb affinity for oxygen have been shown to prevent the primary pathophysiology of sickle cell disease (SCD), specifically, Hb polymerization and red blood cell sickling. Several such compounds are currently being clinically studied for the treatment of SCD. Based on the previously reported non-covalent Hb binding characteristics of substituted aryloxyalkanoic acids that exhibited antisickling properties, we designed, synthesized and evaluated 18 new compounds (KAUS II series) for enhanced antisickling activities. Surprisingly, select test compounds showed no antisickling effects or promoted erythrocyte sickling. Additionally, the compounds showed no significant effect on Hb oxygen affinity (or in some cases, even decreased the affinity for oxygen). The X-ray structure of deoxygenated Hb in complex with a prototype compound, KAUS-23, revealed that the effector bound in the central water cavity of the protein, providing atomic level explanations for the observed functional and biological activities. Although the structural modification did not lead to the anticipated biological effects, the findings provide important direction for designing candidate antisickling agents, as well as a framework for novel Hb allosteric effectors that conversely, decrease the protein affinity for oxygen for potential therapeutic use for hypoxic- and/or ischemic-related diseases.


Asunto(s)
Antidrepanocíticos/química , Hemoglobinas/química , Regulación Alostérica/efectos de los fármacos , Antidrepanocíticos/síntesis química , Antidrepanocíticos/farmacología , Sitios de Unión , Ácido Clofíbrico/química , Ácido Clofíbrico/farmacología , Hemoglobinas/metabolismo , Modelos Moleculares , Conformación Molecular , Unión Proteica , Relación Estructura-Actividad
16.
Chemosphere ; 161: 400-411, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27448753

RESUMEN

This study demonstrates the use of MIEX resin as an efficient adsorbent for the removal of clofibric acid (CA) and diclofenac (DCF). The adsorption performance of CA and DCF are investigated by a batch mode in single-component or bi-component adsorption system. Various factors influencing the adsorption of CA and DCF, including initial concentration, contact time, adsorbent dosage, initial solution pH, agitation speed, natural organic matter and coexistent anions are studied. The Langmuir model can well describe CA adsorption in single-component system, while the Freundlich model gives better fitting in bi-component system. The DCF adsorption can be well fitted by the Freundlich model in both systems. Thermodynamic analyses show that the adsorption of CA and DCF is an endothermic (ΔH(o) > 0), entropy driven (ΔS(o) > 0) process and more randomness exists in the DCF adsorption process. The values of Gibbs free energy (ΔG(o) < 0) indicate the adsorption of DCF is spontaneous but nonspontaneous (ΔG(o) > 0) for CA adsorption. The kinetic data suggest the adsorption of CA and DCF follow the pseudo-first-order model in both systems and the intra-particle is not the unique rate-limiting step. The adsorption process is controlled simultaneously by external mass transfer and surface diffusion according to the surface diffusion modified Biot number (Bis) ranging from 1.06 to 26.15. Moreover, the possible removal mechanism for CA and DCF is respectively proposed based on the ion exchange stoichiometry.


Asunto(s)
Ácido Clofíbrico/química , Diclofenaco/química , Resinas de Intercambio Iónico/química , Contaminantes Químicos del Agua/química , Adsorción , Concentración de Iones de Hidrógeno , Intercambio Iónico , Cinética , Temperatura , Termodinámica , Purificación del Agua/métodos
17.
Chemosphere ; 152: 71-80, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26963238

RESUMEN

Triethoxyphenylsilane (TEPS)-functionalized magnetic palm-based powdered activated carbon (MPPAC-TEPS) was prepared and characterized using various spectroscopic methods, and then tested for the removal of bisphenol A, carbamazepine, ibuprofen and clofibric acid. Magnetite film on MPPAC-TEPS was homogeneously coated on the outer surface of palm-based powdered activated carbon (PPAC) through a hydrothermal co-precipitation technique. Followed by silanization of phenyl-functionalized organosilane on MPPAC's magnetic film. As results, micro/mesopore surface area and volume increased without significant pore clogging and iron (Fe) dissolution under the acidic conditions was greatly decreased. The unique structural and chemical features of MPPAC-TEPS were found to be the main reasons for the enhanced adsorption rates and removal capacities of POPs. The presence of electrolytes and different pH values greatly affected the sorption efficiencies. The dominant sorption mechanism of POPs by MPPAC-TEPS was determined to be π-π interaction (physisorption), based on thermodynamic (ΔG°) and differential scanning calorimetry (DSC). Thermal regeneration at a low temperature (350 °C) was an effective method to desorb the retained POPs and enabled to reactivate MPPAC-TEPS with sustained sorption rates and capacities, whereas PPAC was largely exhausted. As a new type of sorbent for POPs, MPPAC-TEPS has operational advantages, such as magnetic separation and stable regeneration.


Asunto(s)
Carbono/química , Disruptores Endocrinos/química , Óxido Ferrosoférrico/química , Preparaciones Farmacéuticas/química , Silanos/química , Contaminantes Químicos del Agua/química , Adsorción , Compuestos de Bencidrilo/química , Carbamazepina/química , Ácido Clofíbrico/química , Ibuprofeno/química , Fenómenos Magnéticos , Fenoles/química , Purificación del Agua/métodos
18.
Water Res ; 88: 691-702, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26580085

RESUMEN

This study investigated the degradation of clofibric acid and formation of perchlorate during the electro-peroxone (E-peroxone) treatment of chloride-containing (26.1-100 mg L(-1)) water (Na2SO4 electrolytes and secondary effluents). The E-peroxone process involves sparging O2 and O3 gas mixture into an electrolysis reactor where a carbon-based cathode is used to electrochemically convert the sparged O2 to H2O2. The electro-generated H2O2 then reacts with sparged O3 to produce OH, which can rapidly oxidize pollutants in the bulk solution. When boron-doped diamond (BDD) electrodes were used as the anode, perchlorate concentrations increased significantly from undetectable levels to ∼15-174 mg L(-1) in the different water samples as the applied current density was increased from 4 to 32 mA cm(-2). In contrast, no ClO4(-) was detected when Pt/Ti anodes were used in the E-peroxone process operated under similar reaction conditions. In addition, when sufficient O3 was sparged to maximize OH production from its peroxone reaction with electro-generated H2O2, the E-peroxone process with Pt/Ti anodes achieved comparable clofibric acid degradation and total organic carbon (TOC) removal yields as that with BDD anodes, but did not generate detectable ClO4(-). These results indicate that by optimizing operational parameters and using Pt/Ti anodes, the E-peroxone process can achieve the goal of both fast pollutant degradation and ClO4(-) prevention during the treatment of chloride-containing wastewater.


Asunto(s)
Cloruros/química , Ácido Clofíbrico/química , Electrólisis , Percloratos/análisis , Contaminantes Químicos del Agua/química , Anticolesterolemiantes/química , Hipolipemiantes/química , Oxidación-Reducción
19.
Water Sci Technol ; 71(8): 1143-50, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25909723

RESUMEN

The removal of two blood lipid regulators, clofibric acid (CLA) and gemfibrozil (GFZ), was evaluated using two identical aerobic membrane bioreactors with 6.5 L effective volume each. Polysulfone ultrafiltration hollow fiber membranes were submerged in the reactors. Different operating conditions were tested varying the organic load (F/M), hydraulic residence time (HRT), biomass concentration measured as total suspended solids in the mixed liquor (MLTSS) and the sludge retention time (SRT). Complete GFZ removal was obtained with F/M of 0.21-0.48 kg COD kgTSS⁻¹ d⁻¹, HRT of 4-10 hours, SRT of 10-32 d and MLTSS of 6-10 g L⁻¹. The GFZ removal can be attributed to biodegradation and there was no accumulation of the compound in the biomass. The CLA removals improved with the SRT and HRT increase and F/M decrease. Average removals of 78-79% were obtained with SRT 16-32 d, F/M of 0.21-0.34 kgCOD kgTSS⁻¹ d⁻¹, HRT of 7-10 hours and MLTSS of 6-10 g L⁻¹. Biodegradation was found to be the main removal pathway.


Asunto(s)
Reactores Biológicos , Ácido Clofíbrico/química , Gemfibrozilo/química , Membranas Artificiales , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Biomasa , Ácido Clofíbrico/metabolismo , Gemfibrozilo/metabolismo , Hipolipemiantes/química , Hipolipemiantes/metabolismo , Aguas del Alcantarillado , Ultrafiltración/instrumentación , Ultrafiltración/métodos
20.
J Hazard Mater ; 286: 276-84, 2015 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-25590821

RESUMEN

Comparative experiments were conducted to investigate the catalytic ability of MnO(x)/SBA-15 for the ozonation of clofibric acid (CA) and its reaction mechanism. Compared with ozonation alone, the degradation of CA was barely enhanced, while the removal of TOC was significantly improved by catalytic ozonation (O3/MnO(x)/SBA-15). Adsorption of CA and its intermediates by MnO(x)/SBA-15 was proved unimportant in O3/MnO(x)/SBA-15 due to the insignificant adsorption of CA and little TOC variation after ceasing ozone in stopped-flow experiment. The more remarkably inhibition effect of sodium bisulfite (NaHSO3) on the removal of TOC in catalytic ozonation than in ozonation alone elucidated that MnO(x)/SBA-15 facilitated the generation of hydroxyl radicals (OH), which was further verified by electron spin-resonance spectroscopy (ESR). Highly dispersed MnO(x) on SBA-15 were believed to be the main active component in MnO(x)/SBA-15. Some intermediates were indentified and different degradation routes of CA were proposed in both ozonation alone and catalytic ozonation. The amounts of small molecular carboxylic acids (i.e., formic acid (FA), acetic acid (AA) and oxalic acid (OA)) generated in catalytic ozonation were lower than in ozonation alone, resulting from the generation of more OH.


Asunto(s)
Ácido Clofíbrico/análisis , Compuestos de Manganeso/química , Óxidos/química , Ozono/química , Dióxido de Silicio/química , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Adsorción , Catálisis , Ácido Clofíbrico/química , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA