Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 89(12): e0063023, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38054732

RESUMEN

IMPORTANCE: Fusaric acid (FA) is an important virulence factor produced by several Fusarium species. These fungi are responsible for wilt and rot diseases in a diverse range of crops. FA is toxic for animals, humans and soil-borne microorganisms. This mycotoxin reduces the survival and competition abilities of bacterial species able to antagonize Fusarium spp., due to its negative effects on viability and the production of antibiotics effective against these fungi. FA biodegradation is not a common characteristic among bacteria, and the determinants of FA catabolism have not been identified so far in any microorganism. In this study, we identified genes, enzymes, and metabolic pathways involved in the degradation of FA in the soil bacterium Burkholderia ambifaria T16. Our results provide insights into the catabolism of a pyridine-derivative involved in plant pathogenesis by a rhizosphere bacterium.


Asunto(s)
Complejo Burkholderia cepacia , Burkholderia , Fusarium , Micotoxinas , Animales , Humanos , Micotoxinas/metabolismo , Ácido Fusárico/metabolismo , Burkholderia/metabolismo , Complejo Burkholderia cepacia/metabolismo , Hongos/metabolismo , Suelo , Fusarium/metabolismo , Enfermedades de las Plantas/microbiología
2.
J Plant Physiol ; 287: 154049, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37423042

RESUMEN

Mycotoxin contamination of foods and feeds is a global problem. Fusaric acid (FA) is a mycotoxin produced by Fusarium species that are phytopathogens of many economically important plant species. FA can cause programmed cell death (PCD) in several plant species. However, the signaling mechanisms of FA-induced cell death in plants are largely unknown. Here we showed that FA induced cell death in the model plant Arabidopsis thaliana, and MPK3/6 phosphorylation was triggered by FA in Arabidopsis. Both the acid nature and the radical of FA are required for its activity in inducing MPK3/6 activation and cell death. Expression of the constitutively active MKK5DD resulted in the activation of MPK3/6 and promoted the FA-induced cell death. Our work demonstrates that the MKK5-MPK3/6 cascade positively regulates FA-induced cell death in Arabidopsis and also provides insight into the mechanisms of how cell death is induced by FA in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Micotoxinas , Arabidopsis/metabolismo , Ácido Fusárico/farmacología , Ácido Fusárico/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Micotoxinas/metabolismo , Muerte Celular
3.
Toxins (Basel) ; 15(6)2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37368682

RESUMEN

Fusarium wilt, caused by Fusarium oxysporum, is one of the most notorious diseases of cash crops. The use of microbial fungicides is an effective measure for controlling Fusarium wilt, and the genus Bacillus is an important resource for the development of microbial fungicides. Fusaric acid (FA) produced by F. oxysporum can inhibit the growth of Bacillus, thus affecting the control efficacy of microbial fungicides. Therefore, screening FA-tolerant biocontrol Bacillus may help to improve the biocontrol effect on Fusarium wilt. In this study, a method for screening biocontrol agents against Fusarium wilt was established based on tolerance to FA and antagonism against F. oxysporum. Three promising biocontrol bacteria, named B31, F68, and 30833, were obtained to successfully control tomato, watermelon, and cucumber Fusarium wilt. Strains B31, F68, and 30833 were identified as B. velezensis by phylogenetic analysis of the 16S rDNA, gyrB, rpoB, and rpoC gene sequences. Coculture assays revealed that strains B31, F68, and 30833 showed increased tolerance to F. oxysporum and its metabolites compared with B. velezensis strain FZB42. Further experiments confirmed that 10 µg/mL FA completely inhibited the growth of strain FZB42, while strains B31, F68, and 30833 maintained normal growth at 20 µg/mL FA and partial growth at 40 µg/mL FA. Compared with strain FZB42, strains B31, F68, and 30833 exhibited significantly greater tolerance to FA.


Asunto(s)
Bacillus , Fungicidas Industriales , Fusarium , Fusarium/metabolismo , Ácido Fusárico/farmacología , Ácido Fusárico/metabolismo , Fungicidas Industriales/farmacología , Filogenia , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Bacillus/genética
4.
Plant Physiol Biochem ; 196: 841-849, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36870159

RESUMEN

The mycotoxin fusaric acid (FA) induces rapid oxidative burst leading to cell death in plants. At the same time, plant defence reactions are mediated by several phytohormones for instance ethylene (ET). However, previously conducted studies leave research gaps on how ET plays a regulatory role under mycotoxin exposure. Therefore, this study aims to the time-dependent effects of two FA concentrations (0.1 mM and 1 mM) were explored on the regulation of reactive oxygen species (ROS) in leaves of wild-type (WT) and ET receptor mutant Never ripe (Nr) tomatoes. FA induced superoxide and H2O2 accumulation in both genotypes in a mycotoxin dose- and exposure time-dependent pattern. 1 mM FA activated NADPH oxidase (+34% compared to the control) and RBOH1 transcript levels in WT leaves. However, superoxide production was significantly higher in Nr with 62% which could contribute to higher lipid peroxidation in this genotype. In parallel, the antioxidative defence mechanisms were also activated. Both peroxidase and superoxide dismutase activities were lower in Nr but ascorbate peroxidase showed one-fold higher activity under 1 mM FA stress than in WT leaves. Interestingly, catalase (CAT) activity decreased upon FA in a time- and concentration-dependent manner and the encoding CAT genes were also downregulated, especially in Nr leaves at 20%. Ascorbate level was decreased and glutathione remained lower in Nr than WT plants under FA exposure. Conclusively, Nr genotype showed more sensitivity to FA-induced ROS suggesting that ET serves defence reactions of plants by activating several enzymatic and non-enzymatic antioxidants to detoxify excess ROS accumulation.


Asunto(s)
Solanum lycopersicum , Especies Reactivas de Oxígeno/metabolismo , Superóxidos/metabolismo , Ácido Fusárico/farmacología , Ácido Fusárico/metabolismo , Peróxido de Hidrógeno/metabolismo , Estrés Oxidativo , Antioxidantes/metabolismo , Plantas/metabolismo , Ascorbato Peroxidasas/metabolismo , Etilenos/metabolismo , Hojas de la Planta/metabolismo , Superóxido Dismutasa/metabolismo , Catalasa/metabolismo
5.
World J Microbiol Biotechnol ; 39(4): 101, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36792836

RESUMEN

Microbial degradation is considered as an attractive method to eliminate exposure to mycotoxin that cause a serious threat in agriculture global industry and severe human health problems. Compared with other more prominent mycotoxin compounds, fusaric acid (FA) biodegradation has not been widely investigated. In this study, a fusaric acid-degrading bacterium Burkholderia sp. IMCC1007 was identified by 16 S rRNA gene sequencing and its detoxification characteristics were evaluated. This strain able to utilize FA as sole energy and carbon source with growth rate (µ) of 0.18 h- 1. Approximately 93% from the initial substrate FA concentration was almost degraded to the residual about 4.87 mg L- 1 after 12 h of incubation. The optimal degradation conditions for pH and temperature were recorded at 6.0 with 30 °C respectively. An efficient FA degradation of strain IMCC1007 suggested its potential significance to detoxification development. Accroding to LC-MS/Q-TOF analysis, FA was bio-transformed to 4-hydroxybenzoic acid (C7H6O3) and other possible metabolites. Plant treated with detoxified FA products exhibited reduction of wilting index, mitigating against FA phytoxicity effect on plant growth and photosynthesis activity. Phytotoxicity bioassay suggested that degradation product of IMCC1007 was not a potent harmful compound towards plants as compared to the parent compound, FA. As a conslusion, our study provides a new insight into the practical application of biodetoxifcation agent in controlling mycotoxin contamination.


Asunto(s)
Burkholderia , Micotoxinas , Humanos , Micotoxinas/metabolismo , Burkholderia/metabolismo , Ácido Fusárico/metabolismo , Ácido Fusárico/toxicidad , Biotransformación , Biodegradación Ambiental , Espectrometría de Masas
6.
Toxins (Basel) ; 15(1)2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36668870

RESUMEN

Fusaric acid (FA) is one of the first secondary metabolites isolated from phytopathogenic fungi belonging to the genus Fusarium. This molecule exerts a toxic effect on plants, rhizobacteria, fungi and animals, and it plays a crucial role in both plant and animal pathogenesis. In plants, metal chelation by FA is considered one of the possible mechanisms of action. Here, we evaluated the effect of different nitrogen sources, iron content, extracellular pH and cellular signalling pathways on the production of FA siderophores by the pathogen Fusarium oxysporum (Fol). Our results show that the nitrogen source affects iron chelating activity and FA production. Moreover, alkaline pH and iron limitation boost FA production, while acidic pH and iron sufficiency repress it independent of the nitrogen source. FA production is also positively regulated by the cell wall integrity (CWI) mitogen-activated protein kinase (MAPK) pathway and inhibited by the iron homeostasis transcriptional regulator HapX. Collectively, this study demonstrates that factors promoting virulence (i.e., alkaline pH, low iron availability, poor nitrogen sources and CWI MAPK signalling) are also associated with increased FA production in Fol. The obtained new insights on FA biosynthesis regulation can be used to prevent both Fol infection potential and toxin contamination.


Asunto(s)
Fusarium , Animales , Fusarium/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Ácido Fusárico/farmacología , Ácido Fusárico/metabolismo , Hongos/metabolismo , Pared Celular/metabolismo , Hierro/metabolismo , Concentración de Iones de Hidrógeno , Enfermedades de las Plantas/microbiología
7.
Phytopathology ; 113(7): 1244-1253, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36706002

RESUMEN

The root rot disease caused by Fusarium oxysporum f. sp. ginseng is one of the most destructive diseases of ginseng, an economically important herb. However, little is known about the pathogen's toxin biosynthesis or the molecular mechanisms regulating infection of ginseng. In this study we identified and functionally characterized the FoRSR1 gene that encodes a Ras-related (RSR) small GTPase homologous to yeast Rsr1 in F. oxysporum f. sp. ginseng. Disruption of FoRSR1 resulted in a significant reduction in mycelial dry weight in liquid cultures, although vegetative growth rate was not affected on culture plates. Notably, the Forsr1 mutant exhibited blunted and swollen hyphae with multi-nucleated compartments. It produced fewer and morphologically abnormal conidia and was defective in chlamydospore formation. In infection assays with ginseng roots, the Forsr1 mutant was significantly less virulent and caused only limited necrosis at the wounding sites. Deletion of FoRSR1 also affected pigmentation, autophagy, and production of fusaric acid. Furthermore, the expression of many candidate genes involved in secondary metabolism was significantly downregulated in the mutant, suggesting that FoRSR1 is also important for secondary metabolism. Overall, our results indicated that FoRSR1 plays important roles in conidiation, vacuolar morphology, secondary metabolism, and pathogenesis in F. oxysporum f. sp. ginseng.


Asunto(s)
Fusarium , Panax , Virulencia/genética , Ácido Fusárico/metabolismo , Enfermedades de las Plantas , Saccharomyces cerevisiae
8.
J Biotechnol ; 357: 1-8, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-35963592

RESUMEN

Fusaric acid (FA) is a secondary fungal metabolite, which is widespread on corn and corn-based feed and food; FA has non-specific toxicity. Biosensor method is an express and easy-to-use method for quantitative and qualitative assessment of FA effect. Search for cultures has been performed for the formation of laboratory models of FA biosensor with the Clark-type oxygen electrode as transducer: respiration intensity of chosen cultures changed in the presence of FA. Resting cells of Fusarium oxysporum f. sp. vasinfectum and Bacillus subtilis were used as receptors of the amperometric biosensor for FA determination in aqueous solution. To enhance the sensitivity of detection, induction by substrate was performed for Bacillus subtilis. Response-concentration linear dependencies were obtained in a range of 0.5-500 FA mg/L. Biosensor models were applied to characterize influence of FA on microbial cells and investigate some features of FA transport. The dependences of the cells' response to FA on FA concentration were obtained; the kinetic parameters S0.5 and Vmax were determined for each culture. Inhibition-threshold FA (Sit) concentrations were similar for both studied cultures. At concentrations lower than Sit, the process of simple diffusion governed FA transport into cells and caused the cells' response to FA for non-induced culture.


Asunto(s)
Técnicas Biosensibles , Fusarium , Bacillus subtilis/metabolismo , Ácido Fusárico/metabolismo , Ácido Fusárico/farmacología , Enfermedades de las Plantas/microbiología , Zea mays/microbiología
9.
World J Microbiol Biotechnol ; 38(7): 114, 2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35578144

RESUMEN

Burkholderia ambifaria T16 is a bacterium isolated from the rhizosphere of barley plants that showed a remarkable antifungal activity. This strain was also able to degrade fusaric acid (5-Butylpyridine-2-carboxylic acid) and detoxify this mycotoxin in inoculated barley seedlings. Genes and enzymes responsible for fusaric acid degradation have an important biotechnological potential in the control of fungal diseases caused by fusaric acid producers, or in the biodegradation/bio catalysis processes of pyridine derivatives. In this study, the complete genome of B. ambifaria T16 was sequenced and analyzed to identify genes involved in survival and competition in the rhizosphere, plant growth promotion, fungal growth inhibition, and degradation of aromatic compounds. The genomic analysis revealed the presence of several operons for the biosynthesis of antimicrobial compounds, such as pyrrolnitrin, ornibactin, occidiofungin and the membrane-associated AFC-BC11. These compounds were also detected in bacterial culture supernatants by mass spectrometry analysis. In addition, this strain has multiple genes contributing to its plant growth-promoting profile, including those for acetoin, 2,3-butanediol and indole-3-acetic acid production, siderophores biosynthesis, and solubilisation of organic and inorganic phosphate. A pan-genomic analysis demonstrated that the genome of strain T16 possesses large gene clusters that are absent in the genomes of B. ambifaria reference strains. According to predictions, most of these clusters would be involved in aromatic compounds degradation. One genomic region, encoding flavin-dependent monooxygenases of unknown function, is proposed as a candidate responsible for fusaric acid degradation.


Asunto(s)
Antiinfecciosos , Complejo Burkholderia cepacia , Burkholderia , Micotoxinas , Antiinfecciosos/metabolismo , Burkholderia/metabolismo , Complejo Burkholderia cepacia/genética , Ácido Fusárico/metabolismo , Genoma Bacteriano , Micotoxinas/metabolismo
10.
Food Chem Toxicol ; 159: 112663, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34748883

RESUMEN

Fusaric acid is a secondary metabolite produced by various Fusarium fungi, present with relatively high incidence in Fusarium-contaminated foods. It was already described as phytotoxic and cytotoxic. However, the understanding of its molecular mechanisms is still fragmentary and further data are needed to ensure an informed assessment of the risk related to its presence in food. This work applied an integrated in silico/in vitro approach to reveal novel potential biological activities of fusaric acid and to investigate the underpinning mechanisms. An in silico reverse screening was used to identify novel biological targets for fusaric acid. Computational results indicated as target protein kinase-A, which was confirmed with biochemical cell-free assays providing evidence of its actual inhibitory potential. Cell-based experiments on intestinal cells (HCEC-1CT cells) identified the mitochondrial network and cell membranes as potentially affected organelles, possibly resulting from PKA inhibition. The integration of 3D molecular modeling supported the plausibility of fusaric acid-dependent inhibition. From the hazard identification perspective, considering the Low Observed Adverse Effect Level described here (0.1 mM) and the possible level of contamination in food, fusaric acid might raise concern from a food safety standpoint and the gastrointestinal tract was described as a meaningful system to investigate with priority.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , Desarrollo de Medicamentos/métodos , Ácido Fusárico , Micotoxinas , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/química , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ácido Fusárico/química , Ácido Fusárico/metabolismo , Ácido Fusárico/toxicidad , Fusarium/metabolismo , Humanos , Simulación de Dinámica Molecular , Micotoxinas/química , Micotoxinas/metabolismo , Micotoxinas/toxicidad
11.
BMC Microbiol ; 20(1): 255, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32795268

RESUMEN

BACKGROUND: Fusarium wilt disease of banana is one of the most devastating diseases and was responsible for destroying banana plantations in the late nineteenth century. Fusarium oxysporum f. sp. cubense is the causative agent. Presently, both race 1 and 4 strains of Foc are creating havoc in the major banana-growing regions of the world. There is an urgent need to devise strategies to control this disease; that is possible only after a thorough understanding of the molecular basis of this disease. RESULTS: There are a few regulators of Foc pathogenicity which are triggered during this infection, among which Sge1 (Six Gene Expression 1) regulates the expression of effector genes. The protein sequence is conserved in both race 1 and 4 strains of Foc indicating that this gene is vital for pathogenesis. The deletion mutant, FocSge1 displayed poor conidial count, loss of hydrophobicity, reduced pigmentation, decrease in fusaric acid production and pathogenicity as compared to the wild-type and genetically complemented strain. Furthermore, the C-terminal domain of FocSge1 protein is crucial for its activity as deletion of this region results in a knockout-like phenotype. CONCLUSION: These results indicated that FocSge1 plays a critical role in normal growth and pathogenicity with the C-terminal domain being crucial for its activity.


Asunto(s)
Fusarium/patogenicidad , Proteínas de Transporte de Membrana/genética , Musa/microbiología , Secuencia de Bases , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Ácido Fusárico/metabolismo , Fusarium/clasificación , Fusarium/genética , Eliminación de Gen , Proteínas de Transporte de Membrana/química , Enfermedades de las Plantas/microbiología , Regiones Promotoras Genéticas , Dominios Proteicos
12.
Toxins (Basel) ; 12(6)2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32498307

RESUMEN

The maize pathogen Fusarium verticillioides and their mycotoxins cause damage to plants, animals, and human health. This work aimed to evaluate the effect of crude extracts (CEs) from Agaricus subrufescens, Lentinula edodes, and Pleurotus ostreatus fruiting bodies on in vitro production of biomass and mycotoxins by two strains of F. verticillioides. Stipes and pilei were separated before extraction for A. subrufescens and L. edodes. Comparative metabolomics and dereplication of phenolic compounds were used to analyze all CEs. Mushroom CEs did not significantly inhibit the production of mycelial biomass at concentrations of 2 mg mL⁻1. CEs from A. subrufescens (stipes and pilei) and L. edodes pilei inhibited the production of fumonisins B1 + B2 + B3 by 54% to 80%, whereas CE from P. ostreatus had no effect. In contrast, CE from L. edodes stipes dramatically increased the concentration of fumonisins in culture media. Fusaric acid concentration was decreased in cultures by all CEs except L. edodes stipes. Differences in phenolic composition of the extracts may explain the different effects of the CE treatments on the production of mycotoxins. The opposing activities of stipes and pilei from L. edodes offer an opportunity to search for active compounds to control the mycotoxin production by F. verticillioides.


Asunto(s)
Agaricales/química , Fumonisinas/metabolismo , Fungicidas Industriales/farmacología , Ácido Fusárico/metabolismo , Fusarium/efectos de los fármacos , Agaricus/química , Grano Comestible/microbiología , Microbiología de Alimentos , Fungicidas Industriales/aislamiento & purificación , Fusarium/crecimiento & desarrollo , Fusarium/metabolismo , Metanol/química , Pleurotus/química , Hongos Shiitake/química , Solventes/química , Zea mays/microbiología
13.
Int J Mol Sci ; 21(9)2020 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-32397623

RESUMEN

Fusaric acid (FA), the fungal toxin produced by Fusarium oxysporum, plays a predominant role in the virulence and symptom development of Fusarium wilt disease. As mineral nutrients can be protective agents against Fusarium wilt, hydroponic experiments employing zinc (Zn) and copper (Cu) followed by FA treatment were conducted in a glasshouse. FA exhibited strong phytotoxicity on cucumber plants, which was reversed by the addition of Zn or Cu. Thus, Zn or Cu dramatically reduced the wilt index, alleviated the leaf or root cell membrane injury and mitigated against the FA inhibition of plant growth and photosynthesis. Cucumber plants grown with Zn exhibited decreased FA transportation to shoots and a 17% increase in toxicity mitigation and showed minimal hydrogen peroxide, lipid peroxidation level with the increased of antioxidant enzymes activity in both roots and leaves. Cucumber grown with additional Cu absorbed less FA but showed more toxicity mitigation at 20% compared to with additional Zn and exhibited decreased hydrogen peroxide level and increased antioxidant enzymes activity. Thus, adding Zn or Cu can decrease the toxicity of the FA by affecting the absorption or transportation of the FA in plants and mitigate toxicity possibly through chelation. Zn and Cu modify the antioxidant system to scavenge hydrogen peroxide for suppressing FA induction of oxidative damage. Our experiments could provide a theoretical basis for the direct application of micro-fertilizer as protective agents in farming.


Asunto(s)
Antioxidantes/metabolismo , Cobre/farmacología , Cucumis sativus/efectos de los fármacos , Cucumis sativus/metabolismo , Ácido Fusárico/toxicidad , Enfermedades de las Plantas/prevención & control , Zinc/farmacología , Cobre/metabolismo , Cucumis sativus/enzimología , Ácido Fusárico/metabolismo , Fusarium/metabolismo , Peróxido de Hidrógeno/metabolismo , Micotoxinas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/terapia , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Tallos de la Planta/efectos de los fármacos , Tallos de la Planta/metabolismo , Zinc/metabolismo
14.
J Agric Food Chem ; 67(31): 8536-8547, 2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31310520

RESUMEN

Watermelon Fusarium wilt is a common soil-borne disease that has significantly affected its yield. In this study, fusaric acid-deficient mutant designated as ΔFUBT (mutated from Fusarium oxysporum f. sp. niveum, FON) was obtained. The ΔFUBT mutant showed significant decrease in fusaric acid production but maintained wild-type characteristics, such as in vitro colony morphology, size, and conidiation. A field pot experiment demonstrated that ΔFUBT could successfully colonize the rhizosphere and the roots of watermelon, leading to significant reduction in FON colonization in the watermelon plant. In addition, ΔFUBT inoculation significantly improved the rhizosphere microenvironment and effectively increased the resistance in watermelon. This study demonstrated that a nonpathogenic Fusarium mutant (ΔFUBT) could be developed as an effective microbial control agent to alleviate Fusarium wilt disease in watermelon and increase its yield.


Asunto(s)
Citrullus/microbiología , Fusarium/genética , Micotoxinas/genética , Enfermedades de las Plantas/microbiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ácido Fusárico/metabolismo , Fusarium/crecimiento & desarrollo , Fusarium/fisiología , Mutación , Micotoxinas/metabolismo , Raíces de Plantas/microbiología , Rizosfera
15.
Curr Genet ; 65(3): 773-783, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30631890

RESUMEN

The soil-borne, asexual fungus Fusarium oxysporum f.sp. lycopersici (Fol) is a causal agent of tomato wilt disease. The infection process of Fol comprises root recognition, adhesion, penetration, colonization of the root cortex and hyphal proliferation within the xylem vessels, which are under the regulation of virulence-involved transcription factors (TFs). In this study, we identified a gene, designated FolCZF1, which encodes a C2H2 TF in Fol. The homologs of FolCzf1 are also known to affect pathogenicity in F. graminearum and Magnaporthe oryzae on wheat and rice, respectively. We learned that FolCZF1 transcript level is upregulated in conidia and early host infection stage, which led us to hypothesize that FolCzf1 is associated with early host infection in Fol. The FolCZF1 deletion mutant (ΔFolCZF1) exhibited defects in growth rate, conidiation, conidia morphology and a complete loss of virulence on tomato root. Further microscopic observation showed that ΔFolCZF1 can penetrate the root but the primary infection hypha cannot extend its colonization inside the host tissue, suggesting that FolCzf1 TF plays an important role in early infection. Fusaric acid, a secondary metabolite produced by Fusarium species, is suggested as a virulence factor in many crop diseases. We found that FolCzf1 plays a critical role in fusaric acid production by regulating the expression of fusaric acid biosynthesis genes. In summary, FolCzf1 is required for conidiation, secondary metabolism, and early host infection in Fol, and we propose that homologs of FolCzf1 are required for early parasitic growth in other plant pathogenic filamentous fungi.


Asunto(s)
Proteínas Fúngicas/metabolismo , Ácido Fusárico/metabolismo , Fusarium/fisiología , Enfermedades de las Plantas/microbiología , Solanum lycopersicum/microbiología , Esporas Fúngicas/fisiología , Factores de Transcripción/metabolismo , Proteínas Fúngicas/genética , Raíces de Plantas/microbiología , Eliminación de Secuencia , Factores de Transcripción/genética , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
16.
Curr Microbiol ; 75(12): 1560-1565, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30155671

RESUMEN

Pseudomonas protegens synthesizes two major iron-chelating metabolites (siderophores): pyoverdine (Pvd) and enantio-pyochelin (E-Pch). Although iron sequestration and uptake seem to be the main biological role of these siderophores, other functions including metal homeostasis and antibiotic activity have been proposed. The aim of this study was to evaluate the contribution of Pvd and E-Pch to the survival of P. protegens in soil using wild type and isogenic mutant strains unable to produce Pvd, E-Pch or both siderophores. Survival of these strains in sterile soil microcosms, in soil microcosms containing the native microflora and in sterile soil microcosms containing fusaric acid (a mycotoxin able to chelate iron and other metals), was compared by determination of colony forming units (CFU) per gram dry soil over time. In sterile soil, cell densities of Pvd-producing strains were significantly higher than that of non-producers after 21 days of permanence in the microcosms. In non-sterile soil, viability of all strains declined faster than in sterile soil and Pvd producers showed higher CFU × (g dry weight soil)-1 values than non-producers. The presence of fusaric acid negatively affected viability of strains unable to produce Pvd, while had no effect on the viability of strains able to produce Pvd. Altogether, these results show that the ability to produce Pvd increases survival of P. protegens in soil, while the ability to synthesize E-Pch does not, indicating that under the conditions which prevail in soil, iron scavenging via Pvd is more beneficial than via E-Pch.


Asunto(s)
Oligopéptidos/metabolismo , Fenoles/metabolismo , Pseudomonas/metabolismo , Sideróforos/metabolismo , Tiazoles/metabolismo , Ácido Fusárico/metabolismo , Hierro/metabolismo , Suelo , Microbiología del Suelo
17.
Molecules ; 23(4)2018 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-29614031

RESUMEN

Chemical agents in the rhizosphere soils of plants might have an influence on root-rot disease, which therefore might reveal the mechanism of root rot in Panax notoginseng (P. notoginseng). With this hypothesis the alterations of phenolic acids (PAs) in the rhizosphere soils of P. notoginseng after pathogen infection were determined. The effects of PAs on the growth of Fusarium oxysporum (F. oxysporum), a fungal pathogenic factor for P. notoginseng, as well as production of fusaric acid, a wilting agent for the plants, were also examined. The results indicate the presence of five PAs (ferulic acid, syringic acid, p-hydroxybenzoic acid, p-coumaric acid, and vanillic acid) in the rhizosphere soils of P. notoginseng, whose contents in the rhizosphere soils of healthy plants are higher than those of the diseased ones. Further we found that individual PA could inhibit the mycelium growth and spore production of F. oxysporum, but stimulate fusaric acid production as well, disclosing the double-edge sword role of PAs in the occurrence of root rot of P. notoginseng and paving the way for the intervention of P. notoginseng root rot via balancing PAs.


Asunto(s)
Hidroxibenzoatos/metabolismo , Panax notoginseng/microbiología , Panax notoginseng/fisiología , Raíces de Plantas/microbiología , Ácido Fusárico/metabolismo , Panax notoginseng/metabolismo , Rizosfera , Microbiología del Suelo
18.
Mol Plant Pathol ; 19(2): 440-453, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28093838

RESUMEN

Fusaric acid (FA) is amongst the oldest identified secondary metabolites produced by Fusarium species, known for a long time to display strong phytotoxicity and moderate toxicity to animal cells; however, the cellular targets of FA and its function in fungal pathogenicity remain unknown. Here, we investigated the role of FA in Fusarium oxysporum, a soil-borne cross-kingdom pathogen that causes vascular wilt on more than 100 plant species and opportunistic infections in humans. Targeted deletion of fub1, encoding a predicted orthologue of the polyketide synthase involved in FA biosynthesis in F. verticillioides and F. fujikuroi, abolished the production of FA and its derivatives in F. oxysporum. We further showed that the expression of fub1 was positively controlled by the master regulator of secondary metabolism LaeA and the alkaline pH regulator PacC through the modulation of chromatin accessibility at the fub1 locus. FA exhibited strong phytotoxicity on tomato plants, which was rescued by the exogenous supply of copper, iron or zinc, suggesting a possible function of FA as a chelating agent of these metal ions. Importantly, the severity of vascular wilt symptoms on tomato plants and the mortality of immunosuppressed mice were significantly reduced in fub1Δ mutants and fully restored in the complemented strains. Collectively, these results provide new insights into the regulation and mode of action of FA, as well as on the function of this phytotoxin during the infection process of F. oxysporum.


Asunto(s)
Ácido Fusárico/metabolismo , Fusarium/metabolismo , Fusarium/patogenicidad , Enfermedades de las Plantas/microbiología , Animales , Regulación Fúngica de la Expresión Génica , Micotoxinas/metabolismo , Virulencia
19.
Microbiol Res ; 206: 50-59, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29146260

RESUMEN

Fusaric acid (FA) is a fungal metabolite produced by several Fusarium species responsible for wilts and root rot diseases of a great variety of plants. Bacillus spp. and Pseudomonas spp. have been considered as promising biocontrol agents against phytopathogenic Fusarium spp., however it has been demonstrated that FA negatively affects growth and production of some antibiotics in these bacteria. Thus, the capability to degrade FA would be a desirable characteristic in bacterial biocontrol agents of Fusarium wilt. Taking this into account, bacteria isolated from the rhizosphere of barley were screened for their ability to use FA as sole carbon and energy source. One strain that fulfilled this requirement was identified according to sequence analysis of 16S rRNA, gyrB and recA genes as Burkholderia ambifaria. This strain, designated T16, was able to grow with FA as sole carbon, nitrogen and energy source and also showed the ability to detoxify FA in barley seedlings. This bacterium also exhibited higher growth rate, higher cell densities, longer survival, higher levels of indole-3-acetic acid (IAA) production, enhanced biofilm formation and increased resistance to different antibiotics when cultivated in Luria Bertani medium at pH 5.3 compared to pH 7.3. Furthermore, B. ambifaria T16 showed distinctive plant growth-promoting features, such as siderophore production, phosphate-solubilization, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, in vitro antagonism against Fusarium spp. and improvement of grain yield when inoculated to barley plants grown under greenhouse conditions. This strain might serve as a new source of metabolites or genes for the development of novel FA-detoxification systems.


Asunto(s)
Antibiosis/fisiología , Fenómenos Fisiológicos Bacterianos , Agentes de Control Biológico , Burkholderia/metabolismo , Ácido Fusárico/metabolismo , Fusarium/crecimiento & desarrollo , Micotoxinas/metabolismo , Desarrollo de la Planta , Antifúngicos/metabolismo , Argentina , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Biopelículas/crecimiento & desarrollo , Burkholderia/genética , Burkholderia/crecimiento & desarrollo , Burkholderia/aislamiento & purificación , Liasas de Carbono-Carbono/metabolismo , Girasa de ADN/genética , Farmacorresistencia Microbiana , Ácido Fusárico/efectos adversos , Fusarium/efectos de los fármacos , Fusarium/metabolismo , Fusarium/patogenicidad , Genes Bacterianos/genética , Hordeum/microbiología , Concentración de Iones de Hidrógeno , Ácidos Indolacéticos/metabolismo , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo , Fosfatos/metabolismo , Filogenia , Enfermedades de las Plantas/microbiología , Raíces de Plantas/microbiología , ARN Ribosómico 16S/genética , Rec A Recombinasas/genética , Rizosfera , Plantones , Análisis de Secuencia , Análisis de Secuencia de ADN , Sideróforos/metabolismo
20.
ChemMedChem ; 12(23): 1927-1930, 2017 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-29094797

RESUMEN

Autoimmune diseases are characterized by dendritic cell (DC)-driven activation of pro-inflammatory T cell responses. Therapeutic options for these severe diseases comprise small molecules such as dimethyl fumarate, or "gasotransmitters" such as CO. Herein we describe the synthesis of bifunctional enzyme-triggered CO-releasing molecules (ET-CORMs) that allow the simultaneous intracellular release of both CO and methyl fumarate. Using bone-marrow-derived DCs the impressive therapeutic potential of these methyl fumarate-derived compounds (FumET-CORMs) is demonstrated by strong inhibition of lipopolysaccharide-induced pro-inflammatory signaling pathways and blockade of downstream interleukin-12 or -23 production. The data also show that FumET-CORMs are able to transform DCs into an anti-inflammatory phenotype. Thus, these novel compounds have great clinical potential, for example, for the treatment of psoriasis or other inflammatory conditions of the skin.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Monóxido de Carbono/metabolismo , Esterasas/metabolismo , Ácido Fusárico/análogos & derivados , Inflamación/tratamiento farmacológico , Compuestos de Hierro Carbonilo/farmacología , Animales , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/metabolismo , Monóxido de Carbono/química , Cristalografía por Rayos X , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Esterasas/química , Ácido Fusárico/química , Ácido Fusárico/metabolismo , Ácido Fusárico/farmacología , Inflamación/metabolismo , Interleucina-12/antagonistas & inhibidores , Interleucina-12/biosíntesis , Interleucina-23/antagonistas & inhibidores , Interleucina-23/biosíntesis , Compuestos de Hierro Carbonilo/química , Compuestos de Hierro Carbonilo/metabolismo , Ratones , Modelos Moleculares , Estructura Molecular , Polisacáridos/antagonistas & inhibidores , Polisacáridos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA